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‘We consider the notion of planar depth of a planar algebra, viz., the smallest
n for which the planar algebra is generated by its ‘n-boxes’. We establish a
simple result which yields a sufficient condition, in terms of the principal graph
of the planar algebra, for the planar depth to be bounded by k. This suffices
to determine the planar depth of the Fg, Eg and the H—;/ﬁ subfactors.

We then consider a planar subalgebra of the ‘group planar algebra’ which
is naturally associated with a group © of automorphisms of the given group
G. We show that this planar algebra corresponds to the ‘subgroup-subfactor’
associated with the inclusion ® C (G X ©) (given by the semi-direct product
extension). We conclude with a discussion of the planar depth of this planar
algebra P® in some examples.
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1. INTRODUCTION

Jones defined the notion of a planar algebra in [6], where he showed, using
Popa’s characterisation in [10] of the so-called A-lattices, that (spherical,
connected C*-) planar algebras are in bijection with standard invariants
of extremal subfactors. In particular, each planar algebra is the planar
algebra associated with at least one subfactor.

Given a planar algebra P = {P,}, let us define P" to be the planar
subalgebra (of P) generated by P,; then we have a tower
PPcpPcpP!Cc...cpPrCcpP"mC...uX,P"=P (1.1)
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of planar subalgebras of P. (Note that P° is nothing but the Temperley-
Lieb planar algebra T'L - with the same ¢ as the given planar algebra.) It
is fairly easy to see that this tower will stabilise at a finite stage provided
the initial planar algebra P ‘has finite depth’. Of course, this finite depth
condition is far from necessary for the tower to stabilise; for instance, the
Temperley-Lieb planar algebra T'L - cf. [6] - satisfies TL = (TL)*,Vk > 0
(since it is generated by its zero boxes) although T'L has infinite depth in
the ‘generic case’. We shall call the smallest integer for which the tower
(1.1) stabilises the planar depth; i.e. P has planar depth k, 0 < k < oo if
P = P! & [ > k. Since ‘planar depth < depth’, it is natural to ask what
the planar depth of a finite-depth planar algebra can be.

In section 2, we prove a fairly simple fact (cf. Corollary 2.2.2 and Propo-
sition 2.2.1) that suffices to determine the planar depth of some planar
algebras of finite depth.

The first author(in [9]) gave a presentation of the planar algebra P(G)
of the group subfactor corresponding to the fixed-points of an outer action
of a finite group G on a II; factor. He then considered the scenario of a
finite group O acting on the group G as group-automorphisms. He showed
(Theorem 9 of [9]) that the planar algebra that is generated by the ele-
ments in P(G)2 = CG which are fixed by (the linear extension of) O, is
strictly smaller than P(G). He discussed this subplanar algebra for several
examples.

In section 3, we begin by observing that if © acts on G as above, then
there is a natural associated action of © on the planar algebra P(G). The
invariants of this action, call it P® (the group G and the action of © on it
will be fixed once and for all), yield a planar subalgebra of P(G). We see
that the ‘subplanar algebra’ of the last sentence of the previous paragraph
is just what we call (P®)2.

We show that P® can in fact be identified with the planar algebra as-
sociated with the subgroup-subfactor corresponding to the subgroup © of
the semi-direct product G x © and in particular has finite depth. This fi-
nite depth statement implies, as observed earlier, that P® has finite planar
depth. We conclude by discussing some examples that illustrate several
possible features of the tower (1.1).

2. A CRITERION FOR ESTIMATING PLANAR DEPTH

We shall use the terminology of [6] for planar algebras. Thus a planar
algebra P is a tower {P, : n =0,1,2,---} of finite-dimensional C*-algebras
equipped with ‘an action of the coloured operad P of labelled tangles’. We
shall, as in [6], use the term ‘k-boxes’ to denote elements of P.
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As stated in the introduction, if P = {P,} is a planar algebra, we shall
denote by P™ the planar subalgebra of P generated by P,,. We shall denote
by P} the vector space of k-boxes in P™.

PROPOSITION 2.2.1. Suppose the principal graph T of P satisfies the
following condition for some n € N:

(1) each vertex at distance (n+ 1) from x is adjacent to a unique vertez at
distance n from x, and these latter vertices (= neighbours) are all distinct.

Then P™ = pntl,

Proof: The proof relies on an inspection of the tower
Py C Py CPU (2)

showing that the condition (f) implies that the second inclusion is actually
an equality, and thus P = P"+l,

We introduce some notation for the Bratteli diagrams for the inclusions
in (2):

(i) Denote by X, Y, and Z the vertex set for P?, P! ,, and P[L‘Ll
respectively.
(ii) Define the set B =

{(z,y) : x € X is connected to y € Y in the Bratteli diagram.}

I

{(y,2) : y €Y is connected to z € Z in the Bratteli diagram.},

where [] denotes the disjoint union.
(iii) For sets S and T we shall write (S,T) = Id if there is a bijection
f:S—>Tsuchthat forallse S,teT

(s,t) € Bot= f(s).

(iv) Since the inclusion P, = P C P! = P,y is part of a Jones
tower, there is a natural partition of X and Z into ‘old’ and ‘new’ vertices
(see [4] for this terminology) which we write as X = XC[[ X" and Z =
ZO112ZN.

(v) The inclusion P} C P7,, is also part of a Jones tower and thus
X and Y have a natural partition into ‘old’ and ‘new’ vertices as well.
Furthermore, this partition for X is the same as the partition in (v) above
since the two Jones towers are identical up to P} = FP,. We denote the
partition of Y by Y = YO [ YV,
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With this notation, showing equality between P, and ngll is equiva-
lent to showing (Y, Z) = Id. We shall accomplish this by showing the four

statements:

(YN, ZNy=1d,  (v°,20) =14, \
(YN'x 29)nB =0, (YO x ZN)nB = . (3)

We have the following facts about the Bratteli diagram:

(a) {y}xZ)NB#PlorallyeY.
(b) The nature of the partition of X, Y and Z into old and new vertices
implies that

(1) (X°xYN)NnB =19,
(ii) for all y € YO, (XO x {y})N B #0,
(iii) there is no y € Y such that

(XO x {y})NB#£0 and ({y} x ZV)N B # 0.

(c) It follows from (bii) and (biii) that (Y© x Z¥)n B = 0.
(d) Since both Y© and Z© correspond to the set of minimal central pro-

jections in the ‘basic construction ideal’ Ppe, P, (with e, € P,41 denoting
the n-th Jones projection), we have (Y©, Z9) = Id and (Y~ x Z°)nNB = 0.

Thus we have shown the last three statements in (3); it remains to show
that (YN, ZV) = Id. But given (Y~ x Z%) N B = () and (a), this is just
what condition (}) ensures. O

COROLLARY 2.2.2. Let P be a planar algebra with associated principal
graph T'. Suppose T' has no double bonds, no vertices of degree greater than
3, and a unique verter of degree 3. If this degree 8 vertex is of distance
(k — 1) from =, then P has planar depth k and is generated (as a planar
algebra) by one k-box.

Proof: It follows directly from Proposition 2.2.1 that P! = P+ for all
1 > k; hence the planar depth of P is finite and at most k. On the other
hand, a simple dimension argument shows that P*~! = P? is nothing but
the Temperley-Lieb planar algebra TL and in particular P*~1 # P* so
the planar depth is exactly k. Finally, the hypothesis shows that dim P, =
dim TLj + 1, and this shows that any element of P, which is not in P,f_l
will generate P as a planar algebra. |

REMARK 2.2.3. Three remarks are in order here.
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(a) Special cases to which this Corollary applies are the cases when T is
D5, Eg, Eg and the principal graph of the %ﬁ subfactor of [1].

(b) Of the pair of principal graphs associated to the % subfactor of
[1], one graph has a unique triple point, while the other has two triple points
at different distances from *. (This feature also holds in each case of the
heirarchy of pairs of graphs listed (see [5], case (2)) by Haagerup as other
possible finite principal graphs of subfactors of index less than 3 + /3.)

Since the planar depth of a subfactor is the same as that of its dual, we
see (as illustrated by the graph (in [5]), referred to above, with two triple
points) that it is possible for a principal graph to have a triple point at a
distance (k — 1) from * and still have planar depth strictly smaller than k.

(c) As remarked above (and as can be seen from Jones’ description of
PMCMy) g planar algebra and its dual planar algebra have the same planar

depth. This is not the case for the usual depth of a subfactor; the 5+2—*/ﬁ
subfactor provides an example where the depths of the subfactor and its
dual differ. This may be cited as one reason why ‘planar depth’ is a more
natural notion than the usual depth.

3. SOME PLANAR SUBALGEBRAS OF THE GROUP
PLANAR ALGEBRA

We shall only be concerned with planar algebras P which come equipped
with a ‘presentation (whose symbol @ we shall suppress) by a collection
L =17, Ly of labels’. (Again see [6] for notation.)

In fact, following [9], we shall be primarily concerned with the planar
algebra P(G), which has a presentation as above with generators given by
Ly = G and Ly = 0 for k # 2, the relation that a simple closed loop
(of either orientation) be the scalar |G|2 and the additional six relations
labelled 00,0,1,2,3,4 below (and in Theorem 5 of [9]). We shall assume that
we are given a group © and an action a : © — Aut(G). Nothing is changed
if we replace © by ©/ker a, so we assume that O acts faithfully, i.e., that
a is 1-1.
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00. |id| = 0. 8 = | .8,

1. 2. 8 || =1|G|24(yg,id)

; \— ) U
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gh

We consider the map on tangles that replaces the label of each 2-box
with the label’s image under 8 € ©. Since 4 is a group automorphism, it is
seen that the set of relations defining P(G) is unchanged by this map and
thus this map defines an automorphism of P(G) which we shall continue
to denote by 6. It follows that the set P® of invariants for this action of
© on P(Q) is a sub-planar algebra of P, and that the set of ©-invariant
k-boxes of P(G) constitutes precisely the set of k-boxes of P®.

For each k = 1,2,--- and 6 € O, let agk) € Aut(G*) be defined by

a§? (91,92, 9) = (@(91),2(g2), "+, (g)). When the context is
clear, we shall simply write 6(g1,---,gr) for what we have defined above

as agk) (gla ot 7gk)'

For convenience of reference, we shall gather various simple facts about
bases for the spaces P(G)y in the form of the following remark.
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REMARK 3.3.1.

(a) It was shown in Theorem 6 of [9] that if we let
T(g1,---,9k—1) denote the labelled k-tangle given by

JL

J

4

6—318

ﬁ

for k odd, and

[

JL

=

a

Z—alg

ﬁ

Al

-

4

y

J N

-

— L

for k even, then {T'(g) : g € G¥ '} is an orthonormal basis of P(G) (with
respect to the inner product given by the natural trace).

(b) We shall find it convenient to use a slightly different basis (which,
as we shall see, is actually just a rearrangement of the basis in (a)): define

S(g), g € G*! to be the labelled k-tangle given by

g || @
LJULJL\
ﬁmf
8i-1
\
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for k odd, and

NN R N/

Y
81
[ [
for k even.

(c) On the one hand, the map G*~' > g~ h € G*¥~! defined by

—1 . .
)9 gi i i<k-—1
h’_{gk_ll if i=k-1 )

is clearly a bijection with inverse given by h +— g, where g; = (hihit1...hg_1)"".
On the other hand, it is an easy exercise to use relation 3. above to show

that - with g and h related as above - we have S(g) = T'(h), and hence
that {S(g) : g € G*¥~'} is an orthonormal basis of P(G); as well.

(d) It follows from the definitions that {S(1, g2, 93,---9k—1) : (92,93 ---gr—1) €
G*~?} is an orthonormal basis for P(G); . (Reason: Clearly S(g) €
P(G)1,r if g1 = 1, while relation 2. above shows that S(g) L P(G)1

if g1 #1.)

(e) We will also need to decompose an S(g),7 € G*~2, when regarded as
an element of P(G); under the natural inclusion of P(G);—1 into P(G),
in terms of the basis {S(h) : h € G¥~1}. The desired decomposition is:

ﬁEheGS(gl,...g%,h,g%,...gk_2) if kis odd
S(gl,...g%,gg,gg,...gk_Q) if k is even.
()

S(91,---gk—2) = {

(f) In what follows, we shall find it convenient to use the notation
[2] = min{fn€Z:z<n}.

The relations in P(G) are seen to imply that for arbitrary g,h € G¥~!, we
have:
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S(gly g2, - - 'gkfl)s(hl’ h27 U hkil)
. M5
_ |G|f§1*1(H5(h19k+1—z’,hi))
i=2

X S(hlgl,hl,QQ, .. 'hlgf§1’hf%1+1’hf%1+2 .. -hk—l)
(6)

where §(a, b) is zero unless a = b in which case it is one.

(g) The action of ® on P(G); maps an orthonormal basis onto itself
and consequently yields a unitary representation of ©; in particular, the
orthogonal projection of P(G); onto PP is given by the usual averaging
operator. So, if we define ©S(g) = > 4o S(0(7)), it is seen that {©S5(7) :
[9] € G*/©} is an orthogonal set of vectors, which clearly spans PP (where
we have written [g] to denote the orbit of § under ©, and G*/© to denote
the set of all such orbits in G¥). Finally, it is not hard to deduce from
equation (6) and the relations defining P(G) that if g, h € G¥~1, then

@S(gl,gz, .. .gkfl)(')S(hl, hz, . hkfl)

(%]
= G171 S (T 68" (gr1-1), hi))

0"€® i=2
x 08(h16"(91), 716" (92), - - - 710" (gr1), hriqyns Brsga -+ - hw—1)
(7)

THEOREM 3.3.2. Let G,0© be as above, and let G x © denote the semi-
direct product associated to this group action, and let N = RE*® Cc R® =
M denote the associated subgroup-subfactor. Then

P® = pNcM,

Proof: For notational convenience let P, = P9, Py = Pl(?k, Qr =
PYM Qi = PNM. We shall write the elements of G » © as ordered
pairs (g,6) with the usual multiplication (g1, 61)(g2,62) = (g161(92),0162)-
We begin by recalling some of the work in [3] which will allow us to describe
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the standard invariant of PY<M. We let [Zj = o7 Loco be the

projection corresponding to the subgroup ® C G x ©. Define B, € A, ,
to be the following annular map in P(G x ©):

for n even,

for n odd.

Define the natural inclusion map

i Bn(Pn) — Bn+1(Pn+1)

given by
t— Bn+1 (t)
We denote this inclusion by C;.
Corollary 4.5 of [3] then states that the tower
Qo C Q1 C Q2 C ...
U

Qa1 C Q2 C ...
- C Qn
U

. C Ql,n

is isomorphic to the tower:
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B(](Po(G bl @)) C; Bl(Pl(G A @)) C; BQ(P2(G X @))
U
Bl(Pl,l (G bl ("))) C; B2(P1,2(G A ("))) .

U
. Ci Bp(Pia(Gx0)) ...

Using the relations in P(G x ©) we find that

Bn(5((91,61); (92,62); - - - (gn-1,0n-1)))

= @ > 8((0(g1),m), (6(g2),72); - -+, (B(gn—1),¥n—1))

0O, yeO2n-1

which only depends on the orbit of (g1,92,.--9gn—1) under ©. We shall
denote this sum of elements - i.e., |©|" times the right side of the above
equation - by U(9g); again, note that U(g) depends only on the orbit [g] of
g under O. Tt follows then that {U(9) }1eg»-1/0 is an orthogonal basis for
B, (P,(Gx0). (It is a complete set since it is the image under B,, of a basis
for P,(G x ©). It is an orthogonal set because distinct elements are linear
combinations of disjoint subsets of an orthonormal basis of P,(G x ©).)

Analogous to equation (6), we find - arguing this time in the group G x©
- that if g,h € G*¥~!, then

U(91,92,---9k—1)U(h1, ha,. .. hi—1)

(%]
= G150 ST (T 8(h10" (grs1-1), ha)

0"€0 i=2
X U(hlgu(gl)a hle”(QQ)v .- hle”(g[%])a h[%]-}-la h’[%]-}-l s h‘k—l)
(8)
Define Bk : P, — Bk(Pk(G X @)) by
B(©(S@)) = 16" *U([g)) , geG* . 9)

By the foregoing remarks, 8; maps an orthogonal basis of P, onto an
orthogonal basis of Bg(P(G x ©)) and is thus a well defined bijection of
vector spaces. To establish the isomorphism of towers we only need to
verify that, for all &,
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1. By is a homomorphism,
2. Br(Pik) = Bp(P1i(G % 0)),
3. Brlpe_, =10 Br-1.

It is a straightforward consequence of equations (6), (7) and the carefully
chosen constant in Definition (9) that 8j indeed preserves multiplication
and is thus a homomorphism.

The second assertion above is a consequence of Remark 3.3.1(d), and the
fact that {U(g) : g1 = 1,[g] € G¥~1/O} is a basis for By (P11 (G x ©)) (the
proof of which fact is analogous to that of Remark 3.3.1(d)).

Finally, the third assertion above follows from Remark 3.3.1(e).

O

In the sequel, we shall economise on parentheses and write P®" for
(PO)".

COROLLARY 3.3.3. Suppose there erists 3° € G'™1 such that the map-
ping
03067 eG!

is injective. Then P® = P2

Proof: If k > 2l — 1 and A, B € Py, define II(4, B) to be the element of
Pop_o141 given by the following tangle:

2k-21+1

It follows from the group relations that
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I(T(g1,---gk—1),T(h1, ... hi_1))
-1

= |GI" (I 6(gr—ihis V)T (g1, - - - gk—15 by - - - k1) - (10)

i=1
Let us write (as in Remark 3.3.1(g))

eT(g) =Y T(®)-

(4SS

Then, for arbitrary g € G?*~2+1 we find, using (9), that

H(@T(gla D] gk—l:g?; e Jg?fl)a GT((g?fl)_la (9?72)_1 ey (g?)_la gk—1+41, - - 'g2k—21+1))
l
=G> (H 5(0(gi-)0" ((g-)~), 1))
9,60 \i=1
x T(0(g1),0(g2), - --0(gk—1), 0" (gk—111), - - -, 0" (g2 —2111)) -
(11)

Since 6 — 0(g°) is 1-1, it follows that

!
[15(60s-0)8' ((gi-)~), 1) = 8(8(5°),6'(5°)) = 5(6,') ,

i=1

and thus the right side of (10) simplifies to

Gt ZT(0(91)7 - 0(gar—2141) = |G| 1 OT (7).
0

Since {©T(g)} is a basis for Psy,_2;41, we have shown P®:2 = pOi2i+l —

P®;2l+3 — P@;2l+7 = .= P@_

ExampPLE 3.3.4. We consider a few examples.

(a) Let ®© = Zs act on Z, ‘by inversion’; thus, the involutory au-
tomorphism corresponding to the non-trivial element of © is given by
7(z) = —x Vx € Zp. Tt follows from ‘the Mackey machine’ - see [4] or [8],
for instance - that the principal graph (for P® and hence for the subgroup-
subfactor corresponding to the inclusion Zs C Z, X Zs) is given thus:
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Case (i): n is odd

o

(n—1)/2 vertices
Case (ii): n is even

*

<

(n-2)/2 vertices

In both cases, it is clear that P®' = TL # P®:2 while it follows from
Proposition 2.2.1 that P®® = P®* = P® if n is odd. (Of course, the
case n = 3 must be discussed separately, since we get P® = TL in this
case.) Further, an argument given in [9] (see the pictorial identity within
the example G = Dy, 11 towards the end) shows that P®2 = P93 for all
n. In particular, the planar depth of P® is two, if n is odd.

On the other hand, it turns out that for even n, the planar depth of P®
is four, as we show now. In view of the remarks of the last paragraph,
it will suffice to show that P92 # P® in this case. Since P® has finite
depth, it will suffice to show that P®:2 is the free product of P(Zz) and
P(Zy,s) (since free products necessarily have infinite depth). (See [2] for
the definition and these facts about free products - or free compositions,
as they are called there - of subfactors; also see [6] for free products in the
planar algebra context.)

We know from Theorem 3.3.2 that P® = PNCM where N = RZn*Z2
and M = R%2. Then, it follows from the analysis of [3] that the free
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product PNCQ x PRCM ig contained in PNSM. Let H denote the centre
of Z, x Zg, so that H = Zy x Zo; and let Q = R¥,sothat N C Q C M
is an intermediate subfactor. Since the subgroup H is normal in Z,, X Za,
and since

(R* c RP) = (RYB C R)
whenever B is a normal subgroup of a finite group A, we find that PNC@ =

P((Z % L) [(Zy % Z3)) = P(Zys) and that PY<M = P(Z,). We may
conclude that

PYCM = dim Py

= no. of orbits of © in Z,,
n—2
= 2
2 +
=n/2+2-1

= (dim PN<9) + (dim PEM)—1.

dim

It is proved in [3] that this equality allows us to conclude that P®2 =
PNCQ x pREM 55 desired.

(b) Let ® = Z3 act on Zy X Zs, with the generator of Zs cyclically
permuting the three non-trivial elements of Zs x Zs. It again follows from
the Mackey machine that the principal graph is given by the extended
Coxeter diagram FEg; and we may conclude from Corollary 2.2.2 that

posk _ [ TL if k<2
Tl P ifk>2

(c) The action of Z3 on Z2 X Z» in Example (b) above, can be extended to
an action of S3 (with the transpositions interchanging pairs of non-trivial
elements); in this case, P® has principal graph given by the extended
Coxeter diagram Er; and we may conclude from Corollary 2.2.2 that

posk _ [ TL if k<3
T1P° ifk>3

(d) Consider ©® = Zj3 acting on G = Z~r with the generator of Z3 acting
as the map = ~ 22. In this case, we find that the principal graph is given
by:

* |
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We can deduce from Proposition 2.2.1 that P®? = P®4 = P9 We
can easily see that P®! = TL # P®:2; we shall now proceed to show that
P®;2 — P®;3.

Let X (resp., Y) denote the sum of the 2-boxes labelled by the members
of [1] = {1, 2,4} (resp., [3] = {3,6,5}). If welet Z denote the 2-box labelled
by 0, then it is clear that {Z, X,Y} is a basis for P2@;2.

If z,w € G, let us write ((z,w)) for the element (of P(G)3) obtained if
we substitute z and w respectively, for £ and F' in the picture given by

il
@m= ||

E

and [z,w] = ) 45.6((8(2),0(w))). The definitions imply - by considering
the ©-orbits in G x G - that P is linearly spanned by the set

{[0,0],[0,1],[0,3]} U {[1,w] : w € G} U{[3,w] : w € G} .

Next we write (4, B, C, D) for the value of the following picture (where
A, B,C,D € PY?):

[ ]
I
|

and we have the following identities:

(2,2,Z,7Z) = J710,0]
(2,Z,7Z,X) = V71[0,1]
(2,2,2,Y) = V710,3]
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(X,2,Y,Z) = V7][1,0]

(X,X,Z,Z) = V7[1,1]

(X,X,X,Z) = V7[1,2]

(X,Y,X,7Z) = V7 ([1,3] +[1,5])

(X,X,Y,Z) = V7[1,4]

(X,Y,X,X) = V7 (2[1,0] + [1,2] + [1,4] + [1,5] + [1, 6])
(X,Y,Y,Z) = V7]1,6].

These identities show that [0,z],[1,2] € P for all z € G. Similar

computations show that [3,2] € Py for all z € G. Thus, we have shown
that PP C P92 so P9 C P92 and P®?® = P92 as desired.
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