BLOW-UPS ON SYMPLECTIC MANIFOLDS

1. VIEW 1

The blow-up of \mathbb{C}^n at the origin is the complex manifold

$$\operatorname{Bl}_0 \mathbb{C}^n := \{ (z, w) \in \mathbb{C}^n \times \mathbb{C}\mathbb{P}^{n-1} : z_i w_j = z_j w_i \forall i, j \}.$$

This space is obtained by deleting the origin in \mathbb{C}^n and putting a \mathbb{CP}^{n-1} in its place. \mathbb{CP}^{n-1} is the set of complex lines through the origin.

The blow-up comes with two projection maps

(1)
$$\pi: \operatorname{Bl}_0 \mathbb{C}^n \to \mathbb{C}^n, \quad pr: \operatorname{Bl}_0 \mathbb{C}^n \to \mathbb{C}\mathbb{P}^{n-1}.$$

Away from the set $\pi^{-1}(0)$, π is a biholomorphism onto $\mathbb{C}^n \setminus \{0\}$. The inverse image $\pi^{-1}(0)$ is \mathbb{CP}^{n-1} , this is called the *exceptional divisor* corresponding to the blow-up. The fibers of the second map in (1) are complex lines. So, $\operatorname{Bl}_0 \mathbb{C}^n$ is a line bundle over \mathbb{CP}^{n-1} . In fact it is the universal line bundle – the fiber above $w \in \mathbb{CP}^{n-1}$ is the complex line in \mathbb{C}^n represented by w. The exceptional divisor is the zero section of the line bundle.

In the previous lecture, we showed that for any $\lambda > 0$,

(2)
$$\omega_{\lambda} := \pi^* \omega_{std} + \lambda^2 p r^* \omega_{FS}$$

is a Kähler form on $\operatorname{Bl}_0 \mathbb{C}^n$. Observe that ω_{λ} restricts to the form $\lambda^2 \omega_{FS}$ on the exceptional divisor. VIEW 1 of $\operatorname{Bl}_0 \mathbb{C}^n$ sees it as a complex manifold with a Kähler form.

2. VIEW 2

Lemma 2.1. Suppose $\lambda > 0$. For any $\delta \in (0, \infty]$, the map

$$F: (\pi^{-1}(B_{\delta} \setminus \{0\}), \omega_{\lambda}) \to (B_{\sqrt{\delta^2 + \lambda^2}} \setminus B_{\lambda}, \omega_{std})$$
$$z \mapsto Z := \sqrt{|z|^2 + \lambda^2} \frac{z}{|z|}$$

is a symplectomorphism.

Proof. Recall that

$$\begin{split} \omega_{\lambda} &= \frac{\iota}{2} \partial \overline{\partial} (\lambda^2 \log |z|^2 + |z|^2) \\ &= \frac{\iota}{2} (dz \wedge d\overline{z} + \frac{\lambda^2 dz \wedge d\overline{z}}{|z|^2} - \frac{\lambda^2 \overline{z} dz \wedge z d\overline{z}}{|z|^4})) \end{split}$$

Plug in the expression for Z in $F^*\omega_{std} = dZ \wedge d\overline{Z}$ to finish the proof.

1

This Lemma shows that $\mathbb{C}^n \setminus \overline{B}_{\lambda}$ with the standard symplectic structure is symplectomorphic to $\operatorname{Bl}_0 \mathbb{C}^n$ minus the zero section. This suggests that as a symplectic manifold, $\operatorname{Bl}_0 \mathbb{C}^n$ can be viewed as $(\mathbb{C}^n \setminus B_{\lambda}) / \sim$. Here, the equivalence relation \sim is given by the S^1 -action on the boundary ∂B_{λ} . This is VIEW 2 of $\operatorname{Bl}_0 \mathbb{C}^n$.

Remark 2.2. The space $\mathbb{C}^n \setminus \overline{B}_{\lambda}$ does not have boundary – the subspace $\partial B_{\lambda}/S^1$ is a symplectic submanifold of dimension 2(n-1).

Remark 2.3. (Equivalence of View 1 and View 2) The map F in the Lemma extends to a map from $(\mathbb{C}^n \setminus B_{\lambda}) / \sim \to \operatorname{Bl}_0 \mathbb{C}^n$. Here $\partial B_{\lambda} / S^1$ is mapped to the zero section/exceptional divisor. This map is a symplectomorphism on the dense open set $\mathbb{C}^n \setminus \overline{B}_{\lambda}$ and on the complement B_{λ} / S^1 . We do not discuss symplectomorphism on all of the VIEW 2 space, because we have not talked about a smooth structure on it.

3. View 3

Here, we adopt a *changed sign convention*. We define moment map by the equation $i_{\xi_M}\omega = -d\Phi_{\xi}$. This will flip the sign of moment maps.

Consider $\mathbb{C}^{n+1} = \{(w, z) \in \mathbb{C} \times \mathbb{C}^n\}$, with symplectic form $dw \wedge d\overline{w} \oplus dz \wedge d\overline{z}$. Consider an S^1 action on it, where the action of $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ is given by

$$(w,z) \mapsto (e^{-\iota\theta}w, e^{\iota\theta}z).$$

A moment map for this action is

$$\Phi(w,z) = \frac{1}{2}(-|w|^2 + ||z||^2).$$

Any $\epsilon > 0$ is a regular value of the moment map. We will see that the symplectic quotient $\Phi^{-1}(\frac{\epsilon}{2})/S^1$ is the blow-up $\operatorname{Bl}_0 \mathbb{C}^n$. This is VIEW 3 of the blow-up space.

Proposition 3.1. The VIEW 1 space $(Bl_0 \mathbb{C}^n, \omega_{\sqrt{\epsilon}})$ is symplectomorphic to $\Phi^{-1}(\frac{\epsilon}{2})/S^1$.

Proof. The symplectic quotient is a disjoint union

$$\Phi^{-1}(\frac{\epsilon}{2})/S^{1} = \left(\{(w,z) : \|z\|^{2} > \epsilon, |w|^{2} = \|z\|^{2} - \epsilon\} \bigsqcup\{(0,z) : \|z\|^{2} = \epsilon\}\right)/S^{1}.$$

Notice that the quotient of the first space $\{(w, z) : ||z||^2 > \epsilon, |w|^2 = ||z||^2 - \epsilon\}$ is an open dense subset, and the quotient of the second space $\{(0, z) : ||z||^2 = \epsilon\}$ is a codimension two symplectic submanifold of $\Phi^{-1}(\frac{\epsilon}{2})/S^1$. The quotient of the first space will turn out to be $(Bl_0 \mathbb{C}^n \setminus \pi^{-1}(0), \omega_{\sqrt{\epsilon}})$. The quotient of the second space will turn out to be the exceptional divisor in $Bl_0 \mathbb{C}^n$.

Consider the map

(3)
$$f: (\mathbb{C}^n \setminus \{0\}, \omega_{\sqrt{\epsilon}}) \to \Phi^{-1}(\frac{\epsilon}{2})$$
$$z \mapsto (W, Z) := (||z||, \sqrt{||z||^2 + \epsilon} \frac{z}{||z||}).$$

The image of f is {Re(w) > 0, Im(w) = 0}, which is a slice of the S^1 action. Notice that the second component of the map is same as F of Lemma 2.1. Using the calculation in that Lemma, we get

 $f^*(dW \wedge \mathrm{d}\overline{W} + dZ \wedge d\overline{Z}) = d(\|z\|) \wedge d(\overline{\|z\|}) + \omega_{\sqrt{\epsilon}} = \omega_{\sqrt{\epsilon}}.$

After right composing f with the projection $\Phi^{-1}(\frac{\epsilon}{2}) \to \Phi^{-1}(\frac{\epsilon}{2})/S^1$, we get a map $\overline{f}: (\mathbb{C}^n \setminus \{0\}, \omega_{\sqrt{\epsilon}}) \to \Phi^{-1}(\frac{\epsilon}{2})/S^1$. The map \overline{f} is a symplectomorphism onto its image. The image is the quotient of the first set in (3), which is open dense in $\Phi^{-1}(\frac{\epsilon}{2})/S^1$. The map \overline{f} extends continuously to a map

$$\overline{f}: (\mathrm{Bl}_0 \, \mathbb{C}^n, \omega_{\sqrt{\epsilon}}) \to \Phi^{-1}(\frac{\epsilon}{2})/S^1.$$

 \overline{f} maps the exceptional divisor symplectomorphically to $\{(0, z) : ||z||^2 = \epsilon\}/S^1$. Check that the derivative of \overline{f} is well-defined on the normal bundle of the exceptional divisor in $\operatorname{Bl}_0 \mathbb{C}^n$, and so \overline{f} is a differentiable map. Since the pullback of the Kähler form by \overline{f} is equal to $\omega_{\sqrt{\epsilon}}$ on a dense open set, it must agree everywhere.

Remark 3.2. In VIEW 3, we saw that the blow-up is the symplectic quotient $\Phi^{-1}(\frac{\epsilon}{2})$, for some $\epsilon > 0$. What is the quotient on negative levels? We claim that for any $\epsilon > 0$, the quotient $\Phi^{-1}(\frac{\epsilon}{2})/S^1$ is symplectomorphic to \mathbb{C}^n . This is seen as follows. On the set

$$\Phi^{-1}(\frac{\epsilon}{2}) = \{(z,w): -|w|^2 + ||z||^2 = -\epsilon\},\$$

|w| is positive. Therefore, the set $\{(w, z) : \operatorname{Re}(w) > 0, \operatorname{Im}(w) = 0\} \cap \Phi^{-1}(-\frac{\epsilon}{2})$ is a global slice of the S^1 action on $\Phi^{-1}(-\frac{\epsilon}{2})$. This slice is the image of the map

$$f: (\mathbb{C}^n, \omega_{std}) \to \Phi^{-1}(-\frac{\epsilon}{2})$$
$$z \mapsto (W, Z) := (\sqrt{\|z\|^2 + \epsilon}, z).$$

Further, this map satisfies $f^*(dW \wedge d\overline{W} + dZ \wedge d\overline{Z}) = dz \wedge d\overline{z}$. Therefore, there is a symplectomorphism $\Phi^{-1}(\frac{\epsilon}{2})/S^1 \simeq (\mathbb{C}^n, \omega_{std})$.

This discussion shows that crossing 0, which is a critical value of Φ , has the effect of changing the symplectic quotient by a blow-up. In general, crossing critical levels changes the symplectic quotient by birational transformations. We do not get into details here.