
ON TRACE ZERO MATRICES

by

V.S. Sunder

In this note, we shall try to present an elementary proof of

a 
ouple of 
losely related results whi
h have both proved quite

useful, and also indi
ate possible generalisations. The results we

have in mind are the following fa
ts:

(a) A 
omplex n � n matrix A has tra
e 0 if and only if it is

expressible in the form A = PQ�QP for some P;Q.

(b) The numeri
al range of a bounded linear operator T on a


omplex Hilbert spa
e H, whi
h is de�ned by

W (T ) = fhTx; xi : x 2 H; jjxjj = 1g ;

is a 
onvex set in C .

1

We shall attempt to make the treatment easy-pa
ed and self-


ontained. (In parti
ular, all the terms in `fa
ts (a) and (b)'

above will be des
ribed in detail.) So we shall begin with an

introdu
tory se
tion pertaining to matri
es and inner produ
t

spa
es. This introdu
tory se
tion may be safely skipped by those

readers who may be already a
quainted with these topi
s; it is

intended for those readers who have been denied the pleasure of

these a
quaintan
es.

1 Matri
es and inner-produ
t spa
es

The 
olle
tionM

m�n

(C ) of 
omplexm�nmatri
es has a natural

stru
ture of a 
omplex ve
tor spa
e in the sense that if A =

((a

ij

)); B = ((b

ij

)) 2 M

m�n

(C ) and � 2 C , we may de�ne the

linear 
ombination �A + B 2 M

m�n

(C ) to be the matrix with

(i; j)-th entry given by �a

ij

+b

ij

. (The `zero' of this ve
tor spa
e

1

This result is known - see [H℄ - as the Toeplitz-Hausdor� theorem; in

the statement of the theorem, we use standard set-theoreti
al notation,

where by x 2 S means that x is an element of the set S.
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is the m� n matrix all of whose entries are 0; this `zero matrix'

will be denoted simply by 0.)

Given two matri
es whose `sizes are suitably 
ompatible',

they may be multiplied. The produ
t AB of two matri
es A

and B is de�ned only if there are integers m;n; p su
h that A =

((a

ik

)) 2 M

m�n

, B = ((b

kj

)) 2 M

n�p

; in that 
ase AB 2 M

m�p

is de�ned as the matrix ((


ij

)) given by




ij

=

n

X

k=1

a

ik

b

kj

: (1.1)

Unlike the 
ase of usual numbers, matrix-multipli
ation is

not `
ommutative'. For instan
e, if we set

A =

�

0 �1

1 0

�

; B =

�

1 0

0 0

�

; (1.2)

then it may be seen that AB 6= BA.

The way to think about matri
es and understand matrix-

multipli
ation is geometri
ally. When viewed properly, the rea-

son for the validity of the example of the previous paragraph is

this: if T

A

denotes the operation of `
ounter
lo
kwise rotation of

the plane by 90

o

', and if T

B

denotes `proje
tion onto the x-axis',

then T

A

ÆT

B

, the result of doing T

B

�rst and then T

A

, is not the

same as T

B

ÆT

A

, the result of doing T

A

�rst and then T

B

. (For in-

stan
e, if x = (1; 0), then T

B

(x) = x; T

A

(x) = T

A

ÆT

B

(x) = (0; 1)

while T

B

Æ T

A

(x) = (0; 0).)

TA (x) = T o TBA (x)

T
B

o T
A

) B (x)x = Tx(
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Let us see how this `algebra-geometry' nexus goes. The 
or-

responden
e

z = (z

1

; z

2

; � � � ; z

n

)$

0

B

B

B

�

z

1

z

2

.

.

.

z

n

1

C

C

C

A

= ẑ (1.3)

sets up an identi�
ation between C

n

and M

n�1

(C ), whi
h is an

`isomorphism of 
omplex ve
tor spa
es' - in the sense that

\

�z+ z

0

= �ẑ+

^

z

0

Now, if A 2M

m�n

(C ), 
onsider the mapping T

A

: C

n

! C

m

whi
h is de�ned by the requirement that if z 2 C

n

,then

\

T

A

(z) = Aẑ (1.4)

where Aẑ denotes the matrix produ
t of the m�n matrix A and

the n� 1 matrix ẑ. It is then not hard to see that T

A

is a linear

transformation from C

n

to C

m

: i.e., T

A

satis�es the algebrai


requirement

2

that

T

A

(�x+ y) = �T

A

(x) + T

A

(y) for all x; y 2 C

n

:

The importan
e of matri
es stems from the fa
t that the


onverse statement is true; i.e., if T is a linear transformation

from C

n

to C

m

, then there is a unique matrix A 2 M

m�n

(C )

su
h that T = T

A

. This is an easy exer
ise and, we indeed have

a bije
tive 
orresponden
e between M

m�n

(C ) and the 
olle
tion

L(C

n

; C

m

) of linear transformations from C

n

to C

m

. Note that

the matrix 
orresponding to the linear transformation T is ob-

tained by taking the j-th 
olumn as the (matrix of 
oeÆ
ients of

the) image under T of the j-th standard basis ve
tor. Thus, the

transformation of C

2


orresponding to `
ounter-
lo
kwise rota-

tion by 90

o

' is seen to map e

(2)

1

to e

(2)

2

, and e

(2)

2

to �e

(2)

1

, and the

2

This algebrai
 requirement is equivalent, under mild additional 
ondi-

tions, to the geometri
 requirement that the mapping preserves `
ollinear-

ity': i.e., if x; y; z are three points in C

n

whi
h lie on a straight line, then

the points Tx; Ty; T z also lie on a straight line.
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asso
iated matrix is the matrix A of eqn. (1.2). (The reader is

urged to 
he
k similarly that the matrix B of eqn. (1.2) does

indeed 
orrespond to `perpendi
ular proje
tion onto the x-axis'.)

Finally, if A = ((a

ik

)) 2 M

m�n

(C ) and B = ((b

kj

)) 2

M

n�p

(C ), then we have T

A

: C

n

! C

m

and T

B

: C

p

! C

n

, and


onsequently `
omposition' yields the map T

A

Æ T

B

: C

p

! C

m

.

A moment's re
e
tion on the pres
ription (
ontained in the se
-

ond senten
e of the previous paragraph) for obtaining the matrix


orresponding to the 
omposite map T

A

Æ T

B

shows the follow-

ing: multipli
ation of matri
es is de�ned the way it is, pre
isely

be
ause we have:

T

AB

= T

A

Æ T

B

:

(This justi�es our remarks in the paragraph following eqn. (1.2).)

In addition to being a 
omplex ve
tor spa
e, the spa
e C

n

has another stru
ture, namely that given by its `inner produ
t'.

The inner produ
t of two ve
tors in C

n

is the 
omplex number

de�ned by

h(�

1

; � � � ; �

n

); (�

1

; � � � ; �

n

)i =

n

X

i=1

�

i

�

i

: (1.5)

The rationale for 
onsideration of this `inner produ
t' stems from

the observation - whi
h relies on basi
 fa
ts from trigonometry

- that if x = (�

1

; �

2

); y = (�

1

; �

2

) 2 R

2

, and if one writes O;X

and Y for the points in the plane with Cartesian 
o-ordinates

(0; 0); (�

1

; �

2

) and (�

1

; �

2

) respe
tively, then one has the identity

hx; yi = jOXj jOY j 
os (angle XOY ) ;

The point is that the inner produ
t allows us to `algebrai
ally'

des
ribe distan
es and angles.

If x 2 C

n

, it is 
ustomary to de�ne

jjxjj = (hx; xi)

1

2

(1.6)

and to refer to jjxjj as the norm of x. (In the notation of the

previous example, we have jjxjj = jOXj.)

One �nds more generally (see [H℄, for instan
e) that the fol-

lowing relations hold for all x; y 2 C

n

and � 2 C :
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� jjxjj � 0, and jjxjj = 0, x = 0

� jj�xjj = j�j jjxjj

� (Cau
hy-S
hwarz inequality)

jhx; yij � jjxjj jjyjj

� (triangle inequality) jjx+ yjj � jjxjj+ jjyjj

More abstra
tly, one has the following de�nition:

Definition 1.1 A 
omplex inner produ
t spa
e is a 
om-

plex ve
tor spa
e, say V , whi
h is equipped with an `inner prod-

u
t'; i.e., for any two ve
tors x; y 2 V , there is assigned a


omplex number - denoted by hx; yi and 
alled the inner prod-

u
t of x and y; and this inner produ
t is required to satisfy

the following requirements, for all x; y; x

1

; x

2

; y

1

; y

2

2 V and

�

1

; �

2

; �

1

; �

2

2 C :

(a) (sesquilinearity) h

P

2

i=1

�

i

x

i

;

P

2

j=1

�

j

y

j

i =

P

2

i;j=1

�

i

�

j

hx

i

; y

j

i

(b) (Hermitian symmetry) hx; yi = hy; xi

(
) (Positive de�niteness) hx; yi � 0, and hx; xi = 0, x = 0.

The statement `C

n

is the prototypi
al n-dimensional 
omplex

inner produ
t spa
e' is a 
risper, albeit less pre
ise version of the

following fa
t (whi
h may be found in basi
 texts su
h as [H℄,

for instan
e):

Proposition 1.2 If V

1

and V

2

are n-dimensional ve
tor spa
es

equipped with an inner produ
t denoted by h�; �i

V

1

and h�; �i

V

2

,

then there exists a mapping U : V

1

! V

2

satisfying:

(a) U is a linear map (i.e., U(�x+y) = �Ux+Uy for all x; y 2

V

1

); and

(b) hUx; Uyi

V

2

= hx; yi

V

1

for all x; y 2 V

1

.

Moreover, a su
h a mapping U is ne
essarily a 1-1 map of V

1

onto V

2

, and the inverse mapping U

�1

is ne
essarily also an

inner produ
t preserving linear mapping. A mapping su
h as U

above is 
alled a unitary operator from V

1

to V

2

.
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In parti
ular, we may apply the above proposition with V

1

=

C

n

and any n-dimensional inner produ
t spa
e V = V

2

. The

following lemma and de�nition are fundamental. (We omit the

proof whi
h is not diÆ
ult and may be found in [H℄, for instan
e.

The reader is urged to try and write down the proof of the

impli
ations (i), (ii).)

Lemma 1.3 Let V be an n-dimensional inner produ
t spa
e.

The following 
onditions on a set fv

1

; v

2

; � � � ; v

n

g of ve
tors in

V are equivalent:

(i) there exists a unitary operator U : C

n

! V su
h that

v

i

= Ue

(n)

i

for all i.

(ii) hv

i

; v

j

i = Æ

ij

=

�

1 if i = j

0 if i 6= j

.

The set fv

1

; v

2

; � � � ; v

n

g is said to be an orthonormal basis

for V if it satis�es the above 
onditions.

If V is as above, and if fv

1

; v

2

; � � � ; v

n

g is any orthonormal

basis for V , then it is easy to see that

(i) v =

P

n

i=1

hv; v

i

iv

i

for all v 2 V ; and

(ii) hv; wi =

P

n

i=1

hv; v

i

ihv

i

; wi for all v; w 2 V .

Now if T : V ! V is a linear transformation on V , the

a
tion of T may be en
oded, with respe
t to the basis fv

i

g, by

the matrix A 2M

n�n

(C ) de�ned by

a

ij

= hTv

j

; v

i

i :

We shall 
allA the matrix representing T in the basis fv

1

; � � � ; v

n

g.

It is natural to 
all an n�n matrix unitary if it represents a

unitary operator U : V ! V in some orthonormal basis; and it

is not too diÆ
ult to show that a matrix is unitary if and only

if its 
olumns form an orthonormal basis for C

n

.

More or less by de�nition, we see that if A;B 2 M

n�n

(C ),

the following 
onditions are equivalent:

(a) there exists a linear transformation T : V ! V su
h that

A and B represent T with repe
t to two orthonormal bases;

(b) there exists a unitary matrix U su
h that B = UAU

�1

.

In (b) above, the U

�1

denotes the unique matrix whi
h serves

as the multipli
ative inverse of the matrix U . (Re
all that the
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multipli
ative identity is given by the matrix I

n

whose (ij)-th

entry is Æ

ij

(de�ned in Lemma 1.3(ii) above); and that the matrix

representing an operator is invertible if and only if that operator

is invertible.)

Finally re
all that the tra
e of a matrix A 2 M

n

(C ) is de�ned

by

3

Tr

n

A = Tr A =

n

X

i=1

a

ii

and re
all the following basi
 property of the tra
e:

Proposition 1.4 Suppose A 2M

m�n

(C ); B 2M

n�m

(C ). Then,

Tr

m

AB = Tr

n

BA :

In parti
ular, if C; S 2M

n

(C ) and if S is invertible, then

Tr SCS

�1

= Tr C ;

Proof: For the �rst identity, note that

Tr

m

AB =

m

X

i=1

 

n

X

k=1

a

ik

b

ki

!

=

n

X

k=1

 

m

X

i=1

b

ki

a

ik

!

= Tr

n

BA :

The se
ond identity follows from the �rst, sin
e

Tr SCS

�1

= Tr CS

�1

S = Tr CI

n

= Tr C :

2

2 On 
ommutators, numeri
al ranges

and zero diagonals

We wish to dis
uss elementary proofs of the following three well-

known results:

(A) A square 
omplex matrix A has tra
e zero if and only if it

is a 
ommutator - i.e., A = BC � CB, for some B;C.

3

Here and in the sequel, we shall write M

n

instead of M

n�n

.
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(B) If T is a linear operator on an inner produ
t spa
e V , then

its numeri
al range W (T ) = fhTx; xi : x 2 V; jjxjj = 1g is a


onvex set.

(C) A matrix A 2 M

n

(C ) has tra
e zero if and only if there

exists a unitary matrix U 2 M

n

(C ) su
h that UAU

�1

has all

entries on its `main diagonal' equal to zero.

As for the arrangement of the proof, we shall show that (C)

follows from (B), whi
h in turn is a 
onsequen
e of the 
ase

n = 2 of (C). So as to be logi
ally 
onsistent, we shall �rst prove

(C) when n = 2, then derive (B), then dedu
e (C) for general n,

and �nally dedu
e (A) from (C). Further, sin
e the `if' parts of

both (A) and (C) are immediate (given the truth of Proposition

1.4), we shall only be 
on
erned with the `only if' parts of these

statements.

Our proofs will not be totally self-
ontained; we will need one

`standard fa
t' from linear algebra. Thus, in the proof of Lemma

2.1 below, we shall need the fa
t that - at least in two-dimensions

- every 
omplex matrix has an `upper triangular form'.

In the following proofs, we shall inter
hangeably think about

elements ofM

n

(C ) as linear operators on C

n

(or equivalently, on

some n-dimensional 
omplex inner produ
t spa
e with a distin-

guished orthonormal basis).

Lemma 2.1 If A 2 M

2

(C ) and Tr A = 0, then there exists a

unitary matrix U 2M

2

(C ) su
h that

UAU

�1

=

�

0 �

� 0

�

:

Proof: To start with, we appeal to the fa
t - see [H℄, for

instan
e - that every 
omplex square matrix has an `upper tri-

angular form' with respe
t to a suitable orthonormal basis; in

other words, there exists a unitary matrix U

1

2M

2

(C ) su
h that

U

1

AU

�1

1

=

�

a b

0 


�

: (2.7)

Note - by Proposition 1.4 - that

a+ 
 = Tr U

1

AU

�1

1

= Tr A = 0 ;
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and so 
 = �a. In 
ase a = 0, we may take U = U

1

and the

proof will be 
omplete.

So suppose a 6= 0. This hypothesis guarantees that the ma-

trix A has the distin
t `eigenvalues' a and �a; i.e., we 
an �nd

ve
tors x; y of norm 1 su
h that U

1

AU

�1

1

x = ax and U

1

AU

�1

1

y =

�ay. (In fa
t, x = e

(2)

1

and y = pe

(2)

1

+ qe

(2)

2

for suitable p and q

with q 6= 0 (sin
e a 6= 0). Thus x and y are lineary independent.

Now, if �; � 2 C , we have:

hU

1

AU

�1

1

(�x + �y); (�x+ �y)i = ah(�x� �y); (�x+ �y)i

= a(j�j

2

� j�j

2

+ 2iIm �

�

�hx; yi) :

Now pi
k �; � to satisfy j�j = j�j = 1 and Im �

�

�hx; yi = 0

- whi
h is 
learly possible. Independen
e of x and y and the

fa
t that �; � 6= 0 guarantee that w = �x + �y 6= 0. Then,

hU

1

AU

�1

1

w;wi = 0.

Let u

1

=

w

jjwjj

, and let u

2

be a unit ve
tor orthogonal to u

1

.

Let U

2

be the unitary operator on C

2

su
h that U

�1

2

e

(2)

j

= u

j

for j = 1; 2. It is then seen that if U = U

2

U

1

and B = UAU

�1

,

then

hBe

(2)

1

; e

(2)

1

i = hU

2

(U

1

AU

�1

1

)U

�1

2

e

(2)

1

; e

(2)

1

i

= h(U

1

AU

�1

1

)U

�1

2

e

(2)

1

; U

�1

2

e

(2)

1

i

= h(U

1

AU

�1

1

)u

1

; u

1

i

= 0 :

Sin
e Tr B = Tr A = 0, we 
on
lude that the (2,2)-entry of B

must also be zero; in other words, this U does the tri
k for us.

Proof of (B): It suÆ
es to prove the result in the spe
ial 
ase

when V is two-dimensional. (Reason: Indeed, if x and y are unit

ve
tors in V , and if V

0

is the subspa
e spanned by x and y, let

T

0

denote the operator on V

0

indu
ed by the matrix

�

hTu

1

; u

1

i hTu

2

; u

1

i

hTu

1

; u

2

i hTu

2

; u

2

i

�

;

where fu

1

; u

2

g is an orthonomal basis for V

0

. The point is that

T

0

is what is 
alled a `
ompression' of T and we have

hT

0

x

0

; y

0

i = hTx

0

; y

0

i whenever x

0

; y

0

2 V

0

:
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In parti
ular, if we knew that W (T

0

) was 
onvex, then the line

joining hTx; xi and hTy; yi would be 
ontained in the 
onvex

set W (T

0

) whi
h in turn is 
ontained in W (T ) (by the displayed

in
lusion above).)

Thus we may assume V = C

2

. Also, sin
e W (T � �I

2

) =

W (T )� � - as is readily 
he
ked - we may assume, without loss

of generality that Tr T = 0. Then, by Lemma 2.1, the operator

T is represented, with respe
t to a suitable orthonormal basis,

by the matrix

�

0 a

b 0

�

:

An easy 
omputation then shows that

W (T ) = fay�x+ bx�y : x; y 2 C ; jxj

2

+ jyj

2

= 1g :

Sin
e fy�x : x; y 2 C ; jxj

2

+ jyj

2

= 1g = fz 2 C : jzj �

1

2

g, we

thus �nd that

W (T ) = faz + b�z : z 2 C ; jzj �

1

2

g

and we may dedu
e the 
onvexity of W (T ) from that of the dis


fz 2 C : jzj �

1

2

g. 2

Proof of (C):We prove this by indu
tion, the 
ase n = 2 being


overed by Lemma 2.1.

So assume the result for n � 1, and suppose A 2 M

n

(C ).

Then noti
e, by the now established (B), that

0 =

1

n

n

X

i=1

hAe

(n)

i

; e

(n)

i

i 2 W (A) :

Consequently, there exists a unit ve
tor u

1

in C

n

su
h that

hAu

1

; u

1

i = 0. Choose u

2

; � � � :u

n

be so that fu

1

; � � � ; u

n

g is an

orthonormal basis for C

n

, and let U be the unitary operator on

C

n

su
h that U

�1

1

e

(n)

i

= u

i

for 1 � i � n. Then it is not hard to

see that if A

1

= U

1

AU

�1

1

, then

� hA

1

e

(n)

1

; e

(n)

1

i = 0; and
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� if B denotes the submatrix of A

1

determined by deleting

its �rst row and �rst 
olumn, then, Tr

n�1

B = Tr

n

A

1

=

Tr

n

A = 0; and hen
e by our indu
tion hypothesis, we 
an


hoose an orthonormal basis fv

2

; � � � ; v

n

g for the subspa
e

spanned by fe

(n)

2

; � � � ; e

(n)

n

g su
h that hBv

j

; v

j

i = 0 for all

2 � j � n.

We then �nd that fu

0

1

= u

1

; u

0

2

= U

�1

v

2

; � � � ; u

0

n

= U

�1

v

n

g is an

orthonormal basis for C

n

su
h that hAu

0

i

; u

0

i

i = 0 for 1 � i � n.

Finally, if we let U be a unitary matrix so that U

�1

e

(n)

i

= u

0

i

for

ea
h i, then UAU

�1

is seen to satisfy

hUAU

�1

e

(n)

i

; e

(n)

i

i = 0 for all i :

Proof of (A): By repla
ing A by UAU

�1

for a suitable uni-

tary matrix U , we may, by (C), assume that a

ii

= 0 for all i.

Let b

1

; b

2

; � � � ; b

n

be any set of n distin
t 
omplex numbers, and

de�ne

b

ij

= Æ

ij

b

j

; 


ij

=

�

0 if i = j

a

ij

b

i

�b

j

if i 6= j

:

It is then seen that indeed A = BC � CB.

3 Extensions

It is natural to ask if 
omplex numbers have anything to do with

the result that we have 
alled (A). The referen
e [AM℄ extends

the result to more general �elds.

In another dire
tion, one 
an seek `good in�nite-dimensional

analogues' of (A); one possible su
h line of generalisation is pur-

sued in [BP℄, where it is shown that `a bounded operator on

Hilbert spa
e is a 
ommutator (of su
h operators) if and only if

it is not a 
ompa
t perturbation of a non-zero s
alar'.
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