Homework 1. January 9, 2017.

In the following problems (M, ω) is a symplectic manifold.

- 1. Show that if M is compact, $[\omega] \in H^2(M)$ is non-zero. Using this fact, show that the sphere S^{2n} does not have a symplectic form for n > 1.
- 2. Suppose (V, Ω) is a symplectic vector space.
 - (a) If Y is an isotropic subspace, show that $\dim(Y) \leq \frac{1}{2} \dim(V)$.
 - (b) If Y is a coisotropic subspace, show that $\dim(Y) \ge \frac{1}{2} \dim(V)$.
 - (c) Y is a Lagrangian subspace if and only if it is both isotropic and coisotropic.
- 3. Suppose $H: M \to \mathbb{R}$ is a Hamiltonian function. Show that the condition $\iota_{X_H} \omega = dH$ uniquely defines a vector field X_H on M.
- 4. Show that $\frac{\omega^n}{n!}$ is a volume form on M.
- 5. Show that the symplectic form on cotangent spaces is natural. That is, if $\phi : X_1 \to X_2$ is a diffeomorphism, it induces a symplectomorphism of the cotangent bundles T^*X_1 and T^*X_2 .