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Probability

What is “probability”? For example, what do the following mean:
o The probability of getting “heads” in a coin toss is 0.5
o There is a 30% probability of rain today
o There is a1.7% probability of Trump winning the US presidential election
(early Oct 2016)
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Probability: a measure of how likely it is that a proposition is true.
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o “Independent” = one trial does not affect another trial (more precise
definition later)

o “Identically distributed” = (one expects) each trial to behave the same way



Probability: a measure of how likely it is that a proposition is true.

Frequentist definition

n/ N where n = number of occurrences in a large number of “independent,
identically distributed” (i.i.d.) trials N.

o “Independent” = one trial does not affect another trial (more precise
definition later)

o “Identically distributed” = (one expects) each trial to behave the same way

Applies to coin tosses... but not to weather, cricket matches, elections!



A real number between o and 1 quantifying your degree of belief in a proposition.

Bayesian definition J

This made many 20th-century statisticians very uncomfortable... but this
methodology is widely accepted now



A good but polemical reference

Probability Theory

The Logic of Science

E.T. JAYNES

-

ok




From Jaynes:

Suppose some dark night a policeman walks down a street, apparently deserted.
Suddenly he hears a burglar alarm, looks across the street, and sees a jewelry store
with a broken window. Then a gentleman wearing a mask comes crawling out
through the broken window, carrying a bag which turns out to be full of expensive
jewelry. The policeman doesn’t hesitate at all in deciding that this gentleman is
dishonest. But by what reasoning process does he arrive at this conclusion? Let us
first take a leisurely look at the general nature of such problems.




“Plausible reasoning”

Syllogism

@ If Aistrue, Bis true
A is true
therefore B is true

OR

@ If Aistrue, Bis true
Bis false
therefore A is false




“Plausible reasoning”

Syllogism

@ If Aistrue, Bis true
A is true
therefore B is true

OR

@ If Aistrue, Bis true
B is false
therefore A is false

Weak syllogism

@ If Aistrue, Bistrue
A is false
therefore B becomes less plausible

OR

@ If Aistrue, Bistrue
Bis true
therefore A becomes more plausible




o If the man were a criminal, he would probably be wearing a mask, breaking
into a shop, carrying a sack, etc. He is doing that so it is plausible that he is a
criminal.
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less plausible that the man is a criminal.

» Cf. “The boy who cried wolf”



o If the man were a criminal, he would probably be wearing a mask, breaking
into a shop, carrying a sack, etc. He is doing that so it is plausible that he is a
criminal.

e Suppose the policeman witnessed such a scene night after night and each time

the man turned out to be innocent. He would gradually start considering it
less plausible that the man is a criminal.

» Cf. “The boy who cried wolf”

e Bayesian reasoning = formalization of the above!
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Probability theory: Some definitions

o Conditional probability: The probability of A given that B has occurred.
o Joint probability: The probability of both A and B occurring.

P(AB) = P(A|B)P(B) = P(B|.A)P(A)

P(AOR B) = P(A) + P(B) — P(AB)

o Likelihood: The probability of observed data given a particular hypothesis.



Jaynes (following Cox, Polya and others):
e Ifyou assume these “desiderata” for a theory of probability

@ Degrees of plausibility are represented by real numbers. Greater number =
g p y p Yy
greater plausibility. Also, “continuity” property.
@ Quualitative correspondence with common sense. For example, if
p

P(A|C") > P(A|C)

and
P(B|C") = P(B|C)
then
P(AB|C") > P(AB|C)
and

P(A|C") < P(A|C),
@ The system must be “consistent” — cannot derive contradictory results

e Then you arrive at a unique theory of probability which corresponds with
“frequentist” probability and with common sense!
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Bayes’ theorem
P(AB) = P(A|B)P(B) = P(B|A)P(A)
P(AOR B) = P(A) + P(B) — P(AB)

(]

o From first equation, P(A4|B) = %

o Let B =data, call it D; 4 = hypothesis, call it /.
P(D|h)P(h
P(D)

o Usually we have a set of “mutually exclusive” hypotheses 4;, observed data D,
and a way to calculate P(D|h;)

o Ifthe b; are exhaustive, P(D) = Zj P(D|hb;)P(b;).

Bayes’ formula

_ P(D|h;)P(h;)
P(h;|D) = >, P(Dlky)P(hy)




Basics: Bayes’ theorem

Bayes’ formula

_ P(D|h)P(h)
PP = S b blh) ()

Terminology:
o P(b;): prior probability of b;
o P(D|h;): likelibood of data given b;
o P(b;|D): posterior probability of b; given D



Basics: Bayes’ theorem

Bayes’ formula

_ P(D|p)P(k)
PP = S b blh) ()

Terminology:
o P(b;): prior probability of b;
o P(D|h;): likelibood of data given b;
o P(b;|D): posterior probability of b; given D

Bayesian learning...

The posterior probabilities calculated from the current data become the prior
probabilities for the next set of data!




Inferring probability distributions from data

Suppose

e You have some data that could be explained by two or more possible

hypotheses
e You have some prior probabilities (beliefs) for each hypothesis
@ You see some new data

o What is the likelibood or the posterior probabiliry of each hypothesis given the
new data?



Is a coin fair or biased?

You have a coin that was made in a factory where one in 10,000 coins is “biased”: it
tosses as heads 60% of the time. You do not know whether this coin is fair or biased.

@ You toss the coin 10 times, see 8 heads. Given this, what’s the probability that
it’s biased?

@ You toss the coin 100 times, see 58 heads. What’s the probability that it’s
biased?

@ You toss the coin 300 times, see 190 heads. What’s the probability that it’s
biased?

@ You toss the coin 1000 times, see 615 heads. What’s the probability that it’s
biased?



Is a coin fair or biased?

Remember the binomial distribution. Let the data be D = N tosses, 7z heads. Then

POl = () iyt = puy

where p is the probability of tossing heads under hypothesis /.

Here, we have two hypotheses, “fair” (F) and “biased” (B), under which the
probabilities of heads are pr and pp.
Given data D, Bayes’ Theorem says

P(D|B)P(B)
(D|B)P(B) + P(D|F)P(F)
and the “priors” are P(B) = o0.0001, P(F) = 0.9999.

P(BID) = -



Is a coin fair or biased?

P(D|B)P(B)
(D|B)P(B) + P(D|F)P(F)

P(BID) = -

So we have.
@ You toss the coin 10 times, see 8 heads. P(B|D) = 0.000275. . .
@ You toss the coin 100 times, see 58 heads. P(B|D) = 0.000333. ..

o You toss the coin 300 times, see 190 heads. P(B|D) = o.707 . ..

@ You toss the coin 1000 times, see 615 heads. P(B|D) = 0.999999 . ..
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e Biology:
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will be prosecuted; persons attempting to find a moral
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plot in it will be shot.
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Sequences

e Biology:
CTGACAGAGACACCCGATTACTGATTTGGGAAATTTCCCAAATTGGAAATA. ..

o Language:
Persons attempting to find a motive in this narrative
will be prosecuted; persons attempting to find a moral
in it will be banished; persons attempting to find a
plot in it will be shot.
> Letter-level:
[P,e,r,s,0,n,s, ,a,...]
> Word-level:
[Persons, attempting, to, find...]

e Music:




What’s common to those sequences?

o They can be written as linear sequences of a discrete, finite set of symbols

(“alphabet”)
They can be very long

They contain meaning

At short scales, they contain correlations but are not perfectly ordered

At longer scales, they are uncorrelated

o And more...



Why model sequences?

o Biologists want to understand the function of DNA (and protein) sequence,
and design synthetic functional sequence

e Computational linguists want to use computers to parse, process, and create
“natural language”

o Computer-created text and music conveys a better understanding of what
goes into the “real” stuft

@ Scholars want to compare and analyse works, assess authenticity, etc

e Andsoon...



Questions

Basic questions
Given a “model” that describes the sequence,
o What is the probability (“likelihood”) of observing a particular sequence?

o Given a sequence, how do you predict (“generate”) the next element?




Questions

Basic questions
Given a “model” that describes the sequence,

o What is the probability (“likelihood”) of observing a particular sequence?

o Given a sequence, how do you predict (“generate”) the next element?

If we can do the above:

Given multiple models for generating a sequence, how do we choose the more

probable model?




Language models

Definition

A probability distribution p(s) over strings s that attempts to reflect how
frequently a string s occurs as a sentence.

Chen and Goodman, 1998
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Markov chains

o A Markov chain is a sequence of symbols where each symbol depends only on
its predecessor (or 7z predecessors)

e Consider a sequence of symbols
$.8,8,8,8

What is the probability of observing this sequence?

> “Exact” answer:

PS)P(S.IS)P(S,1S.5,) P(S,1.5,8,)P(S,[S.5.5,S,)

» Markov approximation:

P(8)P(S.]8)P(S5]S.) P(S,]S5) P(Si]S,)
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e However, dinucleotides in DNA are not distributed according to this model!
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Example: DNA sequence

If the DNA is “non-functional”, how to model it?

Simplest model: each nucleotide occurs independently with a certain
probability.
Eg, P(A) = P(T) = 0.3, P(C) = P(G) = 0.2 (4 probabilities)

However, dinucleotides in DNA are not distributed according to this model!

Next simplest: Each nucleotide depends on its predecessor
P(A atsite 2|Catsite 1), ete. (16 such “conditional probabilities”), “Markov
chain”

Still doesn’t account for “trigrams”

Each nucleotide depends on immediate two predecessors
P(A|CG), etc (64 conditional probabilities), 2nd order Markov chain

If not good enough: go to higher-order Markov.

Drawback: for alphabet size /, there are £” n-grams! Lots of data needed to

estimate these.



Example: Shannon, 1948

(C. E. Shannon, A mathematical theory of communication, 1948)

3. THE SERIES OF APPROXIMATIONS TO ENGLISH

To give a visual idea of how this series of processes approaches a language, typical sequences in the approx-
imations to English have been constructed and are given below. In all cases we have assumed a 27-symbol
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRIFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-
HIQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.



Example: Shannon, 1948

(C. E. Shannon, A mathematical theory of communication, 1948)

5. First-order word approximation. Rather than continue with tetragram, .. . , n-gram structure it is easier
and better to jump at this point to word units. Here words are chosen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES
THE LINE MESSAGE HAD BE THESE.

=N

. Second-order word approximation. The word transition probabilities are correct but no further struc-
ture is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that
these samples have reasonably good structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, but four-
letter sequences from the sample can usually be fitted into good sentences. In (6) sequences of four or more
words can easily be placed in sentences without unusual or strained constructions. The particular sequence
of ten words “attack on an English writer that the character of this” is not at all unreasonable. It appears then
that a sufficiently complex stochastic process will give a satisfactory representation of a discrete source.



The zero problem, and smoothing

If you are training from insufficient data, some possible observations may never
occur in your data.

Simple example: coin-tossing:

Suppose you have a possibly unfair coin, toss it N times, and see 7 heads. What is
the probability of seeing heads on the next toss?
“Maximum likelihood” answer = ;. Bad answer!




The zero problem, and smoothing

If you are training from insufficient data, some possible observations may never
occur in your data.

Simple example: coin-tossing:

Suppose you have a possibly unfair coin, toss it N times, and see 7 heads. What is
the probability of seeing heads on the next toss?
“Maximum likelihood” answer = ;. Bad answer!

Laplace’s rule of succession

If you are completely ignorant about the coin’s bias, the answer is

n-+1
N +2

P(heads) =

(doesn’t usually apply to real coins!)




The zero problem, and smoothing

Laplace’s rule: Generalization

If there are £ possible symbols that you can observe, and in N observations you
have observed the #’th symbol 7; times; Answer, assuming complete independence
of observations and complete ignorance,

n;, +1
N+/




Details...

Bernoulli trials (eg coins)
o Each trial has two possible outcomes, S (success) and F (failure)
o Probability of S is p, with p unknown
@ You conduct N trials and S occurs 7 times

e What is the probability of S the next time?



Binomial distribution

o Distribution for N Bernoulli trials = Binomial distribution

@ Probability of seeing 7 successes is

P(n; N, p) = <N

where

e But whatif p is unknown?
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@ Probability of seeing 7 successes is

N> Pra—p™

P(n;N,p) =
(”a Y4 ) < "
o If pis unknown, we integrate over all values of p.

o Butare all values of p equally probable, 2 priori? We should consider a
“prior” distribution on p, P(p).



Binomial distribution

@ Probability of seeing 7 successes is

N> Pra—p™

P(n;N,p) =
(”a Y4 ) < "
o If pis unknown, we integrate over all values of p.

o Butare all values of p equally probable, 2 priori? We should consider a
“prior” distribution on p, P(p).

o Suppose they are equally probable (“ignorance prior”, P(p) = 1).

P(N,p) = <]Z> /olpn(l_p)N_n
N

- <n>B(n+I,N—n+I)— (ZZ)M



Laplace’s rule of succession

N\ nl(N —n)!

(N +1)!
Having observed 7 successes in N trials, what is the probability of observing a
success next time, P(S|zin N)?

PN = (

n



Laplace’s rule of succession

N) n!(N — n)!
(N +1)!

Having observed 7 successes in N trials, what is the probability of observing a
success next time, P(S|zin N)?

o P(A|B) = P(AB)/P(B)

PN = (

n



Laplace’s rule of succession

Having observed 7 successes in N trials, what is the probability of observing a
success next time, P(S|zin N)?

o P(4|B) = P(4B)/P(B)

n

°
P(S|nin N) = P(S in most recent 'trial AND zin N)
P(S|nin N)
(N) (r)|(N—n)!

n (N_;,_Z)

n!(N—n)

( ) (N+1)!

n+1

N +2



Beta prior

Having started with a uniform “prior” over p, what is the “posterior” probability
ofa given p, given n successes?
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Having started with a uniform “prior” over p, what is the “posterior” probability
ofa given p, given n successes?
Bayes’ theorem:

 P(daap)Pp)
Pplda) = b dacalp) Plp)dp

Since our prior was uniform, we can easily evaluate:

b L AR Pa=pN
|

(z;r) nz(%:g?! (N —n)!

P(pln, N) = (




Beta prior

Having started with a uniform “prior” over p, what is the “posterior” probability
ofa given p, given n successes?
Bayes’ theorem:

 P(daap)Pp)
Pplda) = b dacalp) Plp)dp

Since our prior was uniform, we can easily evaluate:

f)p”@—p)N*” (N4

n(. __ \NN—n
(N) dm AN =P 0P
n (N+1)!

P(pln, N) = (

Beta prior

PBeta(P‘Cn 6) PCI_I(I _P)CZ_I




Beta prior
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Beta prior

PBeta(P‘Cn CZ) Ocpclfl(l _p)[;_*l

Beta prior is “conjugate prior” of binomial distribution:
e Ignorance prior (¢ = 1, ¢, = 1) is special case

o If prior is of Beta form with P, (p; @i, ¢, then posterior is also of Beta form
PBeta(P; oG+ n,6+ N — ﬂ) O(prrnfl(I _p)[z“l’N*ﬂ*I



Beta prior

PBeta(P‘Cn CZ) OCPCﬁI(I _P)[rl

Beta prior is “conjugate prior” of binomial distribution:
e Ignorance prior (¢ = 1, ¢, = 1) is special case
o If prior is of Beta form with Ppea (p; ¢, ¢, ), then posterior is also of Beta form
Poewa(p; 0 + 1y 6, + N — 1) oc patn 71 (1 — p)atN=—n1
o Ifyou observe 7 successes, with a Beta prior Ppe (p; ¢, ¢, ), then the
probability of another success is

n+c
N+¢ -+

P(success|n successes) =

(therefore, ¢; and ¢, called “pseudocounts”)
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Nucleotides

o There are four nucleotides, 4,C,G, T

o Distribution = “multinomial distribution”

o Straightforward generalisation of preceding discussion...

v

Describe probability of each nucleotide ¢ by w,,

> D Wa =1

Suppose you have N observations, and each nucleotide o occurs 7, times
Appropriate distribution = “multinomial distribution”

v

v



Nucleotides

o There are four nucleotides, 4,C,G, T
o Distribution = “multinomial distribution”

o Straightforward generalisation of preceding discussion...

> Describe probability of each nucleotide o by wy,

> D Wa =1

» Suppose you have N observations, and each nucleotide ¢ occurs 7, times
» Appropriate distribution = “multinomial distribution”

» Appropriate prior = “Dirichlet prior”: P(w; o) o< [],, wic™



Nucleotides

o There are four nucleotides, 4,C,G, T

o Distribution = “multinomial distribution”

o Straightforward generalisation of preceding discussion...

>

vV vy vy VvYyy

Describe probability of each nucleotide ¢ by w,,

Yoo Wa =1

Suppose you have N observations, and each nucleotide o occurs 7, times
Appropriate distribution = “multinomial distribution”

Appropriate prior = “Dirichlet prior”: P(w;cq) o< [],, wie™

With Dirichlet prior, after N observations as above, probability of nucleotide

« in next observation is
Na + co

N+C
where C = )" ¢a.



Hidden Markov models

In Markov models

symbols are emitted probabilistically based on the previous symbol.

bOml ZL"112 bmgacg, bz3x4 b$4335 bZUsO
O



Hidden Markov models

symbols are emitted probabilistically based on the previous symbol.

b0961 5131 T2 bmgmg b13x4 b:c4:):5 b:n50
@ —>> —)—) —>

In hidden Markov models

an invisible “state” follows a Markov process. This state emits symbols that are
visible. Each hidden state emits a different pattern of symbols.

b07f1 b7r17r" b7f2771 b7r37T4 b7r47r5 bﬂso
@—) 7T1—>7T2—>7T3—>7T4—>7T5—>@

In Markov models J




Hidden Markov models

Source: Wikipedia
Tasks

o Infer hidden states (Viterbi algorithm)

o Infer likelihood of sequence (forward/backward algorithms)




Hidden Markov models

Silly example J

This sentence seems un peu unusual parce que it is made of deux langues différents.




Somewhat more realistic example

Imagine a very simple model of DNA where there are two kinds of regions —
coding (C) and noncoding (N) — characterised mainly by differences in nucleotide

densities. Non-coding regions are AT rich, coding regions are more GC rich. This
is a possible (but oversimplified) HMM.

" O TEg-G-a-g-
(CHONONONONONONUNGNY)
D e o i
(CHONVNORONONONUNINO)
-EPp-Pe-n-0-0-0-0

® (GNONONONONONO

A



Most probable path: Viterbi algorithm

b07r1 b7r17rn bﬂ'zﬂ' b7r37r4 b7r471'5 b7‘(‘50
——>7T1—>7T2 ——»71‘3——»7‘(‘4 ——>7T5——>@

e'/rla:l 671—212 6773903 671'4&04

NN

Given a sequence X = x,x, . . . X, and a set of hidden states 7 = m,7, ..

can calculate the joint likelihood
P(x,7) = bon, (H emxl.b,rier[)

where 7,4, = o.

How do we find the most probable path

n* = argmax_P(x,m)?

Ty WE



Viterbi algorithm: example

b07r1 bﬂ'lﬂn b7r27r b7r371'4 b71'471'5 b7r50
@—)71'1—>7TQ—>7T3—>7T4—>7T5—>@
eﬂ'lzl e7r2;z2 eﬂgxg 671'414 ewdwd

@ @ @ @ @

Suppose someone gives you a sequence of coin tosses, but the person has two coins
and is randomly switching from one coin to another. One coin is fair (“F”). The
other coin is biased (“B”) and tosses heads 80% of the time. After each toss, the
player can keep the same coin (probability 0.8), switch to the other coin (o.15), or
end the game (0.05). Also, the probability of starting with the fair coin is 0.8.

The sequence of tosses is HTTHHHHHTH. What is the most probable hidden
path?




Viterbi algorithm: example

k
ilo~Q| F B i Define a matrix v}; = probability of
0.4 0.12 H most probable path up until state 7,
T if m; = k. Then
T i = e, maxg (0p:b) -
o Initialize v, =1,
Upo = OVk > 0.

SDIWIN| =

o Fill in the matrix until the

bottom right, each time
pointing back to the previous
row entry that gave the best

answer

o Ol 0o| | O] U
ITH4HIT ITTITIXIT

@ Trace back arrows from largest

=

entry on bottom row




Viterbi algorithm: example

k
1lo~Q| F B
0.4, [0.12
0.16'

|0\U‘I-bUUNI—'

o ©O|0o|

Xy
H

T
T

IH4HIITITTITXIT

Define a matrix vy; = probability of
most probable path up until state 7,
if m; = k. Then
Ulips = €l maxg (vpiby) -
o Initialize v,o = 1,
V4o = OVk > o.

o Fill in the matrix until the
bottom right, each time
pointing back to the previous
row entry that gave the best
answer

@ Trace back arrows from largest
entry on bottom row



Viterbi algorithm: example

k

1 Q L
o F B H Define a matrix vy; = probability of
04, 0.12 most probable path up until state 7,

0.16' 0.0192 T if m; = k. Then

T vt = e, maxy (vibyr) -
o Initialize v,o = 1,
V4o = OVk > o.

e Fill in the matrix until the
bottom right, each time
pointing back to the previous
row entry that gave the best
answer

|0\U‘I-bUUNI—'

o ©O|0o|
ITH4HIT ITTITIXIT

@ Trace back arrows from largest

entry on bottom row




Viterbi algorithm: example

k

i 0 X
o F B HZ Define a matrix vy; = probability of

0.4 } 0. ]:;2 most probable path up until state 7,
0-16, 0.0192 | T if m; = k. Then
0.064 T vt = e, maxy (vibyr) -

o Initialize v,o = 1,
V4o = OVk > o.

e Fill in the matrix until the
bottom right, each time
pointing back to the previous
row entry that gave the best
answer

|0\U‘I-bUUNI—'

o ©O|0o|
ITH4HIT ITTITIXIT

@ Trace back arrows from largest

entry on bottom row




Viterbi algorithm: example

k

1 Q L
o F B H Define a matrix vy; = probability of
04, 0.12 most probable path up until state 7,

0.16,  [0.0192 |T ifr, — k. Then
0.064 0048 | T vrit1 = en maxg (vgibp) -
o Initialize v,o = 1,

V4o = OVk > o.

e Fill in the matrix until the
bottom right, each time
pointing back to the previous
row entry that gave the best
answer

|0\U‘I-bUUNI—'

o ©O|0o|
ITH4HIT ITTITIXIT

@ Trace back arrows from largest

entry on bottom row




Viterbi algorithm: example

k
11009 | F B
1 04, 012
2 [0.160 Jo.0192
3  |0.062 [0.0048
4 Jo.0256 3 00768
5 [0.01024]0.00491
6 D.00%09/0.003142
| 7 p.001630.002011
8  10.00065]|0.00,1287
9  0.00026(0.000205
10 {0.00010[0.000131

Xy
H

T
T

IH4HIITITTITXIT

Define a matrix vy; = probability of
most probable path up until state 7,
if m; = k. Then
Ulips = €l maxg (vpiby) -
o Initialize v,o = 1,
V4o = OVk > o.

o Fill in the matrix until the
bottom right, each time
pointing back to the previous
row entry that gave the best
answer

@ Trace back arrows from largest
entry on bottom row



Likelihood of sequence: forward algorithm

The Viterbi algorithm gives you the most probable value of P(x, 7). But what if
you only care about
P(x) =Y _ P(x,)

and not about the hidden path?
“Forward algorithm” lets you do that: define

f}ei = P(xI e .xl"ﬂ'i = /e)

Then
Jrit: = €z, Z Sribir-
k



Likelihood of sequence: forward algorithm

The Viterbi algorithm gives you the most probable value of P(x, 7). But what if
you only care about

P(x) =Y _ P(x,)

and not about the hidden path?
“Forward algorithm” lets you do that: define

f}ei = P(xI .. .xl"ﬂ'i = /e)

Then
Jrit: = €z, Z Sribir-
k

There is also “backward algorithm”, “posterior decoding” and much more...



Why is this useful?

@ Probability theory applies to every area of science
e Much of modern “machine learning” is built on Bayesian probability theory

e Sequence models are applicable to biology, language, signal processing, music,
and much more...



Thank you



