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1 Vector bundles

Throughout X denotes a compact Hausdorff space.

Definition 1.1 A vector bundle over X is a topological space E together with a surjec-
tion p: B — X such that

1. Forx € X, E, :=p Yx) has a finite dimensional vector space structure,

2. FE is locally trivial i.e.

For x € X, there exists an open set U, > x , n, > 0 and a homeomorphism

he : p~H(U,) — U, x C" such that h, is fibre-wise linear and m, o h, = p.
Remark 1.2 If E is a vector bundle over X then dim(E,) is locally constant.
Example 1.3 Let E := X x C". E is called the trivial bundle of rank n.

Example 1.4 Let M be a smooth manifold. Then T M, the tangent bundle is a real

bundle and one can complexify it to get a complex vector bundle.

Example 1.5 Let Gr(n, k) := {k — dimensional subspaces of C"}. Topologise Gr(n, k)
by identifying it with projections in M, (C) with trace k. Then Gr(n,k) is a compact
Hausdorff space. Let

E :={(p,v) € Gr(n,k) x C" : pv = v}

Then E is a vector bundle over Gr(n, k).



Example 1.6 Let p € M,(C(X)) be a projection. We can think of p as a continuous
projection valued map from X to M,(C(X)). Let

E:={(z,v) € X x C": p(x)v = v}
Then E is a vector bundle over X.

Definition 1.7 Let p: E — X be a vector bundle. A section is a map s : X — E such
that s(z) € E, for every x € X.

Exercise 1.1 Let E be a vector bundle over X of rank n. Prove that E is trivial if and

only if there exists n-linearly independent sections.

Thus choosing a trivialisation is the same as choosing local sections which form a basis

at each fibre.
Exercise 1.2 Prove that the bundle described in 1.6 is indeed a vector bundle.
Pullback: Let f:Y — X be continuous and p : E — X be a vector bundel. Define

JUE) :={(y.e): fly) =ple)} CY X E

Check that f*(F) is a vector bundle over Y.
Whitney sum: Let p: £ — X and ¢ : FF — X be vector bundles over X. Define

E®F :={(e,f) € ExF:ple)=q(f)}

Check that £ & F' is a vector bundle over X. Clearly F & F' is isomorphic to F' & F.
Also upto isomorphism  is associative.

Let us denote the set of isomorphism classes of vector bundles over X by V(X).
The Whitney sum of vector bundles makes V' (X) an abelian semigroup with an identity
element. The abelian group K (X) is defined to be the group obtained from V(X) by
the Grothendieck construction. The group K (X) is called the K-group of X.

Let us recall the Grothendieck construction. Suppose (R, +) is an abelian semigroup

with identity. Define an equivalence relation ~ on R x R as follows:

(a,b) ~ (c,d) if there exists e € R such that a + d+e=b+c+e.



We think of the equivalence class [(a, b)] as representing the difference a—b. The addition

+ on R X R/ ~ is defined as
[(a,0)] + [(e,d)] = [(a + ¢, b+ d)].

Then + is well defined on R x R/ ~ and (R x R/ ~,+) is an abelian group with [(a, a)]
as the identity element for any a € R and the inverse of [(a,b)] is [(b, a)].

The map X — K(X) is a contravariant functor from the category of compact Haus-
dorff spaces to the category of abelian groups. It is homotopy invariant and the K-groups

can be computed for a large family of topological spaces.

Exercise 1.3 Let (Uy, hy) be a trivialising cover for a vector bundle E over X. Then
the map hah;1 U, NUg x C" = U, NUg x C" has the form

hahig' (2,v) = (¥, gas(x)v)
where gop : Uy N Ug — GL(n,C) is continuous. Prove that
Joa = 1
9apYpy = Yary

The above relations is expressed by saying {gas} is a co-cycle. Also gops are also called

transition maps.

Exercise 1.4 Write down the transition functions for the pull-back and the Whitney

sum.

Exercise 1.5 Let {gag} be a co-cycle. Consider the disjoint union | |, U, x C". Define

a equivalence relation on | |, U, x C™ by declaring
Uy x C" 3 (z,v) ~ (y,w) € Ug x C" if and only if x =y and gop(x)w =0

Let
L], Ua xC

~

E =

Prove that E is a vector bundle over X with the obvious projection map.



2 Serre-Swan theorem

If p: B — X is a vector bundle, let I'(E') denote the space of sections. Then I'(E) is a
C(X) module.

Exercise 2.1 Prove that T'(Ey, @ Es) =T'(Ey) ® T'(Ey) as C(X)-modules.
The main aim of this section is to prove the following theorem.

Theorem 2.1 (Serre-Swan theorem) The map [E] — [['(E)] is a bijection from the
set of isomorphism classes of vector bundles over X and the set of isomorphism classes

of finitely generated projective modules over C(X).

Lemma 2.2 Let F' be a subbundle of E. Consider a point x € F. Then there exists an

open set U containing x and linearly independent sections s1, 82, , Sm, Sma1, """ 5 Sn ON

U such that
1. Fory e U, F, = span{si1(y), s2(y), - ,sm(y)}.
2. Fory e U, E, = span{s1(y),52(Y), s $m(¥); Smr1(¥); -+, 5u(y) }-

Proof. Let V' be a nbd around x on which both F' and E are trivial. Assume that rank
of F over V is m and that of E over V is n.
Identify E|y =2 V x C". Choose m linearly independent sections for F' over V. Name

them sq, 82, -, Sp. Choose vy, 11, Upmyo, -+ , v, such that the vectors

{81(37), 82(1‘)7 ) Sm(fﬁ), Um+41, Um+2," 7Un}

forms a basis for C".

By continuity ( of what ?), it follows that there exists a nbd U around x such that
{s1(y),52(¥), ", $m(Y), Vms1, Uma, - -+ , U} is a basis for every y € U. Now complete
the proof. O

Definition 2.3 Let E be a vector bundle over X. An inner product on E is a collection
of inner products {<,>,: x € X}, one for each fibre E,, such that if s,t € T'(E) then
the map X 3 x —< s(x),t(x) >, is continuous. A vector bundle equipped with an inner

product is called a Hermitian vector bundle.



It is clear that trivial bundles admit an inner product. The proof of the following

proposition is a partition of unity type argument.
Proposition 2.4 Let E be a vector bundle over X. Then E admits an inner product.

Proposition 2.5 Let E be a Hermitian vector bundle over X and F' C E be a subbundle.

Then F* is a vector bundle over X and F & F* is isomorphic to E.

Proof. Tt is enough to show that F* is a vector bundle (Justify). Choose locally in-
dependent sections si, Sa, - , Sm, Smat, - - - S, Which form a basis for £ and the first m
sections form a basis for F'.

Apply Gram-Schmidt process to replace {s;} by s;. Then
1. {s1,52, -+, S, } form a local basis for F,

2. {5mi1,Smi2, ,8n} form a local basis for F*, and

3. {51,82,++,5,} form a local basis for E.

The local sections {3, 1, Smi2, " ,8n} trivialises F'L.

Proposition 2.6 Let E be a vector bundle over X. Then E is a subbundle of X x CV

for some N.

Proof. Choose finitely many trivialisations (U;, ;) ;. Let {¢;}I; be a partition of unity
such that supp(¢;) C U;.

Let i € {1,2,---,n} be given. Consider the trivialisation h; : p~!(U;) — U; x C™.
We denote the projection from U; x C™ — C™ by my. Define g; : E — C™ by

. — ¢i(p(e))mahi(e) if e € p~H (1),
gz(e) =

0 otherwise.

Check that g; is continuous.
Defineg: £ — X xC™ xC™ x ... x C™ by

g(e) := (p(e), g1(e), g2(€), - -, gnle))

Prove that



e ¢ is injective,
e g is fibre-wise linear, and
e ¢ is a topological embedding.

The proof is now complete. O

Using the last two propositions, do the following exercise.

Exercise 2.2 If E is a vector bundle over X then I'(E) is a finitely generated projective
C(X)-module.

Exercise 2.3 Let E be a vector bundle over X. Let x € X and s : X — E be a section
such that s(x) = 0. Then s can be written as s = Y ., g;s; where g; € C(X) and
s; € T'(E) with g; vanishing at x.

Idea: Choose n-locally independent sections si,ss,---,s, around x and write s :=
>or . fisi. Let ¢ be a continuous function such that ¢ > 0, ¢(z) = 1 and supp(¢)
concentrated around z. Now s = (1 —¢)s+ > 1, gb% fqu%s, Note that gb%si are globally
defined. O

Exercise 2.4 Let g : By — Es be a bundle map. Then g, : T'(E) — T'(Ey) defined by
9x(8) = go s is a C(X)-module map.

Proposition 2.7 Let T : I'(E)) — I'(Ey) be a C(X)-module map. Then there exists a
bundle map g : E1 — E5 such that g, =T

Idea of the proof: Let v € E; be such that v lies over € X. Choose any section s such
that s(x) = v. Define g(v) := (T's)(x). Now Exercise [2.3| implies that g is well-defined.

Proposition 2.8 (Surjectivity part) Let € be a f.g. projective C(X)-module. Then
there ezists a vector bundle over X such that € =T'(E).

Proof. Let p € M,(C(X)) be the idempotent which corresponds to £. Define
E = {(z,v) : p(x)v = v}
Then E is a vector bundle over X and I'(F) = €. O

Exercise 2.5 Now convince yourself that we have proved Serre-Swan theorem.



3 Basic K-theory

Let A be a unital algebra over C. We consider only right A modules. For n > 1, we
write elements of A" as column vectors. The matrix algebra M,,(A) acts on A™ by left

multiplication as module maps.
Exercise 3.1 Prove that Ends(A™) = M, (A).

Definition 3.1 Let £ be a right A module.

1. The module & is said to be finitely generated if there exists £1,&s, -+ , &, € € such
that the A-module generated by {&1,&2, -+ , &0} is €.

2. The module & is said to be projective if it is a direct summand of a free A-module.

Exercise 3.2 Prove that £ is finitely generated if and only if there exists a A-module
surjection p : A" — &.

Exercise 3.3 Prove that the following are equivalent.

1. The module & s projective.

2. If p: M — N s a surjection and f : € — N is any map then f admits a lift
f:&€—= M.

Exercise 3.4 Let £ be a finitely generated projective A-module. Prove that € is a direct

summand of A" for some n > 1.
For the rest of this section £, & will denote f.g. projective modules.

Exercise 3.5 Let p € M, (A) be an idempotent i.e. p*> = p. Consider p as a A-module
map on A™.
Prove that Ker(1 —p) is a finitely generated projective A-module. Show that any f.g.

projective module arises this way.

Exercise 3.6 Let p € M,,(A) and q € M,(A) be idempotents.
Prove that Im(p) and Im(q) are isomorphic as A modules if and only if there exists
r € Mpn(A) and y € My, (A) such that zy = p and yx = q.
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In view of the above exercises, we will identify a f.g. projective module( its isomor-

phism class) with an idempotent in (-, M, (A) (its equivalence class) .

Exercise 3.7 Let £ and & be f.g. projective A-modules. Then EBE' is finitely generated

and projective. Moreover if € and £ are given by the idempotents p and q respectively

then £ ® &' is given by the idempotent P )
q

Let E(A) :={e€ A: e =e}and E(A) := .2, E(M,(A)). Define an equivalence
relation on E..(A) as follows: Let p € M,,(A) and ¢ € M, (A).

p~ q< there exists u € My,xn(A),v € Mysm(A) such that uv = p and vu = q.

We also denote the set of equivalence classes by E(A). Then we have the following

proposition.

0
Proposition 3.2 The operation @ defined as [p] @ [q] = [ﬁ ] is well defined on
q

E(A). Moreover, (Ex(A),®) is a commutative semigroup with identity.

Remark 3.3 The abelian semigroup Ey(A) is nothing but the semigroup of isomorphic

classes of finitely generated projective A-modules.

Definition 3.4 The K-group I?O(A) is the the Grothendieck group of the abelian semi-
group (Ex(A), ®).

Elements of I?O(A) are of the form [e] — [f] where e and f are idempotents in My(.A)
for some N. Also [e] — [f] = [¢'] — [f'] if and only if there exists g € M;(.A) such that
edf@g~edfDy.

IA(O is a functor from the category of unital algebras to abelian groups.

Non-unital case: Let A be an algebra over C. The algebra A is not assumed to be
unital. Consider A" := A @ C with the multiplication defined by

(a, N)(b, ) = (ab+ \b+ pa, Ap).

Let € : AT — C be the map defined by €(a, A\) = A. Then € is an algebra homomor-
phism.
Define Ko(A) := KerKol(e).



Remark 3.5 If A is unital then Ko(A) and Ko(A) are naturally isomorphic. Reason:

If A is unital then A™ is isomorphic to A® C as algebras. l?o preserves direct sums.

Theorem 3.6 If X is a compact smooth manifold then to define K(X) it is enough to

consider smooth vector bundles.

We end our discussion by seeing a similar theorem for non-commutative algebras.
Throughout A will stand for a unital Banach algebra and A C A is a dense subalgebra

which contains the unit of A.

Lemma 3.7 Let e, f € A be idempotents such that ||e — f|| < m Then e and f are

similar i.e. there exists z € A such that zez™1 = f.

Proof. Let z:= (2e—1)(2f —1)+ 1. Then zf = ez. Note that z —2 =2(f —e)(2e — 1).
Hence ||z — 2|| < 2. Thus z is invertible and z~'ez = f. This completes the proof. O

Lemma 3.8 Let e, f € M,(A) be idempotents such that e ~ f. Then in Ms,(A), the
_ e 0 f o0 o
idempotents and are similar.
0 0 0 0
Hint: Split
A"=eA" D (1 —e)A" = fA" @ (1 — f)A™

Definition 3.9 Let A C A be a dense subalgebra and assume that the inclusion A C A
is unital. We call A smooth if

1. A admits a Frechet algebra structure,
2. the inclusion A C A is continuous, and

3. A is spectrally invariant i.e. if a € A is invertible in A then a= ' € A.
Exercise 3.8 Let A C A be smooth and let a € A be given. Show that o4(a) = oa(a).

Exercise 3.9 Let a € A be such that ||a®> — a|| < L. Prove that the spectrum o(a) does

not intersect the line {z € C: Re(z) = 3}.



Exercise 3.10 Let g : {z : Re(z) # 3} — C be holomorphic such that g*> = g and

g9(z) =z if 2 € {0,1}.
Let K be a compact set. Let

1
X :={a€A:0(a) C K,o(a) does not intersect Re(z) = 5}
Show that X 3 a — g(a) € A is norm continuous.

If A is smooth in A then A is closed under holomorphic functional calculus i.e. for
a € A and f a holomorphic function in the nbd of o(a), f(a) € A. It is also true that

M, (A) is closed under holomorphic functional calculus.

Theorem 3.10 Let A C A be a smooth subalgebra. The inclusion A C A induces
isomorphism between Ko(A) and Ky(A).

Proof. Let us denote the inclusion map by i. We need to prove that i, : Ko(A) — Ko(A)
is an isomorphism. Use Exercises [3.9) and to make the following proof precise.

Surjectivity of i,. Let e be an idempotent in M,,(A). Choose a in M, (A) close to
e. Then a? is close to a. Thus o(a) does not intersect the line Re(z) = 1. Then g(a) is
an idempotent and g(a) € M, (A). By it follows that g(a) is close to g(e) = e. By
Lemma it follows that [g(a)] = [e] in Ky(A). Hence i, is surjective.

Injectivity of i,. Suppose [e] — [f] = [0] in K((A) with e, f € M,,(A). Then there
exists g € M, (A) such that e & g ~ f @ g. By the surjectivity part, we can assume
that g € M,(A). By Lemma [3.8 it follows that there exists v € M, (A) such that
ve®g®0)v ™ = f®gd0. Choose u € M,(A) close enough to v. Then u(e®g®0)u~!
is close to f @ ¢ @ 0. Thus again by Lemma [3.8 and its proof, it follows that there exists
2z such that zu(e ® g ® 0)u'27t = f® g ® 0. Hence [e] — [f] =0 in Ky(A).

This completes the proof. O
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