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A Kauffman diagram is an isotopy class of
a planar (i.e., non-crossing) arrangement of
n curves in a box with their ends tied to 2n
marked points on the boundary; an example,
with n = 4 is illustrated below:

8 7 6 5

The collection of such diagrams will be de-
noted by KCp.

Proposition 1:

|Kn|:;<2n>
n-+1 n

We shall indicate a proof of this identity (taken
from [GHJ]) below.
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For z,y € R? such that z; < y; fori = 1,2,
let P(xz,y) denote the collection of all ‘walks’
~v from z to y, in which each step is of unit
length, and is to the right (R) or up (U). It is
clear that

Y1 — 1+ yo — o
PZB, p—
|[P(z,y) ( i — 21 >

We will primarily be interested in P((0,0), (n,n)).
For instance, we see that P((0,0),(2,2)) is as
follows:




Let P;((0,0), (n,n)) consist of those paths which
do not cross the main diagonal (- i.e., every ini-
tial segment has at least as many R's as U’s.)

Thus, P((0,0),(2,2)) is as follows:

RRUU RURU

It is an easy exercise to verify that

[Kn| = [P4((0,0), (n,n))|.

The bijection is illustrated below, for n = 3:

(1(2(34)5)6) RRRUUU (1(23)(45)6) RRURUU
aeamen o FROURD
G = R




Proof of Proposition 1:

We need to show that

1 2n
P(0.0), )l = (2,

Note - by a shift - that |P;((0,0),(n,n))| =
|Py((1,0),(n+ 1,n))|, and that the right side
counts the (‘good’) pathsin P((1,0), (n+1,n))
which do not meet the main diagonal. Con-
sider the set P,((1,0),(n + 1,n)) of (‘bad’)
paths which do cross the main diagonal. The
point is that any path in P,((1,0),(n+1,n)) is
of the form v =~1 09 € P,((1,0),(n + 1,n)),
where v1 € P((1,0),(j,7)),v2 € P((4,7),(n +
1,n)), and (j,5) is the ‘first point’ where ~
touches the main diagonal. Define 4 =~} o~y,
where 7’1 is the reflection of 1 about the main
diagonal. This vields a bijection

Py((1,0),(n+1,n)) 3 v=y € P((0,1), (n+1,n))
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Hence

|Pg((1,0),(n+1,n))]
= |P((1,0),(n+1,n))| - [P((1,0),(n+ 1,n))|
= |P((1,0),(n+1,n))| - |P((0,1),(n+ 1,n))|

= ()2

1 2n
n-+1 n ’

thereby proving Prop. 1. L]

We now move to another sequence {NC), : n >
1} of sets whose cardinalities are also given by
the Catalan numbers, where NC,, is the set of
non-crossing partitions. these being partitions
of a set of n marked points on a circle with
the property that the convex hulls of any two
distinct equivalence classes of the partition are
disjoint.



|’Cn| — |NCn| 3

the bijection being illustrated below for n = 3.

(1(2(34)5)6) (1(23)(45)6)

1 R

,,,,,,,,,

(1234E6)

Lo A Lo --- s

The n points of the element S of NC,, which
corresponds to a S € NC,, may be chosen as
points midway between an odd point and the
next even point, with the ‘black regions’ of S
determining the equivalence classes of S.



The algebras T'L,(§): Fix a positive scalar §
(often assumed to be greater than 2, for tech-
nical reasons) and define a (complex) algebra
TLn,(6) with a basis consisting of Kauffman di-
agrams on 2n points, and multiplication de-
fined by the rule

ST = S5y

where (1) U is the diagram obtained by con-
catenation - i.e., identifying the point marked
(2n — 5+ 1) for S with the point marked j for
T, for 1 < 3 < n - and erasing any ‘internal
loops’ formed in the process, and (2) A(S,T)
is the number of ‘internal loops so erased. For
example, we have, if

_ Y Y :

S_gm}\ ST = 0T

A
D



In fact, the algebra T'L,,(6) is associative (since
isotopic diagrams are identified), and even uni-
tal - with all the strands of the identity el-
ement ‘coming straight down’ (joining j and
2n —j 4+ 1).

In much the same way, each N(C5, indexes a
basis for an algebra NC5,,(§) - the only differ-
ence being that ‘internal loops’ are replaced by
‘internal components’.

The further ingredient that these algebras come
equipped with is a natural pictorially defined
trace. Specifically, for S € K, (resp., § €
NC5,,) define 7(S) (resp., 7(S) to be §¢, where
c is the number of loops (resp., components)
occurring in the diagram obtained by connect-
ing the point marked 5 to the point marked

2n — 5 + 1.



In the example below:

we see that

r(8) =62, 71(8) =5 .

We have the following result whose statement
seems intuitively reasonable/plausible, but where
neither the asserted isomorphism nor the proof
of the theorem are so intuitively obvious!



Theorem: There exists a trace-preserving alge-
bra isomorphism ¢ : TLo,(8§) — NCr(§2); this
has the property that

_ 7(5)

for all Kauffmann diagrams S € IC;, . L]

S

This boils down to proving that, for arbitrary
S, T € Kop, we have

T(S)T(T)  7(ST)

r(HT(T) 7(5T) ()

And it turns out that the proof of (*), in turn,
can be reduced to that of the special case - of
(*) - where neither S nor T has any through
strings.

Such an S is seen to be determined by an or-
dered pair (S4,S5-) where S € K - where we
think of the 2n marked points of S+ as being
arrayed on one side of the box.
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We shall think of elements of IC;,, such as S4,
as partitions of {1,2,---,2n} (where equiva-
lence classes are doubletons); we shall write
Sy Vv.S_ for the finest partition which is refined
by Sy as well as S_. (Thus, in our example
above, Sy VvV S_ is the partition of {1,.--,8}
containing only one equivalence class.)

One more piece of notation: given B € ICy, we
shall write |B| for the number of classes in B
and B for BV Bg, where

Bo = {{1,2},{3,4},---{2n — 1,2n}}.
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The key lemma turns out to be the following
‘linearisation result’:

Lemma:
2(IX VY| —-2|X VY]
= |X|-2[X|+ V|- 2|7
for all X,Y € KCy,. []

This is because the assertion (*) translates -
in case neither S nor T has through strings -
to the assertion that

(IS- v Ty — 2|5 v T
+|S4 vVT_|— 2|5y VT |
= (|S-Vv54]) —2(|S- v Si))
+(|T- v Ty]) —2(|T- v T4])

which is seen, by our ‘linearisation result’, to
indeed be true.
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Since | X| =n VX € Ky, our linearisation lemma
may be restated thus:

IXVY|-2/X VY]
= n—|X]- Y]
for all X,Y € KC),.

Instead of spelling out a detailed proof of this
result, we shall simply:

(a) state that ‘one half’ of this assertion is a
consequence of the Euler characteristic, and

(b) illustrate the assertion above with an ex-
ample.
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Consider the example given by

4 5 6
ANEVaS)
. - 42356
| {12,11},{10,7}.{9,8}}
Lm/\
12 11 10 9 8 7
f\/v
_ oy - 1aesense)
‘ {12,11},{10,9},{8,7}}

12111098 7

Here, n = 6, and we see that
X\/Y ={{1,4},{2,3},{5,6},{12,11},{10,9,8,7}}
while
X\/Y=X=1{{1,2,3,4,5,6,7,8,9,10,11,12}}
and

Y ={{1,2,3,4,12,11,10,9},{5,6,7,8}}
so the equation to be proved reads:

5—-2:-1=6-1-2
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Further details can be found in our paper [KS]
below:
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