ROOT SYSTEMS - CLASSIFICATION

JULY 9, 2011

Recall that the possible Dynkin diagrams that can arise from an irreducible, reduced root system are A_l $(l \ge 1)$, B_l $(l \ge 2)$, C_l $(l \ge 2)$, D_l $(l \ge 4)$, E_6 , E_7 , E_8 , F_4 , G_2 . In the exercises below, we will construct a root system corresponding to each diagram from this list.

In each problem below, do the following:

- (1) Find the elements of R explicitly, and check that R is a root system.
- (2) Choose a chamber C appropriately, and find the corresponding R^{\pm} and B.
- (3) Check that the configuration of roots in B gives the required Dynkin diagram in each case.
- (4) Compute the action of the simple reflections, and determine the Weyl group, for the diagrams A - D.
- (5) Find the highest root (recall from first problem sheet on root systems), and compute the Coxeter number h.
- (6) Check in each case that |R| = lh.

1. General principles

Prove the following:

- (1) Let $V, (\cdot | \cdot)$ be a finite dimensional real inner product space, and $L \subset V$ be a lattice (i.e a discrete subgroup of V). Let $N \subset \mathbb{R}_{>0}$ be a finite set. Define $R := \{\alpha \in L : (\alpha | \alpha) \in N\}$. If R spans V and $\frac{2(\alpha|\beta)}{(\beta|\beta)} \in \mathbb{Z}$ for all $\alpha, \beta \in R$, then R is a root system (in other words, the second root system axiom comes for free).
- (2) If there is an inclusion of Dynkin diagrams $X \hookrightarrow Y$, then the root system of X can be obtained from the root system (V(Y), R(Y)) of Y as follows: take V(X) to be the subspace of V(Y) spanned by the simple roots corresponding to the vertices of X, and $R(X) := V(X) \cap R(Y)$.

2. Classical Types A-D

Consider the vector space $V_n := \mathbb{R}^n$ with the standard inner product $(\cdot | \cdot)$, and standard orthonormal basis $\{\epsilon_i : i = 1 \cdots n\}$. Let $x_n := \sum_{i=1}^n \epsilon_i \in V_n$. Define the lattice $L_n := \bigoplus_{i=1}^n \mathbb{Z}\epsilon_i$. Finally, let $\tilde{V}_n := x_{n+1}^{\perp} \subset V_{n+1}$.

$$A_n: R(A_n) := \{ \alpha \in L_{n+1} \cap \tilde{V}_n : (\alpha \mid \alpha) = 2 \} \text{ (as a subset of } \tilde{V}_n).$$

$$B_n: R(B_n) := \{ \alpha \in L_n : (\alpha \mid \alpha) = 1 \text{ or } 2 \}.$$

$$C_n: R(C_n) := \{ \frac{2\alpha}{(\alpha \mid \alpha)} : \alpha \in R(B_n) \}.$$

$$D_n: R(D_n) := \{ \alpha \in L_n : (\alpha \mid \alpha) = 2 \}.$$

for more problems, see Bourbaki's Lie Groups and Lie algebras, Chapters 4-6.

3. Exceptional types E, F, G

 E_8 : Let L be the following lattice in V_8 :

$$L := \{ \sum_{i=1}^{8} a_i \epsilon_i : a_i \in \frac{1}{2} \mathbb{Z}, \ a_i \equiv a_j \pmod{\mathbb{Z}}, \ \sum_{i=1}^{8} a_i \in 2\mathbb{Z} \}$$

Then $R(E_8) := \{ \alpha \in L : (\alpha \mid \alpha) = 2 \}.$

 E_6 and E_7 : Obtain these using the diagram inclusions $E_6 \hookrightarrow E_7 \hookrightarrow E_8$.

 $F_4:$ Let $L := L_4 \oplus \mathbb{Z}(\frac{1}{2}x_4) \subset V_4.$ Then $R(F_4) := \{ \alpha \in L : (\alpha \mid \alpha) = 1 \text{ or } 2 \}.$

 $G_2: R(G_2) := \{ \alpha \in L_3 \cap E_2 : (\alpha \mid \alpha) = 2 \text{ or } 6 \}.$

4. More problems

(1) **Definition:** A root subsystem of (V, R) is a subset $R' \subset R$ such that R' is invariant under the reflections s_{α} for $\alpha \in R'$. In this case, R' becomes a root system in $V' := \operatorname{span} R'$.

Observe if there is a diagram inclusion $X \hookrightarrow Y$, then R(X) occurs as a root subsystem of R(Y). For each X and Y below, show that R(X) occurs as a root subsystem of R(Y), though there is no diagram inclusion.

(a) $X = D_l, Y = B_l.$ (b) $X = D_8, Y = E_8.$ (c) $X = B_4, Y = F_4.$ (d) $X = A_2, Y = G_2.$

Eventually, we will see that this implies there is an inclusion of the corresponding Lie algebras. For example D_l corresponds to the Lie algebra \mathfrak{so}_{2l} while B_l corresponds to \mathfrak{so}_{2l+1} ; the inclusion is more transparent here in this case.

(2) Recall the definition of the Weyl vector $\rho := \frac{1}{2} \sum_{\alpha \in R^+} \alpha$ from the first problem sheet. Compute ρ explicitly in the simply laced cases A, D, E using our construction of these root systems. For these cases, prove :

$$(\rho \mid \rho) = \frac{(|R|+l)|R|}{12l}$$

where R is the root system of rank l.