Assignment 1

- (1) Let $\phi: M \to M'$ be a surjective homomorphism of monoids.
 - (a) Prove that there is a 1-1 correspondence between congruences on M' and congruences on M containing \equiv_{ϕ} (the kernel of ϕ).
 - (b) Let \equiv and \equiv' be congruences on M, M' (respectively) that are paired under this correspondence. Prove that M/\equiv is isomorphic to M'/\equiv' .
- (2) Let X, Y be sets and let (M, i) and (N, j) be the free monoids on X, Y respectively.
 - (a) Given a map of sets $f : X \to Y$, prove that there exists a unique monoid homomorphism $\tilde{f} : M \to N$ such that $\tilde{f} \circ i = j \circ f$.
 - (b) f is a bijection of sets iff \tilde{f} is a monoid isomorphism.
- (3) Redo the above problem with monoids replaced by groups everywhere.
- (4) Let X be a set and let (M, i) and (G, j) denote the free monoid and free group (respectively) on X. Prove that there is a monoid homomorphism $\phi : M \to G$ such that $j = \phi \circ i$. Prove that ϕ is injective (assume X finite if you like).
- (5) Let $X = \{p, q\}$ and let (G, i) denote the free group on X. We write a = i(p) and b = i(q). Prove that the following elements of G are not equal to the identity element of G:
 - (a) a^n for all $n \ge 1$.
 - (b) $(ab)^n$ for all $n \ge 1$.
 - (c) $aba^{-1}b^{-1}$
- (6) Consider the symmetric group S_n . Using the following transpositions as generators

$$(12), (23), \cdots, (n-1n)$$

prove that S_n is isomorphic to the group F/N where F is the free group on n-1 generators x_1, x_2, \dots, x_{n-1} (say) and N is the normal subgroup of F generated by the elements x_i^2 ($1 \le i \le n-1$), $(x_i x_{i+1})^3$ ($1 \le i \le n-2$) and $(x_i x_j)^2$ ($1 \le i, j \le n-1$ with i > j+1).