Homework 2. January 19, 2018.

- 1. Suppose a subspace A of a topological space X is a deformation retract of X. Then, show that the inclusion map $i: A \to X$ induces an isomorphism on the singular homology of the two spaces.
- 2. Show that chain homotopy of chain maps is an equivalence relation.
- 3. The following result about subdivision of complexes was used in class for the homotopy proof. Suppose Δ^n is an n-simplex with vertices v_0, \ldots, v_n . Then, $w_j := (0, v_j)$ and $w'_j := (1, v_j)$ are vertices of $[0, 1] \times \Delta^n$. For $i = 0, \ldots, n$, let $\overline{\Delta}_i \subset [0, 1] \times \Delta_n$ be the n+1-simplex with vertices $w_0, \ldots, w_i, w'_i, \ldots, w'_n$. Show that
 - (a) $[0,1] \times \Delta^n = \bigcup_{i=0}^n \overline{\Delta}_i$.
 - (b) For i < j, the intersection $\overline{\Delta}_i \cap \overline{\Delta}_j$ is empty if $j \neq i+1$. If j = i+1, $\overline{\Delta}_i \cap \overline{\Delta}_j$ is an *n*-simplex with vertices $w_0, \ldots, w_i, w'_{i+1}, \ldots, w'_n$.
- 4. Compute the fundamental group and first homology of the following spaces:
 - (a) \mathbb{RP}^2 ,
 - (b) Klein bottle,
 - (c) two copies of torus $S^1 \times S^1$, with a circle $S^1 \times \{x_0\}$ identified to the corresponding circle $S^1 \times \{x_0\}$ in the other,
 - (d) $\mathbb{R}^3 \setminus X$, where $X \subset \mathbb{R}^3$ is the union of a finite number of lines through the origin in \mathbb{R}^3 .
- 5. Prove exactness at every position of the long 'exact' sequence of homology. (To be constructed in the class on 22nd January)