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1. (05/07/2011)

1.1. Root systems. Let V be a finite dimensional R-vector space. A reflection is a linear map
sα,H on V satisfying sα,H(x) = x for all x ∈ H and sα,H(α) = −α, where H is a hyperplane and
α /∈ H.

Clearly H = ker f for some 0 6= f ∈ V ∗ and we can choose f such that f(α) = 2, then
sα,H = sα,f where sα,f (v) = v − f(v)α.

Lemma 1.1. Let R be a finite subset of V which spans V . Let 0 6= α ∈ V then there exists at
most one reflection s on V such that s of V such that s(α) = −α and s(R) = R.

Proof. If there are two such sα,H1 and sα,H2 then consider t = sα,H1sα,H2 is of finite order and is
identity on α and on H1 ∩H2 so by determinant being one, t = 1. �

Definition 1.2. A root system R is a finite subset of V such that

(1) 0 /∈ R, R spans V ,
(2) α ∈ R =⇒ ∃ a reflection with respect to α, i.e., a reflection of the form sα,α∨ for α∨ ∈ V ∗

(such that 〈α∨, α〉 := α∨(α) = 2), such sα,α∨(R) = R.
(3) α∨(β) ∈ Z for all α, β ∈ R.

Note that above lemma guarantees uniqueness of sα,α∨ .
Elements of R are called roots, the dimension of V is called the rank of R. Let A(R) = {T ∈

GL(V ) : T (R) = R} and W (R) = 〈sα,α∨ : α ∈ R〉 ⊆ A(R).

Examples 1.3. 1. Let V = R and let 0 6= α ∈ R, then α∨ is determined by 〈α, α∨〉 = 2. If α ∈ R
then −α ∈ R and {α,−α} forms a root system in V . It is called a root system of type A1.

2. Another root system on V = R is {±α,±2α}. It is called BC1.
We now assume an inner product defined on V , standard inner product, because it would then be

easy to describe the hyperplane orthogonal to each vector.
3. For V = R2 with the standard inner product we get several root systems. One of them,

called A2, is described as {±α,±β,±(α + β)} where α∨(β) = −1. Other root systems on R2 are
A1 ×A1, B2, G2 and BC2.

Let us now fix a root system R ⊂ V .

Lemma 1.4. If (·|·) is a symmetric, bilinear, non-degenerate W (R)-invariant form then (α|α) 6= 0
for every α ∈ R and ψ−1(α∨) = 2α

(α|α) .

The non-degeneracy of (·|·) gives an isomorphism V
ψ→ V ∗ which is used in the statement above.

Proof. Use sα,α∨ ∈W (R) and so (sα,α∨(β)|sα,α∨(α)) = (β|α). �

Proposition 1.5. Such a W (R)-invariant form exists.

Proof. Averaging trick! �

Exercise 1.6. Show that if R is a root system then so is R∨ = {α∨ : α ∈ R} ⊂ V ∗.

Exercise 1.7. The form (x|y) =
∑

α∈R〈α∨, x〉〈α∨, y〉 is an A(R)-invariant form on V .

Definition 1.8. A direct sum of root systems Ri ⊂ Vi, 1 ≤ i ≤ n, is a subset R :=
∐
Ri ∈ ⊕Vi.

It will be written as R = ⊕Ri.

An example of such direct sum is A1 ×A1.

Exercise 1.9. If R = R1 ⊕R2 then W (R) =W (R1)×W (R2).
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Definition 1.10. A root system R is called irreducible if it is not a direct sum R1 ⊕ R2 for root
systems R1, R2.

Proposition 1.11. A root system R is irreducible if and only if the action of W (R) on V is
irreducible, i.e., V is an irreducible representation of W (R).

Proof. =⇒ If V is not an irrep of W (R), then V = V1⊕V2 for nontrivial W (R)-invariant subspaces
V1, V2. We define Ri = R ∩ Vi for i = 1, 2. One observes that if α ∈ R, v ∈ Vi =⇒ sα(v) ∈ Vi
hence R1, R2 are root systems and finally R = R1 ⊕R2. �

2. (06/07/2011)

2.1. An aside on non-degenerate forms. Let V be a finite dimensional real vector space and
let (·|·) be a symmetric non-degenerate bilinear form on V . Having such a form is the same as having
an isomorphism ψ = ψ(·|·) : V → V ∗, v 7→ (v|·), i.e., ψ(v)(v′) = (v|v′). Having (·|·) non-degenerate
means that ψ is injective and since dimV <∞ this is enough.

There exists such a form on V ∗: for f, g ∈ V ∗ we define (f |g)V ∗ := (ψ−1(f)|ψ−1(g))V =
〈f, ψ−1(g)〉.

2.2. Configurations of pairs of roots. Let (V,R) be a root system and let (·|·) be a W (R)-
invariant form on V giving ψ : V → V ∗. Observe that ψ−1(α∨) = 2α

(α|α) .

For roots α, β ∈ R we define the Cartan integer n(α, β) to be the integer 〈α, β∨〉 = 2(α|β)
(β|β) .

Lemma 2.1. 1. n(α, α) = 2.
2. sβ(α) = α− n(α, β)β.

3. (a) If (α|β) 6= 0 then n(α,β)
n(β,α) =

(α,α)
(β,β) .

(b) n(α, β)n(β, α) = 4(α|β)2
‖α‖2‖β‖2 = 4 cos2 θ.

Then the possibilities for a pair α, β, with ‖β‖ ≥ ‖α‖, are as follows:

n(α, β) n(β, α) θ
0 0 ∗ π

2 A1 ×A1

1 1 ‖β‖ = ‖α‖ π
3 A2

−1 −1 ‖β‖ = ‖α‖ 2π
3 A2

1 2 ‖β‖ =
√
2‖α‖ π

4 B2

−1 −2 ‖β‖ =
√
2‖α‖ 3π

4 B2

1 3 ‖β‖ =
√
3‖α‖ π

6 G2

−1 −3 ‖β‖ =
√
2‖α‖ 5π

6 G2

2 2 ‖β‖ = ‖α‖ 0 α = β
−2 −2 ‖β‖ = ‖α‖ π α = −β
1 4 ‖β‖ = 2‖α‖ 0 β = 2α
−1 −4 ‖β‖ = 2‖α‖ π β = −2α

We call a root system reduced if α ∈ R then Rα ∩R = {±α}.

Corollary 2.2. Let α, β ∈ R. If n(α, β) ≷ 0 then α∓ β ∈ R.

2.3. Chambers, basis and W (R). Let (V,R) be a reduced root system. Let H be the set of all
hyperplanes ker(α∨) for α ∈ R.

Lemma 2.3. W (R) acts on H.

Proof. w(Hα) = Hw(α) as Hα = ker(α∨) = {x ∈ V : (x|α) = 0}. �
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Now we define the regular part of the space V by V reg := V −∪HH. The vectors that lie in V reg

are called regular vectors and the connected components of V reg are called chambers. Note that the
action of W (R) on V preserves V reg and takes a chamber to another chamber.

If x ∈ V reg then (x|α) 6= 0 for any α ∈ R. This allows us to divide the roots in two sets, called
positive and negative roots, as follows:

R±(x) = {α ∈ R : (x|α) ≷ 0}.
Observe that R = R+

∐
R−, R− = −R+ and R+ ∩R− = ∅.

Lemma 2.4. For x, y ∈ V reg, R+(x) = R+(y) ⇐⇒ x, y lie in the same chamber.

If C is a chamber in V then R±(C) := R±(x) for some x ∈ C. Above lemma says that R±(C)
is well-defined. We further abbreviate this notation by letting R± := R±(C).

Now, a root β ∈ R+ is called decomposable if β = β1 + β2 for some β1, β2 ∈ R+, and a root is
called indecomposable if it is not decomposable.

We define B(C) to be the set of indecomposable roots in R+ = R+(C).

Proposition 2.5. 1. B(C) is a basis for V .
2. R+(C) ⊆ Z≥0(B(C)) and R−(C) ⊆ Z≤0(B(C).

Proof. We need the notion of height for this proof. Fix an element x0 ∈ C. Then α ∈ R+ ⇐⇒
(x0|α) > 0, so we define ht(α) := (x0|α). Observe that ht is linear. We use this real number to
compare different roots.

By noting that ht attains a minimum over R+ it follows that R+ ⊆ Z≥0(B(C)).
Further, the Cartan integer n(α, β) is always negative for α, β ∈ B(C)! Then the linear indepen-

dence of B(C) follows and so B(C) must be a basis of V . �

Lemma 2.6. If V is an inner product space and S ⊆ V such that S lies in some half-space and
(α|β) ≤ 0 for all α, β ∈ S then S is linearly independent.

This proof is left as an exercise.

3. (07/07/2011)

3.1. Root system of type An. We now do an explicit example of a general root system.
Consider Rn with the standard inner product (·|·) and let us fix a basis εi, 1 ≤ i ≤ n, of Rn. We

define V = {
∑
ciεi :

∑
ci = 0} = (1, 1, . . . , 1)⊥ and R := {εi − εj : i 6= j}. The pair (V,R) is a

root system. Observe that |R| = 2
(
n
2

)
.

Let α = εi − εj . We observe that the reflection in Rn wrt the vector α switches εi and εj
and fixes all other basis elements. So it induces a linear map, denoted by sεi−εj , on V . Further
sεi−εj (εk − εl) = εσ(k) − εσ(l) where σ is the transposition (i, j).

Exercise 3.1. Verify that the Cartan integers, n(α, β), are indeed integers.

We remark here that this root system corresponds to the Lie algebra sln(C) and is called the root
system of type An−1.

For a suitable chamber C we get R = R+
∐
R− where R± = {εi − εj : i ≶ j}.

Exercise 3.2. Find x ∈ V reg such that R± = R±(x).

The basis in this R+ is B = {εi − εi+1 : 1 ≤ i ≤ n − 1} and the Weyl group W (R) is the
symmetric group Sn.

3.2. Action of W (R) on roots. Let R be a root system of rank l and let B = {α1, . . . , αl} be
its simple roots wrt a chamber C.

Theorem 3.3. W =W (R) = 〈sαi : 1 ≤ i ≤ l〉 ⊂ GL(V ).

We need two lemmas for proving this theorem, the first of which is clear and the second one is
proved by height reduction. The theorem follows easily from these lemmas.
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Lemma 3.4. For all 1 ≤ i ≤ l, sαi(R
+ − {αi}) = (R+ − {αi}).

Lemma 3.5. β ∈ R+ then there is some w ∈ 〈sαi : 1 ≤ i ≤ n〉 such that wβ ∈ B.

Corollary 3.6. ∪Wαi = R.

The point here is that to describe a root system R completely, it is enough to know the set of
simple roots, B, and the Cartan integers n(αi, αj) for αi, αj ∈ B.

3.3. Action of W (R) on chambers. Let C denote the set of chambers in V .

Theorem 3.7. W (R) acts simply transitively on C.

Let us denote sαi by si now where αi are simple roots.
For an element w ∈ W we define the length of w, l(w), as the minimal length of an expression

for w in terms of si. For example, l(si) = 1.

Lemma 3.8. l(w) is the cardinality of the inversion set of w, I(w) := {α ∈ R+ : wα ∈ R−}.

The proof is left as an exercise.

Proof of the theorem. Let C,C ′ be chambers and B be the system of simple roots wrt C. Then
C = {v ∈ V : (v|αi) > 0 for all αi ∈ B}.

Let us fix x0 ∈ C. Now we choose v ∈ C ′. If (v|αi) > 0 for every simple root αi then v ∈ C.
Otherwise (v|αi) < 0 for some simple αi and then ht(v) := (v|x0) < ht(sαi(v)). So if we take the
element attaining the maximum height in the W -orbit of v, we get an element of C.

That the action of W is simple follows by the above lemma. �

3.4. If (V,R) is a root system and B is a system of simple roots, we form a matrix, called Cartan
matrix, consisting of the entries n(αi, αj) where αi, αj are simple roots. This l × l matrix, where l
is the rank of R, is a positive definite matrix that encodes information about the form (·|·) on V . It
looks like as follows: 

2
2 ≤ 0

≤ 0
. . .
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4. (08/07/2011)

Today we will work towards classification of root systems.

4.1. Gram matrix. Let (V,R) be a reduced root system of rank l and let (·|·) be a positive
definite A(R)-invariant form on V . Recall R = R+

∐
R− wrt some chamber C and one has

B = B(C) ⊂ R+.

Lemma 4.1. If R is an irreducible root system then the set of simple roots, B, is not a disjoint
union of two non-empty subsets B1 and B2 such that (α|β) = 0 for any α ∈ B1, β ∈ B2.

Proof is left as an exercise.
Let B = {α1, . . . , αl}. If ei = αi

‖αi‖ then (ei|ej) = cos θi,j where θi,j is the angle between

αi and αj . Observe that cos θi,j = − cos π
mi,j

where mi,j ∈ {2, 3, 4, 6}. Then the Gram matrix

G = [(ei|ej)] = [− cos(π/mi,j)] is a positive definite, symmetric matrix with mi,i = 1 and for i 6= j,
mi,j ∈ {2, 3, 4, 6}.

Exercise 4.2. Show that if B′ is another basis of V then the Gram matrix G′ is the same as G
upto reordering of indices.

The classification problem can now be rephrased as the following problem.
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Problem 4.3. Let l ≥ 1. Let mi,j ∈ N such that mi,i = 1, mi,j ≥ 2 for i 6= 2 and mi,j = mj,i.
For what choices of mi,j is G = [− cos(π/mi,j)] positive definite?

As an example, if l = 2 we need to choose only m1,2. Let m1,2 = p ≥ 2. Then Gp is always
positive definite and we get the (general) root system corresponding to dihedral group.

4.2. Coxeter graph. This is a graph labelled by the simple roots αi and we put an edge between
αi and αj if (and only if) mi,j ≥ 3. Further, if mi,j ≥ 4 then we also write mi,j on the edge.

Fact 4.4. R irreducible if and only if the corresponding Coxeter graph is connected.

Now we have reduced the classification problem to the following problem:

Problem 4.5. Classify all connected, positive definite Coxeter graphs.

We now state three main steps of this classification programme. Let X be a Coxeter graph, G
the corresponding matrix [gi,j ].

Lemma 4.6. If X is positive definite then there are no cycles in X.

Lemma 4.7. If X is positive definite and i a vertex in X let N(i) = {j : j is connected to i} then∑
g2i,j < 1.

Lemma 4.8. a) If X is positive definite then any subgraph Y of X is again positive definite.
b) (Shrinking lemma) If X is positive definite and if there are two subgraphs Y, Z of X such that

Y and Z are connected by a simply laced chain, the union of Y,Z and the simply laced chain being
the graph X, then the graph X̃ obtained by shrinking the chain to a vertex is also positive definite.

Now we list a number of corollaries.

Corollary 4.9. Let X be a positive definite Coxeter graph.
1. For any vertex i, deg(i) ≤ 3.
2. If deg(i) = 3 then mi,j = 3 all for j connected to i.
3. If there exist i, j for which mi,j ≥ 6, then X = {i, j} with an edge between i and j labeled by

mi,j .
4. If there is a vertex i with deg(i) then all the subgraphs on the three sides of i are simply laced

chains.
5. If all the vertices have degree 2 then mi,j ≥ 4 for at most one mi,j .

4.3. The main theorem. Now we completely solve the classification problem.

Theorem 4.10. The connected positive definite graphs of rank l are of the following types:
1. Al: a simply laced chain, no labels, mi,i+1 = 3, l ≥ 1
2. Bl: simply laced chain with last label 4, l ≥ 2
3. Dl: a forked chain, no labels, l ≥ 4
4. F4: m1,2 = 3,m2,3 = 4,m3,4 = 3.
5. G2: m1,2 = 6.
6. E6:
7. E7:
8. E8:
9. H3: m1,2 = 3,m2,3 = 5
10.H4: m1,2 = m2,3 = 3,m3,4 = 5.
11.I2(p): m1, 2 = p.

4.4. Dynkin diagram of R. This is obtained from the Coxeter graph by indicating the longer
root among αi, αj whenever mi,j = 4 or 6.
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Theorem 4.11. The Dynkin diagram of an irreducible root systems is of the following type.
1. Al:
2. Bl: last root smallest
3. Cl: last root longest
4. Dl:
5. G2, F4, E6, E7, E8

Theorem 4.12. Each of the Dynkin diagrams listed above is the Dynkind diagram of a reduced
irreducible root system.

One has the following correspondence for the first four Dynkin diagrams:

Al ←→ sll+1, Bl ←→ so2l+1, Cl ←→ spl, Dl ←→ so2l.


