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Probability

What is “probability”? For example, what do the following mean:

The probability of getting “heads” in a coin toss is 0.5
There is a 30% probability of rain today
There is a 1.7% probability of Trump winning the US presidential election
(early Oct 2016)
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Probability: a measure of how likely it is that a proposition is true.

Frequentist definition
n/N where n = number of occurrences in a large number of “independent,
identically distributed” (i.i.d.) trials N .

“Independent” = one trial does not affect another trial (more precise
definition later)
“Identically distributed” = (one expects) each trial to behave the same way

Applies to coin tosses... but not to weather, cricket matches, elections!
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Bayesian definition
A real number between 0 and 1 quantifying your degree of belief in a proposition.

This made many 20th-century statisticians very uncomfortable... but this
methodology is widely accepted now



A good but polemical reference



From Jaynes:
Suppose some dark night a policeman walks down a street, apparently deserted.
Suddenly he hears a burglar alarm, looks across the street, and sees a jewelry store
with a broken window. Then a gentleman wearing a mask comes crawling out
through the broken window, carrying a bag which turns out to be full of expensive
jewelry. The policeman doesn’t hesitate at all in deciding that this gentleman is
dishonest. But by what reasoning process does he arrive at this conclusion? Let us
first take a leisurely look at the general nature of such problems.



“Plausible reasoning”

Syllogism
If A is true, B is true
A is true
therefore B is true

OR
If A is true, B is true
B is false
therefore A is false

Weak syllogism
If A is true, B is true
A is false
therefore B becomes less plausible

OR
If A is true, B is true
B is true
therefore A becomes more plausible



“Plausible reasoning”

Syllogism
If A is true, B is true
A is true
therefore B is true

OR
If A is true, B is true
B is false
therefore A is false

Weak syllogism
If A is true, B is true
A is false
therefore B becomes less plausible

OR
If A is true, B is true
B is true
therefore A becomes more plausible



If the man were a criminal, he would probably be wearing a mask, breaking
into a shop, carrying a sack, etc. He is doing that so it is plausible that he is a
criminal.

Suppose the policeman witnessed such a scene night after night and each time
the man turned out to be innocent. He would gradually start considering it
less plausible that the man is a criminal.

I Cf. “The boy who cried wolf”

Bayesian reasoning = formalization of the above!
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Probability theory: Some definitions

Conditional probability: The probability of A given that B has occurred.

Joint probability: The probability of both A and B occurring.

P(AB) = P(A|B)P(B) = P(B|A)P(A)

P(A OR B) = P(A) + P(B)− P(AB)

Likelihood: The probability of observed data given a particular hypothesis.
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Jaynes (following Cox, Polya and others):
If you assume these “desiderata” for a theory of probability

1 Degrees of plausibility are represented by real numbers. Greater number =
greater plausibility. Also, “continuity” property.

2 Qualitative correspondence with common sense. For example, if

P(A|C ′) > P(A|C)

and
P(B|C ′) = P(B|C)

then
P(AB|C ′) ≥ P(AB|C)

and
P(Ā|C ′) < P(Ā|C),

3 The system must be “consistent” – cannot derive contradictory results

Then you arrive at a unique theory of probability which corresponds with
“frequentist” probability and with common sense!



Bayes’ theorem
P(AB) = P(A|B)P(B) = P(B|A)P(A)
P(A OR B) = P(A) + P(B)− P(AB)

From first equation, P(A|B) = P(B|A)P(A)
P(B)

Let B = data, call it D; A = hypothesis, call it h.

P(h|D) =
P(D|h)P(h)

P(D)

.
Usually we have a set of “mutually exclusive” hypotheses hi, observed data D,
and a way to calculate P(D|hi)
If the hi are exhaustive, P(D) =

∑
j P(D|hj)P(hj).

Bayes’ formula

P(hi|D) =
P(D|hi)P(hi)∑
j P(D|hj)P(hj)
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Basics: Bayes’ theorem

Bayes’ formula

P(hi|D) =
P(D|hi)P(hi)∑
j P(D|hj)P(hj)

Terminology:
P(hi): prior probability of hi
P(D|hi): likelihood of data given hi
P(hi|D): posterior probability of hi given D

Bayesian learning...
The posterior probabilities calculated from the current data become the prior
probabilities for the next set of data!
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Inferring probability distributions from data

Suppose
You have some data that could be explained by two or more possible
hypotheses
You have some prior probabilities (beliefs) for each hypothesis
You see some new data
What is the likelihood or the posterior probability of each hypothesis given the
new data?



Is a coin fair or biased?

You have a coin that was made in a factory where one in 10,000 coins is “biased”: it
tosses as heads 60% of the time. You do not know whether this coin is fair or biased.

You toss the coin 10 times, see 8 heads. Given this, what’s the probability that
it’s biased?
You toss the coin 100 times, see 58 heads. What’s the probability that it’s
biased?
You toss the coin 300 times, see 190 heads. What’s the probability that it’s
biased?
You toss the coin 1000 times, see 615 heads. What’s the probability that it’s
biased?



Is a coin fair or biased?

Remember the binomial distribution. Let the data be D = N tosses, n heads. Then

P(D|H) =

(
N
n

)
pnH (1− pH )N−n

where pH is the probability of tossing heads under hypothesis H .
Here, we have two hypotheses, “fair” (F ) and “biased” (B), under which the
probabilities of heads are pF and pB.
Given data D, Bayes’ Theorem says

P(B|D) =
P(D|B)P(B)

P(D|B)P(B) + P(D|F )P(F )

and the “priors” are P(B) = 0.0001, P(F ) = 0.9999.



Is a coin fair or biased?

P(B|D) =
P(D|B)P(B)

P(D|B)P(B) + P(D|F )P(F )

So we have.
You toss the coin 10 times, see 8 heads. P(B|D) = 0.000275 . . .
You toss the coin 100 times, see 58 heads. P(B|D) = 0.000333 . . .
You toss the coin 300 times, see 190 heads. P(B|D) = 0.707 . . .
You toss the coin 1000 times, see 615 heads. P(B|D) = 0.999999 . . .



Sequences

Biology:
CTGACAGAGACACCCGATTACTGATTTGGGAAATTTCCCAAATTGGAAATA...

Language:
Persons attempting to find a motive in this narrative
will be prosecuted; persons attempting to find a moral
in it will be banished; persons attempting to find a
plot in it will be shot.

I Letter-level:
[P,e,r,s,o,n,s, ,a,...]

I Word-level:
[Persons, attempting, to, find...]

Music:
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What’s common to those sequences?

They can be written as linear sequences of a discrete, finite set of symbols
(“alphabet”)
They can be very long
They contain meaning
At short scales, they contain correlations but are not perfectly ordered
At longer scales, they are uncorrelated
And more...



Why model sequences?

Biologists want to understand the function of DNA (and protein) sequence,
and design synthetic functional sequence
Computational linguists want to use computers to parse, process, and create
“natural language”
Computer-created text and music conveys a better understanding of what
goes into the “real” stuff
Scholars want to compare and analyse works, assess authenticity, etc
And so on...



Questions

Basic questions
Given a “model” that describes the sequence,

What is the probability (“likelihood”) of observing a particular sequence?
Given a sequence, how do you predict (“generate”) the next element?

If we can do the above:
Given multiple models for generating a sequence, how do we choose the more
probable model?
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Language models

Definition
A probability distribution p(s) over strings s that attempts to reflect how
frequently a string s occurs as a sentence.

Chen and Goodman, 1998



Markov chains

A Markov chain is a sequence of symbols where each symbol depends only on
its predecessor (or n predecessors)

Consider a sequence of symbols

S1S2S3S4S5

What is the probability of observing this sequence?
I “Exact” answer:

P(S1)P(S2|S1)P(S3|S1S2)P(S4|S1S2S3)P(S5|S1S2S3S4)

I Markov approximation:

P(S1)P(S2|S1)P(S3|S2)P(S4|S3)P(S5|S4)
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Example: DNA sequence

If the DNA is “non-functional”, how to model it?

Simplest model: each nucleotide occurs independently with a certain
probability.
Eg, P(A) = P(T) = 0.3,P(C) = P(G) = 0.2 (4 probabilities)
However, dinucleotides in DNA are not distributed according to this model!
Next simplest: Each nucleotide depends on its predecessor
P(A at site 2|C at site 1), etc. (16 such “conditional probabilities”), “Markov
chain”
Still doesn’t account for “trigrams”
Each nucleotide depends on immediate two predecessors
P(A|CG), etc (64 conditional probabilities), 2nd order Markov chain

If not good enough: go to higher-order Markov.
Drawback: for alphabet size `, there are `n n-grams! Lots of data needed to
estimate these.
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Example: Shannon, 1948

(C. E. Shannon, A mathematical theory of communication, 1948)
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The zero problem, and smoothing

If you are training from insufficient data, some possible observations may never
occur in your data.

Simple example: coin-tossing:
Suppose you have a possibly unfair coin, toss it N times, and see n heads. What is
the probability of seeing heads on the next toss?
“Maximum likelihood” answer = n

N . Bad answer!

Laplace’s rule of succession
If you are completely ignorant about the coin’s bias, the answer is

P(heads) =
n + 1
N + 2

(doesn’t usually apply to real coins!)
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The zero problem, and smoothing

Laplace’s rule: Generalization
If there are ` possible symbols that you can observe, and in N observations you
have observed the i’th symbol ni times; Answer, assuming complete independence
of observations and complete ignorance,

P(i) =
ni + 1
N + `



Details...

Bernoulli trials (eg coins)
Each trial has two possible outcomes, S (success) and F (failure)
Probability of S is p, with p unknown
You conduct N trials and S occurs n times
What is the probability of S the next time?



Binomial distribution

Distribution for N Bernoulli trials = Binomial distribution
Probability of seeing n successes is

P(n;N , p) =

(
N
n

)
pn(1− p)N−n

where (
N
n

)
=

N !

n!(N − n)!

But what if p is unknown?
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If p is unknown, we integrate over all values of p.
But are all values of p equally probable, a priori? We should consider a
“prior” distribution on p, P(p).
Suppose they are equally probable (“ignorance prior”, P(p) = 1).

P(n;N , p) =

(
N
n

)∫ 1
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Laplace’s rule of succession

P(n;N , p) =

(
N
n

)
n!(N − n)!

(N + 1)!

Having observed n successes in N trials, what is the probability of observing a
success next time, P(S|n in N )?

P(A|B) = P(AB)/P(B)

P(S|n in N ) =
P(S in most recent trial AND n in N )
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Beta prior

Having started with a uniform “prior” over p, what is the “posterior” probability
of a given p, given n successes?

Bayes’ theorem:

P(p|data) =
P(data|p)P(p)∫ 1

0 P(data|p)P(p)dp

Since our prior was uniform, we can easily evaluate:

P(p|n,N ) =

(
N
n

)
pn(1− p)N−n(

N
n

)
n!(N−n)!
(N+1)!

=
(N + 1)!

n!(N − n)!
pn(1− p)N−n

Beta prior

PBeta(p|c1, c2) ∝ pc1−1(1− p)c2−1
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Beta prior

PBeta(p|c1, c2) ∝ pc1−1(1− p)c2−1

Beta prior is “conjugate prior” of binomial distribution:
Ignorance prior (c1 = 1, c2 = 1) is special case
If prior is of Beta form with PBeta(p; c1, c2), then posterior is also of Beta form
PBeta(p; c1 + n, c2 + N − n) ∝ pc1+n−1(1− p)c2+N−n−1

If you observe n successes, with a Beta prior PBeta(p; c1, c2), then the
probability of another success is

P(success|n successes) =
n + c1

N + c1 + c2

(therefore, c1 and c2 called “pseudocounts”)
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Nucleotides

There are four nucleotides, A,C ,G,T

Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α
I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”

Straightforward generalisation of preceding discussion...
I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α
I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α
I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α
I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1

I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α
I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times

I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α
I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”

I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝
∏

α wcα−1
α

I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α

I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Nucleotides

There are four nucleotides, A,C ,G,T
Distribution = “multinomial distribution”
Straightforward generalisation of preceding discussion...

I Describe probability of each nucleotide α by wα

I
∑

α wα = 1
I Suppose you have N observations, and each nucleotide α occurs nα times
I Appropriate distribution = “multinomial distribution”
I Appropriate prior = “Dirichlet prior”: P(w; cα) ∝

∏
α wcα−1

α
I With Dirichlet prior, after N observations as above, probability of nucleotide
α in next observation is

nα + cα
N + C

where C =
∑

α cα.



Hidden Markov models

In Markov models
symbols are emitted probabilistically based on the previous symbol.

In hidden Markov models
an invisible “state” follows a Markov process. This state emits symbols that are
visible. Each hidden state emits a different pattern of symbols.
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Hidden Markov models

Source: Wikipedia

Tasks
Infer hidden states (Viterbi algorithm)
Infer likelihood of sequence (forward/backward algorithms)



Hidden Markov models

Silly example
This sentence seems un peu unusual parce que it is made of deux langues différents.



Somewhat more realistic example

Imagine a very simple model of DNA where there are two kinds of regions –
coding (C) and noncoding (N) – characterised mainly by differences in nucleotide
densities. Non-coding regions are AT rich, coding regions are more GC rich. This
is a possible (but oversimplified) HMM.
A

C G T

N  N         N        N         N        N       N         N        N       N         N

 N         N        N         N        N       N         N        N        N         N

N         C        C         C        C        C         C        C         C        C

A        T         A        A         C        A        G        T         T        A

T        A        T         G        G        C        C         T        G         A

A        T         T         T        C        A         T        A         G        A



Most probable path: Viterbi algorithm

Given a sequence x = x1x2 . . . xn and a set of hidden states π = π1π2 . . . πn, we
can calculate the joint likelihood

P(x, π) = b0π1

( n∏
i=1

eπixibπiπi+1

)

where πn+1 = 0.
How do we find the most probable path

π∗ = argmaxπP(x, π)?



Viterbi algorithm: example

Suppose someone gives you a sequence of coin tosses, but the person has two coins
and is randomly switching from one coin to another. One coin is fair (“F”). The
other coin is biased (“B”) and tosses heads 80% of the time. After each toss, the
player can keep the same coin (probability 0.8), switch to the other coin (0.15), or
end the game (0.05). Also, the probability of starting with the fair coin is 0.8.
The sequence of tosses is HTTHHHHHTH. What is the most probable hidden
path?



Viterbi algorithm: example

00 F         B
1
2
3
4
5
6
7
8
9

10

0.4         0.12 H
T
T
H
H
H
H
H
T
H

Define a matrix vki = probability of
most probable path up until state i,
if πi = k. Then
vl,i+1 = elxi+1 maxk (vkibkl) .

Initialize v00 = 1,
vk0 = 0∀k > 0.
Fill in the matrix until the
bottom right, each time
pointing back to the previous
row entry that gave the best
answer
Trace back arrows from largest
entry on bottom row
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Likelihood of sequence: forward algorithm

The Viterbi algorithm gives you the most probable value of P(x, π). But what if
you only care about

P(x) =
∑
π

P(x, π)

and not about the hidden path?
“Forward algorithm” lets you do that: define

fki = P(x1 . . . xi|πi = k).

Then
fl,i+1 = el,xi+1

∑
k

fkibkl .

There is also “backward algorithm”, “posterior decoding” and much more...
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Why is this useful?

Probability theory applies to every area of science
Much of modern “machine learning” is built on Bayesian probability theory
Sequence models are applicable to biology, language, signal processing, music,
and much more...



Thank you


