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There has been a long-standing and strong link between ergodic
theory and von Neumann algebras (in particular, factors) dating back
to the seminal work (cf. [vN]) of Murray and von Neumann, specifi-
cally their construction of the first examples of factors of type II and
type III. The bridge is provided by the celebrated group-measure
space construction (or the crossed-product construction in modern
parlance). In this survey, we shall commence with a discussion of
some aspects of the magnificent edifice created by Murray and von
Neumann, Dye, Krieger, Connes, Ornstein, Weiss, Feldman, Moore,
..., and conclude with an attempt1 to describe some ‘rigidity’ results
of Gaboriau and Popa.

We commence proceedings with brief introductions to each of
the topics von Neumann algeras, ergodic theory, the group-measure
space construction and II1 factors.

von Neumann algebras

A von Neumann algebra is a self-adjoint (i.e., x ∈ M ⇒ x∗ ∈
M) unital (i.e., 1 ∈ M) subalgebra M of the *-algebra B(H) of all
continuous linear operators on a Hilbert space2 H, which satisfies
any of the following equivalent requirements:3

1. M is closed in the strong operator topology - i.e., xi ∈ M, x ∈
B(H), ‖(xi − x)ξ‖ → 0∀ξ ∈ H ⇒ x ∈ M

1It is only natural that the picture portrayed here is coloured/flawed by the
author’s own perceptions/limitations of exposure, and it is almost sure that there
have been many grave omissions, for all of which only the author’s limitations are
to blame, and the author apologises for any such errors or omissions.

2All our Hilbert spaces will be assumed to be separable.
3The equivalence of these three conditions - two topological, one algebraic - is

von Neumann’s celebrated double commutant theorem.
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2. M is closed in the weak operator topology - i.e., xi ∈ M, x ∈
B(H), 〈(xi − x)ξ, η〉 → 0∀ξ, η ∈ H ⇒ x ∈ M

3. M ′′(= (M ′)′) = M , where S′ = {x ∈ B(H) : xs = sx∀s ∈ S}
denotes the commutant of S.

The prototypical example of an abelian von Neumann algebra is given
by the algebra A = L∞(X,B, µ) of essentially bounded measurable
functions on a standard probability space (X,B, µ), viewed as a sub-
algebra of B(L2(X)) via f · ξ = fξ∀f ∈ A, ξ ∈ L2(X). At the other
extreme from an abelian von Neumann algebra is a factor, i.e., a
von Neumann algebra whose center M ∩ M ′ reduces to the scalar
operators C.

It was recognised early that an important component to a von
Neumann algebra is the set P(M) = {p ∈ M : p = p∗ = p2} of its
projections. Just as all measurable functions can be approximated by
simple functions, it is true that the linear subspace spanned by P(M)
is norm-dense in M . Two projections p, q are said to be (Murray-
von Neumann) equivalent ‘rel M ’ - denoted by p ∼M q - if there
exists a u ∈ M such that u∗u = p, uu∗ = q. It turns out that M is a
factor if and only if any two projections are ‘comparable’ in the sense
that one is equivalent to a sub-projection of the other. Murray and
von Neumann initially classified factors into types I (there exists a
minimal projection), II (there do not exist minimal projections, but
there do exist non-zero projections which are finite meaning they are
not equivalent to any strictly smaller sub-projection) and III (there
do not exist non-zero finite projections).

(The material in this section first appeared in the papers of von
Neumann, either singly authored or co-authored with Murray: see
[vN]. )

Ergodic theory

Ergodic theory deals with the study of transformations T on a
measure space (X,B, µ) - which we will always assume is a com-
plete standard probability space; the map T is usually assumed to
be bijective mod µ, bimeasurable and non-singular - i.e., there are
µ-null sets N1, N2 such that T maps X \ N1 1-1 onto X \ N2, and
E ∈ B⇔T (E) ∈ B and µ(T−1(E)) = 0⇔µ(E) = 0. A countable
group Γ of such transformations γ is said to act ergodically if it sat-
isfies any of the following equivalent conditions:

1. µ(γ−1(E)∆E) = 0∀γ ∈ Γ ⇒ µ(E) = 0 or 1

2. f = f ◦ γ∀γ ∈ Γ ⇒ f is constant a.e.
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3. E, F ∈ B, µ(E) > 0, µ(F ) > 0 ⇒ ∃γ ∈ Γ such that µ(F ∩
γ(E)) > 0.

Group-measure space construction

Suppose Γ is a countable group of non-singular transformations
of a standard Borel space (X,B) , equipped with a σ-finite measure
µ. Let H = ℓ2(Γ, L2(X,B, µ)); the equations

(π(f)ξ̃)(γ) = (f ◦ γ)ξ̃(γ)

(λ(γ0)ξ̃)(γ) = ξ̃(γ−1
0 γ)

respectively define a *-algebra representation of A = L∞(X,B, µ)
into B(H) and a unitary representation of Γ into B(H), and these
representations satisfy the commutation relation

λ(γ)π(f) = π(f ◦ γ−1)λ(γ) (0.1)

The von Neumann algebra M = (λ(Γ) ∪ π(A))′′ generated by these
two representations is denoted by A⋊Γ and called the crossed product
of A with Γ. Suppose the group Γ acts freely: i.e., for each γ 6= 1 in
Γ, the set of points fixed by γ is assumed to be a µ-null set. Then,
we have the following beautiful result due to von Neumann (cf. [vN]
or [S]):

Theorem 0.1. A ⋊ Γ is a factor if and only if Γ acts ergodically.
Further, in this case:

1. The following conditions are equivalent:

(i) µ is atomic;

(ii) M = A ⋊ Γ has a minimal projection

In this case, M is a factor of type I. Further M is said to be
a factor of type In, n ≤ ∞ if µ admits precisely n mutually
disjoint atoms.

2. The following conditions are equivalent:

(i) µ has no atoms, but there exists a σ-finite measure ν which
is mutually absolutely continuous with µ, which is invariant
under Γ (i.e., ν ◦ γ−1 = ν∀γ);

(ii) M is type II

In this case, 1 is a finite projection in M precisely when ν is a
finite measure.
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3. M is type III if and only if there is no σ-finite measure ν which
is mutually absolutely continuous with µ, which is invariant
under Γ.

Thus, we have our first examples of factors of type II - both type
II1 (which is type II with 1 being a finite projection) and type II∞
(which is type II with 1 not being a finite projection) - and type
III from the following examples of groups Γ acting ergodically on
Lebesgue spaces:

• (II1) Γ = Z acting on (S1,BS1 , 1
2π

dθ) via n.e2πiθ = e2πi(θ+nα)

with α being irrational.

• (II∞) Γ = Q acting on (R,BR, dx) via translation (r.x = r+x)

• (III) Γ = Q ⋊ Q× acting on (R,BR, m = dx) via (b, a).x =
ax+b. (The point here is that Γ does not preserve the measure
m, while the proper subgroup Γ0 = {(b, 1)} ⊂ Γ preserves m
and itself acts ergodically, and such a group Γ cannot admit
any σ-finite equivalent invariant measure.)

II1 factors

Note that the only finite factors are the factors of type In, n < ∞
or of type II1. It is a fact that a factor M is of finite type if and only
if it admits a trace, i.e., a linear functional tr such that tr(1) = 1
and tr(xy) = tr(yx) ∀x, y ∈ M and tr(x∗x) ≥ 0 ∀x ∈ M ; further,
such a trace is automatically faithful (0 6= x ∈ M ⇒ tr(x∗x) >
0) and unique. A type In factor is isomorphic to the full matrix
algebra Mn(C), and the corresponding ‘tr’ is nothing but the usual
matrix trace normalised by a factor of 1/n. On the othere hand II1

factors are infinite-dimensional, but their ‘finiteness’ results in many
pleasant features.

What is also true of a finite factor is that if p, q ∈ P(M), then
p ∼M q⇔tr(p) = tr(q). While the set {tr(p) : p ∈ P(M)} is nothing
but {k/n : 0 ≤ k ≤ n} in the In case, it turns out to be [0, 1] in the
II1 case. A Hilbert space equipped with a normal (= appropriately
continuous) *-representation of a II1 factor M is referred to as an
M -module. It turns out (as a perfect parallel with the case of In

factors) that a module H over a II1 factor M is classified, up to M -
linear isomorphism, by a number dimMH (which can be any number
in [0,∞]), the so-called von Neumann dimension as an M -module.
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If λ : Γ → ℓ2(Γ) denotes the left-regular representation of a count-
able group Γ, then the equation

tr(x) = 〈x1, 1〉

defines a faithful trace on the von Neumann algebra LΓ = λ(Γ)′′

where 1 denotes the standard basis vector indexed by the identity
element of Γ; and LΓ is a II1 factor if and only if the conjugacy class
of every γ 6= 1 is infinite (the ICC condition).

Almost all the material, so far, in this section, is from the seminal
work of von Neumann ([vN]). Some of the details, in slightly more
modern terminology, may also be found in [S], for instance.

Two questions:

1. What pairs of algebras (M, A) arise in the above manner?

2. When do two ergodic dynamical systems (Xi,Bi, µi, Γi), i = 1, 2
yield isomorphic pairs (Mi, Ai) as above?

The first question, or rather, a near relative (where one considers
more general crossed-products twisted by a 2-cocycle) has been an-
swered very satisfactorily in [FMII], and the answer turns out to be:
precisely when A is a Cartan subalgebra of M - meaning that it has
the following properties:

• A is a maximal abelian von Neumann subalgebra of M ;

• The normaliser NM (A) = {u ∈ U(M) : uAu∗ = A} (where
U(M) = {u ∈ M : u∗u = uu∗ = 1} is the unitary group of M)
generates M as a von Neumann algebra: i.e., M = NM (A)′′;
and

• there exists a faithful conditional expectation of M onto A.

We shall say no more about the first question, since our concern
is primarily with the second, whose answer turns out to be:

if and only if the two actions are orbit equivalent

The notion of orbit (or weak-) equivalence (see definition below)
was introduced (and the validity of the answer established) in the
measure-preserving context by Dye (cf.[DI], [DII])) and studied (and
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the validity of the answer established) in the non-singular case by
Krieger (cf.[KriI], [KriII]).

Before getting to the pertinent definitions, we first make two
blanket assumptions for the remainder of this paper.

All our measure spaces (X,B, µ) will henceforth be assumed to
be complete standard probability spaces equipped with a non-atomic
probability measure; ‘isomorphisms between such triples are bijective
(mod null sets), bimeasurable measure preserving transformations.

Definition 0.2. 1. An isomorphism between two spaces (X1,B1, µ1)
and (X2,B2, µ2) is a bijective bimeasurable map φ : X1 \N1 →
X2 \ N2, for µi-null sets Ni, such that µ1 ◦ φ−1 = µ2.

2. A dynamical system is a tuple (X,B, µ, α,Γ) where Γ is a count-
able group, and α : Γ → Aut(X,B, µ) is a homomorphism of
groups.

3. Two dynamical systems (Xi,Bi, µi, αi, Γi), i = 1, 2 are conju-
gate if there exists an isomorphism φ : X1 → X2 such that
α2(Γ2) = φα1(Γ1)φ

−1.

4. Two dynamical systems (Xi,Bi, µi, αi, Γi), i = 1, 2 are orbit
equivalent if there exists an isomorphism φ : X1 → X2 such
that φ(α1(Γ1)x) = α2(Γ2)φ(x) for µ1- a.a x.

Every dynamical system (X,B, µ, α,Γ) gives rise to an equiva-
lence relation - which we shall denote by RΓ or Rα - which is the
Borel subset of X × X given by {(x, α(γ)(x)) : x ∈ X, γ ∈ Γ}. This
equivalence relation has countable equivalence classes. In fact, a re-
sult of [FMI] shows that any such standard equivalence relation (with
countable classes) arises as orbit equivalence defined by a countable
group Γ acting as Borel isomorphisms of (X,B) - although not nec-
essarily freely according to a result of Furman.

Question 2 above may be viewed as asking when two dyanamical
systems are orbit equivalent - i.e., when is there a Borel isomorphism
f : X1 → X2 such that (f × f)(Rα1

) = Rα2
. Dye showed [D1] that

any two ergodic actions of Z are so isomorphic. A volume of work
by several people (notably Dye, Connes, Feldman, Krieger, Vershik,
...) culminated in the following beautiful result proved (cf. []) by
Ornstein and Weiss (cf. [OW], see also [CFW])).

Theorem 0.3. (Ornstein-Weiss) If Γ1 and Γ2 are infinite amenable
groups, every ergodic action of Γ1 is orbit equivalent to every ergodic
action of Γ2.
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Equivalence relations obtained from such actions of such groups
are characterised by the following property of hyperfiniteness:

there exists a sequence of standard equivalence relations Rn on
X with finite equivalence classes such that

Rn ⊂ Rn+1∀n and R = ∪nRn.

Thus RΓ remembers neither Γ nor α if Γ is an infinte amenable
group and α is an ergodic action. On the other hand, at the other
end of the spectrum, many people (Zimmer, Furman, Gaboriau, and
later Popa, Monod, Ozawa, ...) have obtained ‘rigidity results’ which
say something like this: if Rαi

are orbit equivalent, then under some
conditions on the Γi, these two dynamical systems must actually be
conjugate! (For an example, see Popa’s strong rigidity theorems (cf.
[V]), which say something like this:

Certain kinds of free ergodic actions of certain kinds of groups G
are such that if the resulting equivalence relation R has the property
that RY is isomorphic to RΓ for some Borel subset Y and some
free ergodic action of some countable group Γ, then Y must have full
measure, and the actions of Γ and G must be conjugate through a
group isomorphism.

It follows that for a relation R as in this strong rigidity theorem,
the restriction RY to a Borel subset with 0 < µ(Y ) < 1 can never be
obtained from a free ergodic action of any countable group Γ, thus
furnishing another proof of Furman’s result mentioned earlier.

The key notions used in Gaboriau’s work are stable orbit equiva-
lence, measurable equivalence and ℓ2-Betti numbers, upon which we
now briefly dwell.

It is well known that if the action is ergodic, then the ‘space of
orbits’ (= the quotient of X by the relation of being in the same
orbit) does not have a ‘good Borel structure’, i.e., is not standard.
The space R is a good substitute. Now, if A is a Borel subset of
positive measure in X, then A meets almost every orbit, so by the
philosophy expressed in the previous sentence, the induced relation
RA := R ∩ (A × A) is an equally good description of the ‘space
of orbits’. Let us call ergodic equivalence relations Ri on standard
probability spaces (Xi,Bi, µi) (for i = 1, 2) stably orbit equivalent (or
simply SOE) if there exist Borel subsets Ai ∈ Bi of positive measure,
a positive constant c and a Borel isomorphism f : A1 → A2 such
that µ2 ◦ f = cµ1 on A1 and (f × f)(RA1

) = RA2
; and c is called the

compression constant of the SOE.
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On the other hand, call two countable groups Γi, i = 1, 2 measur-
ably equivalent (or simply ME) if they admit commuting free actions
on a standard measure space (X,B, µ)4 which admit a fundamen-

tal domain Fi of finite measure; call the ratio µ(F2)
µ(F1) the compression

constant of the ME.
The two notions of equivalence defined in the preceding para-

graphs turn out to be closely related, and we have the following
result, proved originally by Furman (cf. [Fu], [G]):

Theorem 0.4. Γ1 is ME to Γ2 with compression constant c if and
only if Γ1 and Γ2 admit free actions on standard probability space
such that the associated equivalence relations are SOE with com-
pression constant c.

Now, we briefly discuss ℓ2-Betti numbers. These were first in-
troduced by Atiyah in the context of actions of countable groups
on manifolds with compact quotients; he relied on the von Neumann
dimension dimLΓHn of the Hilbert space of harmonic L2-forms of de-
gree n, which has the structure of a module over the von Neumann
algebra LΓ (generated by the regular representation of Γ). This was
later considerably extended by Cheeger and Gromov, who studied
actions of countable groups on general topological spaces, and suc-
ceeded in defining the sequence {βn(Γ)} of ℓ2-Betti numbers of any
countable group.

Next, Gaboriau defined the ℓ2-Betti numbers βn(R) of any stan-
dard equivalence relation with invariant measure. He was helped
in this by the work of Feldman and Moore, where a von Neumann
algebra LR with a finite faithful normal trace had been naturally as-
sociated to a standard equivalence relation with invariant probability
measure. (If R = RΓ for an ergodic action preserving a probabil-
ity measure space (X,B, µ), then LR is just the II1 factor given by
the crossed product construction.) Gaboriau considers a universal
R-simplicial complex ER and essentially observes that the space of
ℓ2-chains has a natural structure of an LR-module, defines βn(R) as
the LR-dimension of the corresponding reduced ℓ2-homology groups
of ER, and proves:

Theorem 0.5. (Gaboriau)
If an equivalence relation R is produced by a free action of Γ

which preserves a probability measure, then

βn(R) = βn(Γ).

4Here the measure is allowed to be infinite (but should be σ-finite).
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Gaboriau goes on to prove that the ratio of corresponding ℓ2-Betti
numbers of two ME groups agrees with the compression constant of
the ME.

Thus we find that if free actions of countable groups Γj yield
equivalence relations Rj , j = 1, 2 which are orbit equivalent, and
hence SOE with compression constant 1, then the groups Γj must be
ME with compression constant 1.

Coming back to orbit equivalence, we deduce the following fact
from the foregoing discussion:

The ℓ2-Betti numbers of orbit equivalent free actions are equal.

The simplest example of groups in the same ME class is furnished
by any two lattices, not necessarily co-compact, of a locally compact
second countable group (as seen by their actions by left-, resp., right-
multiplications on the ambient group). Gaboriau obtains many rigid-
ity results, a sample being:

Corollary 0.6. (Gaboriau)

1. No lattice in SP (n, 1) is ME to a lattice in SP (p, 1) if n 6= p.

2. No lattice in SU(n, 1) is ME to a lattice in SU(p, 1) if n 6= p.

3. No lattice in SO(2n, 1) is ME to a lattice in SO(2p, 1) if n 6= p.

Proof: It is known from the work of Borel (cf. [Bor]) that

βi(Γ(SP (m, 1)) 6= 0 ⇔ i = 2m

βi(Γ(SU(m, 1)) 6= 0 ⇔ i = m

βi(Γ(SO(2m, 1)) 6= 0 ⇔ i = m

where we write Γ(G) to denote any lattice G.
Finally, we should mention that Gaboriau’s results have been

used ingeniously by Sorin Popa to settle a long-standing conjecture
of Kadison’s - regarding the existence of II1 factors with trivial fun-
damental group.

If M is a II1 factor, there is a natural definition of the so-called
amplification Md(M) (or the d×d matrix algebra over M) where d is
any posive real number. For instance, it may be identified with the
(II1 factor EndM (Hd) of) M -linear operators on the M -module Hd

with dimMHd = d. von Neumann already realised the importance
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of the object, called the fundamental group5F(M) of M , and defined
by

F(M) = {d > 0 : M ∼= Md(M)}.

Popa showed that there are many examples of II1 factors of the form
LRα (arising from free ergodic actions α of suitable ICC groups)
which do indeed have trivial fundamental group. An example of such
an action is the natural action of SL(2, Z) on T2. In fact, Gaboriau
and Popa have even shown (cf. [GP]) that (each finitely generated
non-abelian free group) Fn admits uncountably many free ergodic
actions αi preserving a probability masure, which are pairwise not
SOE, such that LRαi

has trivial fundamental group for each i. Much
more of the subsequent exciting developments, as well as pertinent
literature, may be found in the article [V] by Vaes.
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