Homework 10. April 6, 2018.

- 1. Define a 2-form Ω on \mathbb{R}^3 by $\Omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$.
 - (a) Compute Ω in spherical coordinates (ρ, ϕ, θ) defined by $(x, y, z) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)$.
 - (b) Compute $d\Omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
 - (c) Compute the restriction $\Omega|_{S^2} = \iota^*\Omega$, using coordinates (ϕ, θ) , on the open subset where these coordinates are defined.
 - (d) Show that Ω_{S^2} is nowhere zero.
- 2. In each of the following problems, $g: M \to N$ is a smooth map between manifolds M and N, and ω is a differential form on N. In each case, compute $g\omega$ and $d\omega$, and verify by direct computation that $g(d\omega) = d(g\omega)$.
 - (a) $g: \mathbb{R}^2 \to \mathbb{R}^2$ given by $(x, y) := g(s, t) := (st, e^t)$. $\omega = xdy$.
 - (b) $g: \{(r,\theta): r>0\} \to \mathbb{R}^2$ given by $(x,y) = (r\cos\theta, r\sin\theta); \omega = dy \wedge dx$.
 - (c) $g: \mathbb{R}^2 \to \mathbb{R}^3$ by $(x, y, z) = g(\theta, \phi) = ((\cos \phi + 2)\cos \theta, (\cos \phi + 2)\sin \theta, \sin \phi); \omega = ydz \wedge dx$.
 - (d) $g: \{(r, \theta, \phi): r > 0\} \to \mathbb{R}^3$ given by $(x, y, z) = (r\cos\theta\sin\phi, r\sin\theta\sin\phi, r\cos\phi); \omega = xdy \land dz + ydz \land dx + zdx \land dy$.
- 3. Suppose $V \subset U \subset M$ are open sets in the manifold M such that the closure of V is compact and contained in U. Show that there is a bump function $\eta: M \to [0,1]$ supported in U and equal to 1 on V.
- 4. Suppose $F: M \to N$ is a diffeomorphism of manifolds. Suppose $c: (-\epsilon, \epsilon) \to M$ is an integral curve of the vector field $X \in \text{Vect}(M)$. Show that $F \circ c$ is an integral curve of $F \circ c$.
- 5. Suppose g is a Riemannian metric on a manifold M, and $F: M \to \mathbb{R}$ is a smooth function. The gradient vector field of F, denoted by grad F, is defined by the condition

$$dF(v) = q(\operatorname{grad} F, v), \quad \forall v \in \operatorname{Vect}(M).$$

- (a) Justify why $\operatorname{grad} F$ is well-defined.
- (b) Suppose c(t) is an integral curve of the vector field grad F. Compute $\frac{d}{dt}F(c(t))$.