Assignment 6

- (1) Let R_1, R_2 be integral domains with fields of fractions F_1, F_2 respectively. Suppose ϕ : $R_1 \to R_2$ is a ring homomorphism, does it induce a field homomorphism $\tilde{\phi} : F_1 \to F_2$ (which makes the obvious diagram commute) ?
- (2) Let F be a field and $f(x) \in F[x]$. Show that the quotient ring R := F[x]/(f(x)) is a field iff f(x) is irreducible.
- (3) Let F be a field which is a subring of a commutative ring R, and let $u \in R$. Prove that the subring of R generated by $F \cup \{u\}$ is isomorphic to F[x]/(f(x)) for some polynomial $f(x) \in F[x]$.
- (4) Let R, S be integral domains and $\phi : R \to S$ be a surjective ring homomorphism. If R is a PID, is it true that S is a PID ?
- (5) An integral domain R is a Euclidean domain if there exists a function $\delta : R \to \mathbb{Z}_{\geq 0}$ such that given any pair $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that a = bq + r with $\delta(r) < \delta(b)$. Prove that a Euclidean domain is a PID. Show that \mathbb{Z} and F[x] are Euclidean domains (F a field).
- (6) Let $\mathbb{Z}[\sqrt{2}]$ denote the set of real numbers of the form $a + b\sqrt{2}$ with $a, b \in \mathbb{Z}$. Show that this is a Euclidean domain, with respect to $\delta(a + b\sqrt{2}) = |a^2 2b^2|$.
- (7) Let $\mathbb{Z}[\sqrt{-5}]$ denote the set of complex numbers of the form $a + b\sqrt{-5}$ with $a, b \in \mathbb{Z}$. Show that this is not a UFD (see Jacobson: section 2.14). However, show that the divisor chain condition holds in this ring.
- (8) Give an example of an integral domain R and an element $a \in R$ such that a is irreducible but not prime.
- (9) Let f(x) be a monic polynomial with integer coefficients. Prove that any rational root of f(x) must in fact be an integer.
- (10) Prove Eisenstein's criterion: if $f(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{Z}[x]$ and p is a prime such that (i) $p|a_i$ for $0 \le i < n$ (ii) $p \nmid a_n$ (iii) $p^2 \nmid a_0$, then f(x) is irreducible in $\mathbb{Q}[x]$.
- (11) Let R be an integral domain. Prove that R[x] is a UFD iff R is a field.