Homework 4. February 7th, 2018.

- 1. (Cell structure on real projective space) Real projective space \mathbb{RP}^n is defined as the quotient $(\mathbb{R}^{n+1}\setminus\{0\})/\mathbb{R}^{\times}$, where $\mathbb{R}^{\times} := \mathbb{R}\setminus\{0\}$, i.e. two non-zero vectors $v_1, v_2 \in \mathbb{R}^{n+1}$ are in the same equivalence class if there is a scalar $\lambda \in \mathbb{R}^{\times}$ such that $\lambda v_1 = v_2$.
 - (a) Show that \mathbb{RP}^n is homeomorphic to the quotient of S^n by the relation $x \sim \operatorname{antipode}(x)$.
 - (b) Show that there is a homeomorphism $f: \mathbb{RP}^{n-1} \cup_{\phi} D^n \to \mathbb{RP}^n$, where the attaching map $\phi: \partial D^n \simeq S^{n-1} \to \mathbb{RP}^{n-1}$ is the quotient identifying all pairs of antipodal points on S^{n-1} .

HINT: Theorem 22.2 of Munkres's Topology might be helpful. In the second part, first write down the maps $\mathbb{RP}^{n-1} \to \mathbb{RP}^n$, $D^n \to \mathbb{RP}^n$, and justify their continuity. The following result might be helpful to prove homeomorphism in part (b): "A continuous bijection $\psi: X \to Y$ between compact Hausdorff spaces is a homeomorphism".

- 2. (Cell structure on complex projective space) This problem is a complex analogue of Problem (1). Complex projective space \mathbb{CP}^n is defined as the quotient $(\mathbb{C}^{n+1}\setminus\{0\})/\mathbb{C}^{\times}$, where $\mathbb{C}^{\times}:=\mathbb{C}\setminus\{0\}$, i.e. two non-zero vectors $v_1, v_2 \in \mathbb{C}^{n+1}$ are in the same equivalence class if there is a scalar $\lambda \in \mathbb{C}^{\times}$ such that $\lambda v_1 = v_2$.
 - (a) Define an equivalence relation \sim on the unit sphere $S^{2n+1}\subset \mathbb{C}^{n+1}$ as follows: for $v_1,\,v_2\in S^{2n+1}$,

$$v_1 \sim v_2 \Leftrightarrow \exists \lambda \in \mathbb{C} : |\lambda| = 1, v_1 = \lambda v_2.$$

Show that \mathbb{CP}^n is homeomorphic to the quotient S^{2n+1}/\sim . The quotient map $S^{2n+1}\to\mathbb{CP}^n$ is called the *Hopf fibration*.

- (b) Show that there is a homeomorphism $f: \mathbb{CP}^{n-1} \cup_{\phi} D^{2n} \to \mathbb{CP}^n$, where the attaching map $\phi: \partial D^{2n} \simeq S^{2n-1} \to \mathbb{CP}^{n-1}$ is Hopf fibration.
- 3. Problem 2, p155 Hatcher.
- 4. Problem 3, p155 Hatcher.
- 5. Problem 7, p155 Hatcher.