Homework 2. January 16, 2017.

- 1. Suppose $X \subset M$ is a submanifold. The co-normal bundle N^*S over S is the sub-bundle of $T^*M|_S$ that annihilates the tangent bundle TS. Show that the co-normal bundle is a Lagrangian submanifold of T^*M .
- 2. Suppose $(M_1, \omega_1), (M_2, \omega_2)$ are symplectic manifolds. Define a two-form $\tilde{\omega}$ on the product $M_1 \times M_2$ as

$$\tilde{\omega} := \operatorname{pr}_1^* \omega_1 - \operatorname{pr}_2^* \omega_2,$$

where $\operatorname{pr}_i:M_1\times M_2\to M_i$ is a projection map for i=1,2. Show that

- (a) $\tilde{\omega}$ is a symplectic form.
- (b) A diffeommorphism $\phi: M_1 \to M_2$ is a symplectomorphism if and only if its graph $\Gamma_{\phi} \subset (M_1 \times M_2, \tilde{\omega})$ is a Lagrangian submanifold.
- 3. Suppose M is a compact Riemannian manifold, and let $\langle \cdot, \cdot \rangle : \Omega^*(M) \times \Omega^*(M) \to \mathbb{R}$ be the induced inner product on forms. Define the operator $d^*: \Omega^k(M) \to \Omega^{k-1}(M)$ as $d^*:=(-1)^{n(k+1)+1}*d*$, where * is the Hodge star. Show that $\langle d\alpha, \beta \rangle = \langle \alpha, \mathbf{d}^*\beta \rangle$ for all forms $\alpha \in \Omega^{k-1}(M)$, $\beta \in \Omega^k(M)$.