Assignment 5

By a *skew-symmetric* matrix, we will mean a matrix M satisfying $M_{ij} = -M_{ji}$ for all i, j and $M_{ii} = 0$ for all i (this is the correct definition in characteristic 2 as well).

- (1) Let M be a skew-symmetric matrix over a field F. Show that det M is a square in F.
- (2) If M has integer entries, then det M is the square of an integer.
- (3) Let M be a symmetric complex matrix such that det $M \neq 0$. Prove that $M = P^T P$ for some invertible matrix P.
- (4) Let V be the vector space of 2×2 real matrices. Define forms β_1, β_2 on V by:

 $\beta_1(A, B) = \text{trace}(AB) \text{ and } \beta_2(A, B) = \text{trace}(AB^T)$

- (a) Show that both forms are symmetric. Determine their signatures.
- (b) For each of these forms, find a basis of V with respect to which its matrix becomes diagonal (with $0, \pm 1$ entries).
- (5) Can you repeat the above problem for $n \times n$ matrices for any n > 2?
- (6) Let B be a symmetric bilinear form of signature (p, n, z) on a real vector space V. Let U be a subspace such that $B|_U$ is nondegenerate. Let (p', n', z') denote the signature of $B|_U$. Prove that:

$$p' \le p, n' \le n \text{ and } z' \le z$$

Does this remain true if $B|_U$ is degenerate ?

- (7) Let B be a sesquilinear form on a complex vector space V. Let M_1, M_2 denote the matrices of B with respect to two bases $\mathcal{X}_1, \mathcal{X}_2$ of V. Prove that $M_1 = PM_2P^*$ for some invertible complex matrix P, where P^* is the conjugate transpose of P.
- (8) A Hermitian matrix M is a complex matrix satisfying $M^* = M$. A $d \times d$ Hermitian matrix is *positive definite* if $x^*Mx > 0$ for all nonzero column vectors $x \in \mathbb{C}^d$. Prove that every positive definite M is of the form PP^* for some invertible complex matrix P.
- (9) Let B be an alternating or symmetric bilinear form on V. A subspace U of V is said to be *isotropic* for B if $B|_U$ is identically zero, i.e., B(u, u') = 0 for all $u, u' \in U$.
 - (a) If U is an isotropic subspace of V of maximal dimension, prove that U contains rad B.
 - (b) If B is nondegenerate (on V) and U is an isotropic subspace, prove that dim $U \leq \dim V/2$. More generally, show that dim $U \leq (\dim V + \dim(\operatorname{rad} B))/2$.

(10) If B is a nondegenerate alternating form on V, determine

 $\max \{\dim U : U \text{ is an isotropic subspace of } V\}$

(11) Let B be a nondegenerate symmetric form on a real vector space V of dimension d. Suppose $\max \{\dim U : U \text{ is an isotropic subspace of } V\} = m$

Determine the possible signatures of B in terms of d, m.