Universal skein theory for finite depth subfactor planar algebras

Vijay Kodiyalam

Joint work with Srikanth Tupurani

Institute of Mathematical Sciences, Chennai, India, August 2010
Theorem

Let P be a subfactor planar algebra of finite depth k. Then,
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,

- P has a finite presentation
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,

- P has a finite presentation
- with a single generator
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,

- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,

- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).

Plan of the talk
The main theorem

Theorem
Let P be a subfactor planar algebra of finite depth k. Then,
- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).

Plan of the talk
- WHAT is a planar algebra?
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,

- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).

Plan of the talk

- **WHAT** is a planar algebra?
- **WHICH** planar algebras are subfactor planar algebras?
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,

- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).

Plan of the talk

- **WHAT** is a planar algebra?
- **WHICH** planar algebras are subfactor planar algebras?
- **WHEN** is a planar algebra said to be of finite depth?
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,
- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).

Plan of the talk

- **WHAT** is a planar algebra?
- **WHICH** planar algebras are subfactor planar algebras?
- **WHEN** is a planar algebra said to be of finite depth?
- **WHY** presentations/skein theories for planar algebras?
The main theorem

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,
- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).

Plan of the talk

- **WHAT** is a planar algebra?
- **WHICH** planar algebras are subfactor planar algebras?
- **WHEN** is a planar algebra said to be of finite depth?
- **WHY** presentations/skein theories for planar algebras?
- **HOW** is the main theorem proved?
What is a planar algebra? I Tangles and composition
What is a planar algebra? I Tangles and composition

Here are some examples of planar tangles.

![Planar Tangle Diagrams]

Vijay Kodiyalam (IMSc) Skein theory for planar algebras Chennai, August 2010
Here are some examples of planar tangles.

The first tangle, say T, is a 3-tangle with internal boxes of colour 4,2,3 and 0.
What is a planar algebra? Tangles and composition

Here are some examples of planar tangles.

The first tangle, say T, is a 3-tangle with internal boxes of colour 4,2,3 and 0. The second, say S, is a 2-tangle with no internal boxes.
Here are some examples of planar tangles.

The first tangle, say T, is a 3-tangle with internal boxes of colour 4,2,3 and 0. The second, say S, is a 2-tangle with no internal boxes. Tangles may be composed. The third tangle is denoted $T \circ_{D_2} S$.
Planar algebra

A planar algebra P is a collection of vector spaces $\{P_n\}_{n=0,1,2,\ldots}$ together with maps Z_T for every planar tangle T satisfying compatibility with composition.
What is a planar algebra? II Definition and proposition

Planar algebra

A planar algebra P is a collection of vector spaces $\{P_n\}_{n=0,1,2,\ldots}$ together with maps Z_T for every planar tangle T satisfying compatibility with composition.

For our example T, the map $Z_T : P_4 \otimes P_2 \otimes P_3 \otimes P_0 \rightarrow P_3$.
Planar algebra

A planar algebra \(P \) is a collection of vector spaces \(\{P_n\}_{n=0,1,2,\ldots} \) together with maps \(Z_T \) for every planar tangle \(T \) satisfying compatibility with composition.

For our example \(T \), the map \(Z_T : P_4 \otimes P_2 \otimes P_3 \otimes P_0 \rightarrow P_3 \).

Proposition

For a planar algebra \(P \) and each \(k \), the vector space \(P_k \) acquires an associative algebra structure for the action of the tangle \(M^k \) with a unit given by the tangle \(1^k \) and algebra homomorphism \(P_k \rightarrow P_{k+1} \) given by \(I^{k+1} \).
What is a planar algebra? III Elementary tangles

The letters adjacent to the strings represent the number of times the string is cabled.
Which planar algebras are subfactor planar algebras?
Which planar algebras are subfactor planar algebras?

Some properties of subfactor planar algebras
Which planar algebras are subfactor planar algebras?

Some properties of subfactor planar algebras

- Each P_k is a finite-dimensional space.
Which planar algebras are subfactor planar algebras?

Some properties of subfactor planar algebras

- Each P_k is a finite-dimensional space.
- Each P_k is a C^*-algebra.
Which planar algebras are subfactor planar algebras?

Some properties of subfactor planar algebras

- Each P_k is a finite-dimensional space.
- Each P_k is a C^*-algebra.

Jones’ theorem (1999)

Every finite index extremal II_1-subfactor yields a subfactor planar algebra in a natural way. All subfactor planar algebras arise in this manner.
When is a planar algebra said to be of finite depth?
When is a planar algebra said to be of finite depth?

The following tangles are the Jones projection tangles (for $n \geq 2$).

$$E^n = \begin{array}{c}
\ast \\
n - 2
\end{array}$$
When is a planar algebra said to be of finite depth?

The following tangles are the Jones projection tangles (for $n \geq 2$).

$$E^n = \begin{array}{c}
\ast \\
\uparrow \\
\uparrow \\
\downarrow \\
\downarrow \\
n - 2 \\
\end{array}$$

Define $E_n \in P_n$ by $E_n = Z_{E^n}(1)$. The E_n are scaled Jones projections.

Finite depth

A planar algebra P is said to be of finite depth if there is a $k \in \mathbb{N}$ such that $1_{k+1} \in P_k E_{k+1} P_k$. The least such k is said to be the depth.
When is a planar algebra said to be of finite depth?

The following tangles are the Jones projection tangles (for $n \geq 2$).

$$E^n = \begin{array}{c}
\ast \\
n-2
\end{array}$$

Define $E_n \in P_n$ by $E_n = Z_{E^n}(1)$. The E_n are scaled Jones projections.

Finite depth

A planar algebra P is said to be of finite depth if there is a $k \in \mathbb{N}$ such that $1_{k+1} \in P_k E_{k+1} P_k$. The least such k is said to be the depth.

For a subfactor planar algebra, finite depth is equivalent to finiteness of the principal graphs of the subfactor.
Given a label set $L = \bigsqcup_k L_k$ the universal planar algebra on L, denoted $P(L)$, is the planar algebra with $P(L)_k$ being the vector space with basis all L-labelled k-tangles. There is an obvious planar algebra structure.
Given a label set $L = \coprod_k L_k$ the universal planar algebra on L, denoted $P(L)$, is the planar algebra with $P(L)_k$ being the vector space with basis all L-labelled k-tangles. There is an obvious planar algebra structure.

In any planar algebra P there is a notion of a planar ideal. For a subset $R \subseteq P(L)$, if the planar ideal that it generates is $I(R)$, the quotient planar algebra $P(L)/I(R)$ is denoted $P(L, R)$ and (L, R) is said to present the quotient. Such a presentation is also known as a skein theory for the planar algebra.
Why presentations/skein theories? II Examples

• Lnd 2002: Group planar algebra
• KdyLndSnd 2003: Kac algebra planar algebra
• MrrPtrSny 2008: D_{2n} planar algebra
• Ptr 2009: Haagerup planar algebra
• BglMrrPtrSny 2009: Extended Haagerup planar algebra
Why presentations/skein theories? II Examples

- Lnd 2002: Group planar algebra
- KdyLndSnd 2003: Kac algebra planar algebra
- MrrPtrSny 2008: D_{2n} planar algebra
- Ptr 2009: Haagerup planar algebra
- BglMrrPtrSny 2009: Extended Haagerup planar algebra

Each of the last 3 papers explicitly describes a skein theory with a single generator. All the planar algebras involved are of finite depth.
Why presentations/skein theories? II Examples

- Lnd 2002: Group planar algebra
- KdyLndSnd 2003: Kac algebra planar algebra
- MrrPtrSny 2008: D_{2n} planar algebra
- Ptr 2009: Haagerup planar algebra
- BglMrrPtrSny 2009: Extended Haagerup planar algebra

Each of the last 3 papers explicitly describes a skein theory with a single generator. All the planar algebras involved are of finite depth.

Theorem

Let P be a subfactor planar algebra of finite depth k. Then,
- P has a finite presentation
- with a single generator
- which may be chosen in P_{k+1} (but not necessarily in P_k).
Step I: Description of generators and relations
Given a planar algebra P of finite depth k, let B be a basis of P_k and set $L = L_k = B$. These will be the generators of our presentation.
Step I : Description of generators and relations

Given a planar algebra P of finite depth k, let B be a basis of P_k and set $L = L_k = B$. These will be the generators of our presentation.

Templates

A template is an ordered pair $S \Rightarrow T$ of tangles of the same colour.
Given a planar algebra P of finite depth k, let B be a basis of P_k and set $L = L_k = B$. These will be the generators of our presentation.

Templates

A template is an ordered pair $S \Rightarrow T$ of tangles of the same colour.

Here are two examples of templates.

We call these the multiplication and depth templates.
Step I : Description of generators and relations II
Template holding for \((P, B)\)

If \(S \Rightarrow T\) is a template, \(P\) is a planar algebra, and \(B \subseteq P\), the template is said to hold for \((P, B)\) if the span of \(Z_S\) with inputs from \(B\) is contained in the span of \(Z_T\) with inputs from \(B\).
Template holding for \((P, B)\)

If \(S \Rightarrow T\) is a template, \(P\) is a planar algebra, and \(B \subseteq P\), the template is said to hold for \((P, B)\) if the span of \(Z_S\) with inputs from \(B\) is contained in the span of \(Z_T\) with inputs from \(B\).

If a template holds for \((P, B)\) it gives relations in \(P(B)\).
Template holding for \((P, B)\)

If \(S \Rightarrow T\) is a template, \(P\) is a planar algebra, and \(B \subseteq P\), the template is said to hold for \((P, B)\) if the span of \(Z_S\) with inputs from \(B\) is contained in the span of \(Z_T\) with inputs from \(B\).

If a template holds for \((P, B)\) it gives relations in \(P(B)\).

To complete Step I, we specify an explicit set of 6 templates that hold for any \((P, B)\) where \(P\) is a subfactor planar algebra of finite depth \(k\) and \(B\) is a basis of \(P_k\). The relations determined by these templates specify a finite subset \(R \subseteq P(L)\) where \(L = L_k = B\).
Step I : Description of generators and relations II

Template holding for \((P, B)\)

If \(S \Rightarrow T\) is a template, \(P\) is a planar algebra, and \(B \subseteq P\), the template is said to hold for \((P, B)\) if the span of \(Z_S\) with inputs from \(B\) is contained in the span of \(Z_T\) with inputs from \(B\).

If a template holds for \((P, B)\) it gives relations in \(P(B)\).

To complete Step I, we specify an explicit set of 6 templates that hold for any \((P, B)\) where \(P\) is a subfactor planar algebra of finite depth \(k\) and \(B\) is a basis of \(P_k\). The relations determined by these templates specify a finite subset \(R \subseteq P(L)\) where \(L = L_k = B\).

We then show that \(P(L, R) \cong P\).
Step II : Sketch of injectivity proof

That there is a map of $P(L, R)$ onto P is clear by choice of the relations. For injectivity we first define a family of tangles T^n as in the figure below.
Step II : Sketch of injectivity proof

That there is a map of $P(L, R)$ onto P is clear by choice of the relations. For injectivity we first define a family of tangles T^n as in the figure below.

![Diagram of tangles](image)

Next, define $\mathcal{T} = \{ T^{n_0}_{n_1, \ldots, n_b} : T \circ (T^{n_1}, \ldots, T^{n_b}) \Rightarrow T^{n_0} \text{ for } (P, B) \}$.
Step II : Sketch of injectivity proof

That there is a map of $P(L, R)$ onto P is clear by choice of the relations. For injectivity we first define a family of tangles T^n as in the figure below.

Next, define $\mathcal{T} = \{T^{n_0}_{n_1, \ldots, n_b} : T \circ (T^{n_1}, \ldots, T^{n_b}) \Rightarrow T^{n_0} \text{ for } (P, B)\}$.

Injectivity at level $k \iff \mathcal{T} = \text{all tangles}$.
Step III : Consequences of templates
Consequences

Given a set of templates, consider the smallest set containing them and closed under transitivity and composition on the outside. Each element of this set is said to be a consequence of those of the original set.
Step III: Consequences of templates

Consequences

Given a set of templates, consider the smallest set containing them and closed under transitivity and composition on the outside. Each element of this set is said to be a consequence of those of the original set.

If a set of templates holds for \((P, B)\), so do all their consequences.
Step III: Consequences of templates

Consequences

Given a set of templates, consider the smallest set containing them and closed under transitivity and composition on the outside. Each element of this set is said to be a consequence of those of the original set.

If a set of templates holds for \((P, B)\), so do all their consequences.

To show that \(\mathcal{T}\) contains all tangles, it suffices to see that it is closed under composition (which is obvious by definition) and that it contains a basic set of generating tangles.
Step III : Consequences of templates

Consequences

Given a set of templates, consider the smallest set containing them and closed under transitivity and composition on the outside. Each element of this set is said to be a consequence of those of the original set.

If a set of templates holds for \((P, B)\), so do all their consequences.

To show that \(T\) contains all tangles, it suffices to see that it is closed under composition (which is obvious by definition) and that it contains a basic set of generating tangles.

Proposition

\(T\) contains a set of generating tangles.
Step IV: Finish of injectivity proof
Step IV : Finish of injectivity proof

Having injectivity at level k, one more ingredient is needed to finish the proof of injectivity at all levels.
Step IV : Finish of injectivity proof

Having injectivity at level k, one more ingredient is needed to finish the proof of injectivity at all levels.

Proposition

Let P be a planar algebra for which $1_{k+1} \in P_k E_{k+1} P_k$ for some k. Then for any $m, n \geq k$ there is a natural isomorphism of $P_{k-1} - P_{k-1}$-bimodules

$$P_m \otimes_{P_{k-1}} P_n \rightarrow P_{m+n-(k-1)}.$$
Step V : Single generation
Suppose that P is a subfactor planar algebra of depth k. Certainly, it is generated as a planar algebra by P_k. Since P_k is a finite-dimensional C^*-algebra it is singly generated by say, x, which we may assume has a non-zero trace.
Suppose that P is a subfactor planar algebra of depth k. Certainly, it is generated as a planar algebra by P_k. Since P_k is a finite-dimensional C^*-algebra it is singly generated by say, x, which we may assume has a non-zero trace.

The element $z \in P_{2k}$ defined by

\[
\begin{array}{c}
\ast \ \ k \\
\ast \ \ k
\end{array}
\begin{array}{c}
x \\
k
\end{array}
\begin{array}{c}
x^* \\
k
\end{array}
\begin{array}{c}
\ast \ \ k \\
k
\end{array}
\]

is easily seen to generate P since both x and x^* are in the generated planar algebra.
Step VI: Can we improve the $2k$?
Step VI : Can we improve the $2k$?

Proposition

Let A be a finite dimensional complex semisimple algebra and S an involutive anti-automorphism of A. Then there is an $a \in A$ such that a and Sa generate A.
Proposition

Let A be a finite dimensional complex semisimple algebra and S an involutive anti-automorphism of A. Then there is an $a \in A$ such that a and Sa generate A.

Corollary

If P is a subfactor planar algebra of depth k and $2t$ is the even number in $\{k, k + 1\}$, then P is generated by a $2t$ box.