Homework 8. March 17, 2018. - 1. In class, we proved that a regular level set of a real-valued function on M is a submanifold of M. Use this result to prove that a regular level set of a smooth map $f: M \to N$ is a submanifold of M. - 2. A smooth map between manifolds $f: M \to N$ is a *submersion* if for all points $m \in M$, the pushforward $f_{*,m}: T_mM \to T_{f(m)}N$ is a surjection. - (a) Show that for a product manifold $M_1 \times M_2$, the projection $\pi: M_1 \times M_2 \to M_1$ is a submersion. - (b) Suppose $\pi: E \to M$ is a vector bundle. Show that π is a submersion. - (c) Give an example of a submersion $f: M \to N$ where M and N have the same dimension. - 3. (Submersion theorem) Suppose $f: M \to N$ is a submersion. Assume $\dim(M) = m$ and $\dim(N) = n$. Show that for any point $p \in M$, there is a chart (U, ϕ) of M centered at p, and a chart (V, ψ) centered at F(p) such that $$\psi \circ F \circ \phi^{-1}(r_1, \dots, r_m) = (r_1, \dots, r_n).$$ HINT: The proof is similar to the proof of the regular level set theorem. First choose coordinates (y_1,\ldots,y_n) on V and coordinates (x_1,\ldots,x_m) on U. We will choose a new chart $(\tilde{U},\tilde{\phi})$ in a neighbouhood of p and show C^{∞} -compatibility with U. The first n coordinates in $\tilde{\phi}$ can be $F \circ y_i$. The additional (m-n)-coordinates $\tilde{x}_{n+1},\ldots,\tilde{x}_n$ can be chosen to be a linear combination of the coordinates x_1,\ldots,x_m such that the matrix $\frac{\partial}{\partial \tilde{x}_i} \in \ker f_{*,p}$. - 4. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is smooth, and a is a regular value. Then, we know that $M := f^{-1}(a)$ is a submanifold of \mathbb{R}^n . For a smooth function $g: \mathbb{R}^n \to \mathbb{R}$, show that the following are equivalent. - (a) The point $m \in M$ is a critical point of $g|_M$. - (b) The point $m \in M$ is a critical point of the function $(f,g): \mathbb{R}^n \to \mathbb{R}^2$. Use this to re-do problem 4(c) in Homework 7. 5. The unit sphere S^n is defined by the equation $\sum_{i=1}^{n+1} x_i^2 = 1$ in \mathbb{R}^{n+1} . What is the tangent space $T_{(1,0,\ldots,0)}S^n$ as a subspace of the tangent space of \mathbb{R}^{n+1} ? 1