Homework 7. March 9, 2018.

1. Define

$$F: \mathbb{R}^2 \to \mathbb{R}^3, \quad (x, y) \mapsto (x, y, xy).$$

Suppose u, v, w are coordinates on \mathbb{R}^3 . Express $F_{*,p} \frac{\partial}{\partial x}$, $F_{*,p} \frac{\partial}{\partial y}$ as a linear combination of $\frac{\partial}{\partial u}|_{F(p)}$, $\frac{\partial}{\partial v}|_{F(p)}$, $\frac{\partial}{\partial w}|_{F(p)}$.

2. There are two coordinate systems on $\mathbb{R}^2\setminus\{0\}$. One is the Cartesian coordinate system (x,y), and the other is the polar coordinate system (r,θ) related to the former as

$$x = r\cos\theta, \quad y = r\sin\theta.$$

Express the tangent vectors $\frac{\partial}{\partial r}$, $\frac{\partial}{\partial \theta}$ in terms of the vectors $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.

- 3. In the last homework, you showed that the unit sphere S^2 is a smooth manifold.
 - (a) Show that the antipodal map $a: S^2 \to S^2$ is a smooth map.
 - (b) We define projective space as the quotient $\mathbb{RP}^2 := S^2/\{x \sim a(x)\}$. Provide a smooth atlas on \mathbb{RP}^2 such that the projection $S^2 \to \mathbb{RP}^2$ is smooth.
 - (c) Show that the projection $\mathbb{R}^3 \setminus \{0\} \to \mathbb{RP}^2$ is a smooth map.
- 4. (Height function on the torus)
 - (a) Show that the level set

$$T := \{((x^2 + y^2)^{\frac{1}{2}} - 2)^2 + z^2 = 1\}$$

is a submanifold of \mathbb{R}^3 .

- (b) Show that there is a diffeomorphism $S^1 \times S^1 \to T$.
- (c) Find the critical points of the map

$$T \to \mathbb{R}, \quad (x, y, z) \mapsto y.$$

Observe that this is the height function of the standing torus that we discussed in class.