ON TRACE ZERO MATRICES
by

V.S. Sunder

In this note, we shall try to present an elementary proof of
a couple of closely related results which have both proved quite
useful, and also indicate possible generalisations. The results we
have in mind are the following facts:

(a) A complex n x n matrix A has trace 0 if and only if it is
expressible in the form A = PQ — QP for some P, ().

(b) The numerical range of a bounded linear operator 7' on a
complex Hilbert space H, which is defined by

W(T) ={(Tz,z) :x € H, [[«|]| =1},

is a convex set in C.!

We shall attempt to make the treatment easy-paced and self-
contained. (In particular, all the terms in ‘facts (a) and (b)’
above will be described in detail.) So we shall begin with an
introductory section pertaining to matrices and inner product
spaces. This introductory section may be safely skipped by those
readers who may be already acquainted with these topics; it is
intended for those readers who have been denied the pleasure of
these acquaintances.

1 Matrices and inner-product spaces

The collection M,,x,(C) of complex m xn matrices has a natural
structure of a complex vector space in the sense that if A =
((ai)), B = ((bij)) € Mpuxn(C) and A € C, we may define the
linear combination NA + B € M,,«,(C) to be the matrix with
(¢, j)-th entry given by Aa;; +b;;. (The ‘zero’ of this vector space

LThis result is known - see [H] - as the Toeplitz-Hausdorff theorem; in
the statement of the theorem, we use standard set-theoretical notation,
where by € S means that z is an element of the set S.



is the m x n matrix all of whose entries are 0; this ‘zero matrix’
will be denoted simply by 0.)

Given two matrices whose ‘sizes are suitably compatible’,
they may be multiplied. The product AB of two matrices A
and B is defined only if there are integers m, n, p such that A =
((air)) € Mpxn, B = ((bkj)) € Myxp; in that case AB € M,
is defined as the matrix ((c;;)) given by

n

Cij = Zaikbkj . (11)

k=1

Unlike the case of usual numbers, matrix-multiplication is
not ‘commutative’. For instance, if we set

A:([l)_(;),B:((l)g), (1.2)

then it may be seen that AB # BA.

The way to think about matrices and understand matrix-
multiplication is geometrically. When viewed properly, the rea-
son for the validity of the example of the previous paragraph is
this: if Ty denotes the operation of ‘counterclockwise rotation of
the plane by 90°’, and if T’z denotes ‘projection onto the x-axis’,
then T’y o Ty, the result of doing T’z first and then T}, is not the
same as TpoTy, the result of doing T4 first and then Tp. (For in-
stance, if x = (1,0), then Tg(z) = x,Ty(x) = TyoTg(z) = (0,1)
while T o T4 (x) = (0,0).)
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Let us see how this ‘algebra-geometry’ nexus goes. The cor-
respondence

Z1

)
Z:(Zl,ZQ,"',Zn)H . -

N>

(1.3)

sets up an identification between C" and M,,;(C), which is an
‘isomorphism of complex vector spaces’ - in the sense that

N+7Z =)\o+ 2

Now, if A € M,,«,(C), consider the mapping Ty : C* — C™
which is defined by the requirement that if z € C",then

Ta(z) = Az (1.4)

where Az denotes the matrix product of the m x n matrix A and
the n x 1 matrix z. It is then not hard to see that T4 is a linear
transformation from C* to C™: i.e., Ty satisfies the algebraic
requirement?that

Ta(Az +y) = MNTa(x) + Ta(y) for all z,y e C".

The importance of matrices stems from the fact that the
converse statement is true; i.e., if T is a linear transformation
from C* to C™, then there is a unique matrix A € M, (C)
such that T'= T4. This is an easy exercise and, we indeed have
a bijective correspondence between M, (C) and the collection
L(C*,C™) of linear transformations from C" to C™. Note that
the matrix corresponding to the linear transformation 7" is ob-
tained by taking the j-th column as the (matrix of coefficients of
the) image under T of the j-th standard basis vector. Thus, the
transformation of C? correspondm to counter clockwise rota-
tion by 90?’ is seen to map e1 ) to e , and 62 ) to eg ), and the

2This algebraic requirement is equivalent, under mild additional condi-
tions, to the geometric requirement that the mapping preserves ‘collinear-
ity’: i.e., if z,y, z are three points in C* which lie on a straight line, then
the points Tz, Ty, Tz also lie on a straight line.



associated matrix is the matrix A of eqn. (1.2). (The reader is
urged to check similarly that the matrix B of eqn. (1.2) does
indeed correspond to ‘perpendicular projection onto the z-axis’.)

Finally, if A = ((ai)) € Mpuxn(C) and B = ((bg;)) €
M,,»»(C), then we have Ty : C* — C™ and I : C* — C", and
consequently ‘composition’ yields the map Ty o T : C7 — C™.
A moment’s reflection on the prescription (contained in the sec-
ond sentence of the previous paragraph) for obtaining the matrix
corresponding to the composite map 7’4 o T’ shows the follow-
ing: multiplication of matrices is defined the way it is, precisely
because we have:

TAB - TA 0] TB-

(This justifies our remarks in the paragraph following eqn. (1.2).)

In addition to being a complex vector space, the space C”
has another structure, namely that given by its ‘inner product’.

The inner product of two vectors in C” is the complex number
defined by

(6 &) ) = D6 (L9)

The rationale for consideration of this ‘inner product’ stems from
the observation - which relies on basic facts from trigonometry
- that if 2 = (&,&),y = (n1,m2) € R?, and if one writes O, X
and Y for the points in the plane with Cartesian co-ordinates
(0,0), (&1, &) and (11, m2) respectively, then one has the identity

(z,y) = |0X] |0Y| cos (angle XOY) ,

The point is that the inner product allows us to ‘algebraically’
describe distances and angles.
If x € C", it is customary to define

el = ((z,2))? (1.6)

and to refer to ||z|| as the norm of x. (In the notation of the
previous example, we have ||z|| = |OX].)

One finds more generally (see [H], for instance) that the fol-
lowing relations hold for all z,y € C" and A € C:
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e |[z|]| >0, and |jz|]| =0 2=0
o |[Az][ = |A] [«]]

e (Cauchy-Schwarz inequality)
(o, )| < [l]] ]yl

e (triangle inequality) ||z + y|| < ||z|| + ||y]|

More abstractly, one has the following definition:

DEFINITION 1.1 A complex inner product space is a com-
plex vector space, say V', which is equipped with an ‘“inner prod-
uct’y i.e., for any two wvectors x,y € V, there is assigned a
complex number - denoted by (x,y) and called the inner prod-
uct of x and y; and this inner product is required to satisfy
the following requirements, for all x,y,x, %2, y1,y2 € V and
Aty Ao, pi, po € C:

(a) (sesquilinearity) (3o, Nix;, 2321 Wiyi) = Zijzl Nitt; (T4, y;)
(b) (Hermitian symmetry) (z,y) = (y, )

(¢) (Positive definiteness) (x,y) > 0, and (z,z) =0 x = 0.

The statement ‘C" is the prototypical n-dimensional complex
inner product space’ is a crisper, albeit less precise version of the
following fact (which may be found in basic texts such as [H],
for instance):

ProprosITION 1.2 If Vi and V5 are n-dimensional vector spaces
equipped with an inner product denoted by (-,-)v, and (-, )y,
then there exists a mapping U : Vi — Vi satisfying:

(a) U is a linear map (i.e., U(Ax+y) = A\Uz+Uy for all z,y €
Vi); and

(b) (UZL‘, Uy>Vz = <x7y>‘/l for all x,y € V.
Moreover, a such a mapping U s necessarily a 1-1 map of Vi
onto Vs, and the inverse mapping U™ is necessarily also an
inner product preserving linear mapping. A mapping such as U
above is called a unitary operator from Vi to Vs.



In particular, we may apply the above proposition with V| =
C™ and any n-dimensional inner product space V = V5. The
following lemma and definition are fundamental. (We omit the
proof which is not difficult and may be found in [H], for instance.
The reader is urged to try and write down the proof of the
implications (i) < (ii).)

LEMMA 1.3 Let V' be an n-dimensional inner product space.
The following conditions on a set {vy,ve,---,v,} of vectors in
V' are equivalent:

(i) there exists a unitary operator U : C* — V such that

v; = Uez(n) for all a.
. e Ll dfai=g
(7'7') <vlvvj> - 51] - { 0 Zf 275] :
The set {vy,vq,---,v,} is said to be an orthonormal basis
for V if it satisfies the above conditions.

If V' is as above, and if {vy, vy, -+, v,} is any orthonormal
basis for V', then it is easy to see that

(i) v=">" (v,v;)v; for all v € V; and

(i) (v, w) =7 (v, v;){v;, w) for all v, w € V.

Now if T : V. — V is a linear transformation on V', the
action of T" may be encoded, with respect to the basis {v;}, by
the matrix A € M, ., (C) defined by

aij = (TU]‘,UZ'> .

We shall call A the matriz representing T in the basis {vy,- -+, v, }.

It is natural to call an n X n matrix unitary if it represents a
unitary operator U : V' — V in some orthonormal basis; and it
is not too difficult to show that a matrix is unitary if and only
if its columns form an orthonormal basis for C™.

More or less by definition, we see that if A, B € M,.,(C),
the following conditions are equivalent:

(a) there exists a linear transformation 7' : V' — V such that
A and B represent 1T with repect to two orthonormal bases;

(b) there exists a unitary matrix U such that B = UAU !.
In (b) above, the U™' denotes the unique matrix which serves
as the multiplicative inverse of the matrix U. (Recall that the
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multiplicative identity is given by the matrix I, whose (ij)-th
entry is ;; (defined in Lemma 1.3(ii) above); and that the matrix
representing an operator is invertible if and only if that operator
is invertible.)

Finally recall that the trace of a matrix A € M,(C) is defined
by 3

Tr, A = 1Tr A = z”: Qi
i=1

and recall the following basic property of the trace:
PROPOSITION 1.4 Suppose A € My»n(C), B € Myrn(C). Then,
Tr,, AB = Tr, BA .
In particular, if C, S € M, (C) and if S is invertible, then
Tr SCSt=TrC,
Proof: For the first identity, note that

1 i=1

=1 k=1 k=

The second identity follows from the first, since

Tr SCS™t=TrCS'S=TrCI,=Tr C .

2 On commutators, numerical ranges
and zero diagonals

We wish to discuss elementary proofs of the following three well-
known results:

(A) A square complex matrix A has trace zero if and only if it
is a commutator - i.e., A = BC — CB, for some B, C.

3Here and in the sequel, we shall write M,, instead of M, xp.
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(B) If T is a linear operator on an inner product space V, then
its numerical range W(T) = {(Tz,z) : € V,||z|| = 1} is a
convex set.

(C) A matrix A € M,(C) has trace zero if and only if there
exists a unitary matrix U € M, (C) such that UAU ! has all
entries on its ‘main diagonal’ equal to zero.

As for the arrangement of the proof, we shall show that (C)
follows from (B), which in turn is a consequence of the case
n = 2 of (C). So as to be logically consistent, we shall first prove
(C) when n = 2, then derive (B), then deduce (C) for general n,
and finally deduce (A) from (C). Further, since the ‘if” parts of
both (A) and (C) are immediate (given the truth of Proposition
1.4), we shall only be concerned with the ‘only if’ parts of these
statements.

Our proofs will not be totally self-contained; we will need one
‘standard fact’ from linear algebra. Thus, in the proof of Lemma
2.1 below, we shall need the fact that - at least in two-dimensions
- every complex matrix has an ‘upper triangular form’.

In the following proofs, we shall interchangeably think about
elements of M,,(C) as linear operators on C" (or equivalently, on
some n-dimensional complex inner product space with a distin-
guished orthonormal basis).

LEMMA 2.1 If A € My(C) and Tr A = 0, then there exists a
unitary matriz U € My(C) such that

-1 0 =
= (05

Proof: To start with, we appeal to the fact - see [H], for
instance - that every complex square matrix has an ‘upper tri-
angular form’ with respect to a suitable orthonormal basis; in
other words, there exists a unitary matrix U; € M, (C) such that

_ a b
U AU = < 0 e ) : (2.7)
Note - by Proposition 1.4 - that
a+c=Tr U AU ' =Tr A=0,
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and so ¢ = —a. In case a = 0, we may take U = U; and the
proof will be complete.

So suppose a # 0. This hypothesis guarantees that the ma-
trix A has the distinct ‘eigenvalues’ @ and —a; i.e., we can find
vectors x,y of norm 1 such that U; AU "o = ax and U AU 'y =
—ay. (In fact, x = 652) and y = pe?) + qeg) for suitable p and ¢
with ¢ # 0 (since a # 0). Thus x and y are lineary independent.
Now, if o, 5 € C, we have:

(U1AU  ax + By), (ax + By)) = al(ax — By), (ax + By))
= a(|a)® —|B]> + 2iIm af(z,y)) .

Now pick a, 3 to satisfy |a| = [8] = 1 and Im afB{(z,y) = 0
- which is clearly possible. Independence of x and y and the
fact that «, 8 # 0 guarantee that w = ax + Sy # 0. Then,
(U AU 'w, w) = 0.

Let u; = ﬁ, and let uy be a unit vector orthogonal to wu.

Let Uy be the unitary operator on C* such that U{lef) = u,
for j = 1,2. It is then seen that if U = UyU; and B = UAU !,

then
(Be® ey = (Up(U, AU YU, el e
= (AUTHU; P Uy el
=
0

UlAUfl)Ul, U1>

Since Tr B =Tr A = 0, we conclude that the (2,2)-entry of B
must also be zero; in other words, this U does the trick for us.

Proof of (B): It suffices to prove the result in the special case
when V' is two-dimensional. (Reason: Indeed, if x and y are unit
vectors in V', and if Vj is the subspace spanned by x and vy, let
Ty denote the operator on Vj induced by the matrix

(o )

where {uy,uy} is an orthonomal basis for V4. The point is that
Ty is what is called a ‘compression’ of T and we have

(Toxo, yo) = (T'xo, yo) whenever xo,yo € Vo .
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In particular, if we knew that W (7,) was convex, then the line
joining (T'z,z) and (Ty,y) would be contained in the convex
set W (1) which in turn is contained in W (7') (by the displayed
inclusion above).)

Thus we may assume V = C?. Also, since W(T — \) =
W(T) — X - as is readily checked - we may assume, without loss
of generality that Tr T" = 0. Then, by Lemma 2.1, the operator
T is represented, with respect to a suitable orthonormal basis,

by the matrix
0 a
b 0 ) °

An easy computation then shows that
W(T) = {ayz + bry : x,y € C, |z|* + |y|* = 1} .

Since {yz : v,y € C,|z* + |yl =1} = {z € C: |z| < 3}, we
thus find that

1
W(T) ={az+bz:2€C,|z §§}

and we may deduce the convexity of W (T') from that of the disc
{zeC:|z] <1} 0

Proof of (C): We prove this by induction, the case n = 2 being
covered by Lemma 2.1.

So assume the result for n — 1, and suppose A € M,(C).
Then notice, by the now established (B), that

0=— Z(Aegn),egn)> e W(A) .
(e
Consequently, there exists a unit vector u; in C" such that
(Auy,u;) = 0. Choose ug, - -.u, be so that {u,---,u,} is an
orthonormal basis for C", and let U be the unitary operator on
C" such that Ufle(n) = u; for 1 < i <n. Then it is not hard to

)

see that if A; = UIAUl_l, then

o (A1l ™y = 0; and
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e if B denotes the submatrix of A; determined by deleting
its first row and first column, then, Tr, B =Tr, A =
Tr, A = 0; and hence by our induction hypothesis, we can

choose an orthonormal basis {vs, -+, v,} for the subspace
spanned by {eJ”. -+ e} such that (Bv;,v;) = 0 for all
2<7<n.

We then find that {u} = uy,ub = U tvg, -+, ul, = U lv,} is an
orthonormal basis for C* such that (Au},u}) =0 for 1 <i < n.

17 (2
Finally, if we let U be a unitary matrix so that U‘legn) = u}, for
each i, then UAU ™! is seen to satisfy
(UAU ™ ™y =0 for all i.

)

Proof of (A): By replacing A by UAU ! for a suitable uni-
tary matrix U, we may, by (C), assume that a; = 0 for all 1.

Let by, bo, - - -, b, be any set of n distinct complex numbers, and
define
0 ifi=y
ij 305 > Cij { bi“jbj ifi#y

It is then seen that indeed A = BC — C'B.

3 Extensions

It is natural to ask if complex numbers have anything to do with
the result that we have called (A). The reference [AM] extends
the result to more general fields.

In another direction, one can seek ‘good infinite-dimensional
analogues’ of (A); one possible such line of generalisation is pur-
sued in [BP], where it is shown that ‘a bounded operator on
Hilbert space is a commutator (of such operators) if and only if
it is not a compact perturbation of a non-zero scalar’.
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