Assignment 10

- (1) Let R^{op} denote the opposite ring of R. Let M be a right R-module (hence a left R^{op} -module) and N a left R-module (hence a right R^{op} -module). Prove that the map $m \otimes n \mapsto n \otimes m$ defines a \mathbb{Z} -linear isomorphism of $M \otimes_R N$ with $N \otimes_{R^{\text{op}}} M$.
- (2) Let R be commutative and M, N be R-modules. If $E \subset M$ generates M and $F \subset N$ generates N as R-modules, show that $\{e \otimes f : e \in E, f \in F\}$ generates $M \otimes_R N$ as an R-module.
- (3) Let $m, n \ge 1$ and consider the \mathbb{Z} -modules:

$$M = \mathbb{Z}/m\mathbb{Z}$$
 and $N = \mathbb{Z}/n\mathbb{Z}$

- (a) If m and n are relatively prime, prove that $M \otimes_{\mathbb{Z}} N = 0$.
- (b) More generally, prove that $M \otimes_{\mathbb{Z}} N \cong \mathbb{Z}/d\mathbb{Z}$ where d is the gcd of m, n.
- (4) Let R be a PID and let p, q denote prime elements in R. Let $a, b \ge 1$. Prove that $R/p^a R \otimes R/q^b R$ is isomorphic to: (i) 0 if $p \ne q$, (ii) $R/p^c R$ if p = q, where $c = \min(a, b)$. Now suppose M, N are finitely generated torsion modules over R, determine the elementary divisors of $M \otimes_R N$ in terms of those of M, N. Do the same for invariant factors. What if M, N are not necessarily torsion modules (i.e., they may have a free part) ?
- (5) Given collections $\{M_i : i \in I\}$ of right *R*-modules and $\{N_j : j \in J\}$ of left *R*-modules, prove that there is a \mathbb{Z} -linear isomorphism:

$$\left(\bigoplus_{i\in I} M_i\right) \otimes \left(\bigoplus_{j\in J} N_j\right) \xrightarrow{\sim} \bigoplus_{\substack{i\in I\\j\in J}} (M_i \otimes N_j)$$

- (6) Fix a commutative ring R. Define the following notions for R-algebras: subalgebra, ideal, homomorphism, quotient algebra and prove the analogue of the first isomorphism theorem in this setting.
- (7) Let F be a field and V a finite dimensional vector space over F. Show that $\operatorname{End}_F V$ is an F-algebra. Prove that:

$$\operatorname{End}_F V \otimes_F \operatorname{End}_F W \xrightarrow{\sim} \operatorname{End}_F (V \otimes_F W)$$

as F-algebras, where W is a finite dimensional vector space over F (*hint:* use the universal property of the tensor product of algebras).

(8) Let F be a field. Show that F[x] is an F-algebra. Prove that:

$$F[x] \otimes_F F[y] \xrightarrow{\sim} F[x,y]$$

as F-algebras.

- (9) If R is a commutative ring and A, B, C are R-algebras, prove that there exist isomorphisms of R-algebras:
 - (a) $A \otimes_R B \cong B \otimes_R A$ via the map $a \otimes b \mapsto b \otimes a$
 - (b) $(A \otimes_R B) \otimes_R C \cong A \otimes_R (B \otimes_R C)$ via the map:

$$(a \otimes b) \otimes c \mapsto a \otimes (b \otimes c)$$

(10) Let R be a commutative ring and S be a R-algebra. Construct a homomorphism of R-algebras:

$$S \otimes_R S^{\mathrm{op}} \to \mathrm{End}_R(S)$$

where $\operatorname{End}_R(S)$ denotes the space of *R*-linear endomorphisms of *S* (*hint:* bimodules).