## Homework 8. March 17, 2018.

- 1. In class, we proved that a regular level set of a real-valued function on M is a submanifold of M. Use this result to prove that a regular level set of a smooth map  $f: M \to N$  is a submanifold of M.
- 2. A smooth map between manifolds  $f: M \to N$  is a *submersion* if for all points  $m \in M$ , the pushforward  $f_{*,m}: T_mM \to T_{f(m)}N$  is a surjection.
  - (a) Show that for a product manifold  $M_1 \times M_2$ , the projection  $\pi: M_1 \times M_2 \to M_1$  is a submersion.
  - (b) Suppose  $\pi: E \to M$  is a vector bundle. Show that  $\pi$  is a submersion.
  - (c) Give an example of a submersion  $f: M \to N$  where M and N have the same dimension.
- 3. (Submersion theorem) Suppose  $f: M \to N$  is a submersion. Assume  $\dim(M) = m$  and  $\dim(N) = n$ . Show that for any point  $p \in M$ , there is a chart  $(U, \phi)$  of M centered at p, and a chart  $(V, \psi)$  centered at F(p) such that

$$\psi \circ F \circ \phi^{-1}(r_1, \dots, r_m) = (r_1, \dots, r_n).$$

HINT: The proof is similar to the proof of the regular level set theorem. First choose coordinates  $(y_1,\ldots,y_n)$  on V and coordinates  $(x_1,\ldots,x_m)$  on U. We will choose a new chart  $(\tilde{U},\tilde{\phi})$  in a neighbouhood of p and show  $C^{\infty}$ -compatibility with U. The first n coordinates in  $\tilde{\phi}$  can be  $F \circ y_i$ . The additional (m-n)-coordinates  $\tilde{x}_{n+1},\ldots,\tilde{x}_n$  can be chosen to be a linear combination of the coordinates  $x_1,\ldots,x_m$  such that the matrix  $\frac{\partial}{\partial \tilde{x}_i} \in \ker f_{*,p}$ .

- 4. Suppose  $f: \mathbb{R}^n \to \mathbb{R}$  is smooth, and a is a regular value. Then, we know that  $M := f^{-1}(a)$  is a submanifold of  $\mathbb{R}^n$ . For a smooth function  $g: \mathbb{R}^n \to \mathbb{R}$ , show that the following are equivalent.
  - (a) The point  $m \in M$  is a critical point of  $g|_M$ .
  - (b) The point  $m \in M$  is a critical point of the function  $(f,g): \mathbb{R}^n \to \mathbb{R}^2$ .

Use this to re-do problem 4(c) in Homework 7.

5. The unit sphere  $S^n$  is defined by the equation  $\sum_{i=1}^{n+1} x_i^2 = 1$  in  $\mathbb{R}^{n+1}$ . What is the tangent space  $T_{(1,0,\ldots,0)}S^n$  as a subspace of the tangent space of  $\mathbb{R}^{n+1}$ ?

1