Homework 8. March 21, 2017.

1. Compute the Chern number of the universal line bundle L on \mathbb{CP}^1 . The Chern number is the integer $\int_{\mathbb{CP}^1} c_1(L)$.

SUGGESTED APPROACH:

- In our case the line bundle L is itself a complex manifold and the projection $\pi : L \to \mathbb{P}^1$ is holomorphic. Such a complex line bundle is called a *holomorphic line bundle*. A section $\sigma : \mathbb{P}^1 \to L$ is holomorphic, if it is a holomorphic map of complex manifolds.
- The Chern number of the trivial line bundle is zero. Since $c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2)$ for line bundles L_1 , L_2 , we can say that $c_1(L) = -c_1(L^*)$. To solve our problem, we will find the Chern number of $c_1(L^*)$ by looking at the number of zeros of a holomorphic section of L^* .
- A section $\sigma : \mathbb{P}^1 \to L^*$ is a linear functional on each fiber $L_x \ (x \in \mathbb{P}^1)$ of L. A section $\sigma : \mathbb{P}^1 \to L^*$ is holomorphic, if for every holomorphic section $f : \mathbb{P}^1 \to L$, the pairing $\sigma(f) : \mathbb{P}^1 \to \mathbb{C}$ is holomorphic. To solve the problem, produce a holomorphic section of L^* . Hint: Use co-ordinate functions on \mathbb{C}^2 , and lift them to L via the blow-down map $L \to \mathbb{C}^2$.
- 2. Show that the Chern number of $T\mathbb{P}^1 \to \mathbb{P}^1$ is 2 using one of the two suggested approaches, or some other method you like.
 - (a) Find a vector field s on \mathbb{P}^1 which vanishes at two points, the zeros are transverse intersections of s with the zero section of $T\mathbb{P}^1$, and the index of each zero point is 1.
 - (b) Produce a meromorphic 1-form on \mathbb{P}^1 , and use $c_1(T^*\mathbb{P}^1) = -c_1(T\mathbb{P}^1)$. An additional result is required, which I state here.

Suppose $\sigma : \mathbb{P}^1 \to L$ is a meromorphic section of a holomorphic line bundle L, then

 $c_1(L)$ = number of zeros of σ – number of poles of σ

counted with multiplicity.

3. Consider the map

$$u: \mathbb{P}^1 \to \mathbb{P}^n, \quad [x:y] \mapsto [x:y:0:\cdots:0].$$

Show that $c_1(u^*T\mathbb{P}^n) = n+1$.

HINT: $u^*T\mathbb{P}^n$ decomposes into *n* holomorphic line bundles, one of which is $\operatorname{image}(du) \simeq T\mathbb{P}^1$. Use the result of Problem 2 for this line bundle. For the others, produce holomorphic sections, with one zero.