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Preface

The discovery of the modular operator and the modular automorphism
group associated with a normal semifinite faithful weight has led to a
powerful theory — the modular theory — which is nowadays essential
to the consideration of many problems concerning operator algebras.
This theory has been developed in close association with the effort to
understand the structure and produce examples and refined classifications
of factors. Thus, the crossed product construction, which gave rise to the
Jirst non-trivial examples of factors, has been shown to play a fundamental
role in the structure theory as well, by reducing the study of the purely
infinite algebras to the study of the more familiar semifinite algebras
and  their automorphisms. Moreover, several algebraic invariants,
previously defined only in some special cases, have been introduced via
the modular theory for arbitrary factors and the corresponding classi-
fication has been proved to be almost complete for approximately finite
dimensional factors.

The present book is a unified exposition of the technical tools of
the modular theory and of its applications to the structure and classi-
fication of factors. It is based on several works recently published in
periodicals or just circulated as preprints. The main sources used in writing
this book are the works of W.B. Arveson, A.Connes, U. Haagerup,
M. Landstad, G. K. Pedersen, M. Takesaki, J. Tomiyama. The general
treatment of crossed products follows an article by S. Stratild, D. Voicu-
lescu and L. Zsidé. Due to the wealth and variety of results recently
obtained, it has not been possible to include here a detailed exposition
of the classification of infective factors and their automorphisms; these
topics and several others are just mentioned in the Sections of Notes,
together with appropriate references.

The reader is assumed to have a good knowledge of the general
theory of von Neumann algebras, including the standard forms. Actually,
the present book can be viewed as a sequel to a previous book,
S. Stratild and L. Zsidé— Lectures on von Neumann algebras, Editura
Academiei & Abacus Press, 1979, whichis often quoted here and refer-
red to as [L]. There is also an Appendix which contains some supple-
mentary results on positive self-adjoint operators and introduces the
terminology connected with W*-algebras.

The list of references in the present book contains only those items
which have been used, quoted or consulted. A more extensive bibliography



is contained in [L; (and in the Preprint Series, INCREST, Bucharest)
and the new preprints are periodically recorded in C*-News (issued by
CPT/CNRS, Marscille).

I am very indebted to Zoia Cegusescu, Alain Connes, Sundy
Stratild and Dan Voiculescu for the moral support they offered me in
writing this book. I am grateful to my colleagues Constantin Aposiol,
Grigore Arsene, Zoia Ceausescu, Radu Gologan, Adrian Ocncanu, Cornel
Pasnicu, Mihai Pimsner, Sorin Popa and Dan Timotin Jor several uscful
discussions and a critical reading of various parts of the manuscripr.
During his short visit in Romania, Alain Connes kindly informed me of
the most recent developments of the theory. Thanks are also due to the
National Institute for Scientific and Technical C reation, for the technical
assistance.

It is a pleasure for me to acknowledge the most efficient and under-
standing cooperation of the Publishing House of the Romanian Academy
( Editura Academiei) and Abacus Press, especially of Mrs. Sorana Gorjan,
who edited this book, and Dr. Simon Wassermann of Glasgow University,
whose comments on the original translation were most helpful.

Serban Strarvila
Bucuresti, Romania, October 1979
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| Chapter I
' Normal weights

§1. Characterizations of normality
In this Section we prove the Theorem of Haagerup asserting that every normal

weight on a W*-algebra is the pointwise least upper bound of the normal positive
forms it majorizes.

1.1. Let of be a C*-algebra. A weight on &/ is a mapping ¢:.&* — [0, + o0]
with the properties

o(x + ¥) = o(x) + ¢(»), @(x) = lp(x) (x,yeslt, AeR*).

The set
§,={xesdt; ¢(x) <+ oo}

is a face of &7+, the set

N, = {xeof; p(x*x) < + oo}
is a lett ideal of &7, and the set
Mm, = NN, =lin g,

is a facial subalgebra of o with M, n &+ = §, ([L], 3.21), hence ¢ can be extend-
ed uniquely to a positive linear form, still denoted by ¢, on the =-algebra Mm,.

A family & of weights on & is called sufficient if

xesf and @(@*x*xa) =0 for all pe&F, achR,=>x=0
and is called separating if
xesof and o(x*x) =0 for all peF =>x=0.

In particular, the weight ¢ is called faithful if

xesf and p(x*x) =0=x=0.
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1.2. Let ¢ be a weight on the C*-algebra of. The formula
(alb), = o(b*a) (@ beN,)
defines a pre-scalar product on 9, with the properties:
(xalxa), < |ix|*ala), (xeof, aeR,),
(xaib), = (alx*b), (xeo, abe N,).

Let 5#, be the Hilbert space associated with 9, with the scalar product (+1)ge

It follows that there exists a *-representation =,: of —» B(H,), uniquely determined,
such that

¢)) (my(x) a,lb,), = @(b*xa) (xest, a,be N,),

where R, > a — g, e#, denotes the canonical mapping. The #-representation =,

is called the GNS representation or the standard representation associated with Q.
We remark that

) o) =o(x) (reM,),
) lp(d*a)® < p(a*a) p(b*b)  (a,beR,).
1.3. Let .# be a W*-algebra. A weight @ on # is called normal if

o(sup; x;) = sup, o(x;)

for every norm-bounded increasing net {x:}; =« A+, and lower w-semicontinuous
if the convex sets

xedt; o(x) <2} (AeR¥)

are w-closed. An important result concerning weights on W*-algebras is the following
characterization of normality:

Theorem (U. Haagerup). Let ¢ be a weight on the W*-algebra M. The Jollowing
statements are equivalent :
(i) @ is normal;
(i) @ is lower w-semicontinuous;
(i) @(x) = sup {f(x); feM}, < @} for all x e M+,
Later (2.10, 5.8) we shall see that ¢ is normal if and only if it is a sum of
normal positive forms, in accordance with the definition used in ([L], 10.14).

In Sections 1.4—1.7 we present some general results which will be used in the
proof of the Theorem; Sections 1.6—1.12 contain the main steps of the proof.
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1.4. Proposition. If x, x,, . .., x, € B(K) and x*x = x¥x, + ...+ x¥x,, then there
existZy, . .. » Zn € R{X, Xy,. . ., Xp} Such thatzzy + . .. + z¥z, = s(xx*)and x; = ;X -
forall 1 <k <n.

Proof. The equations z(x¢) =x¢ (E€#) and zn =0 (ne¥# © xH)

define operators z; € B(K), [zl < 1, with X, = zx and z(# © x#) =0. Using
the double commutant theorem ([L], 3.2) it is easy to check that z € R{x, X}
Also the relation Y, ;z¥#z, = s(xx*) follows, since the positive operator ( ¥ xzZz)"/®

vanishes on # © x# and x*(Y.z8z) x = x*x.

In particular if x, y € #(s#) and y*y < x*x, there exists z € #{x, y} such that
z*¥z < s(xx*) and y = zx.

1.5. For each « > 0 we shall consider the function
fi(—al+o0)-> R

defined by fu(t) =t(l + o) t=oaM(1 — (1 + at)™1). These functions have the
following properties:

1)) £t) < min {t, a7} (te(—a Y, + o0))

2 o < B =f1) = f(®) (te(—a™l, + 0))

3 a < B=afy(t) < pHH (€l + )

@ FLIO) = Foe0) (te(— @+ P+ )
) limy,of,(f) = ¢ uniformly on compact subsets of R
6) liMyoyeo 0, (t) = 1 uniformly on compact subsets of R*.

A continuous function f: I — [R is called operator monotone on the interval
I = R if for every x, y € B(H), x = x*, y=y*, with Sp(x) = I, Sp(y) < I, we
have x < y = f(x) < f(»). For instance, it is easy to see that

a the functions f, are operator monotone (xeR*).

Also, we recall that (see [184] or [236])

®) the functions t > t¥ are operator monotone O<y<l
On the other hand, using (A.2) we see that

O the functions f, are operator continuous (xeR).

1.6. Let & be a locally convex Hausdorff real vector space with a partial ordering
defined by a convex cone £+ < & suchthat Z+ n (— Z*) ={0}and & = (Z* —

7@ +). The dual cone &% = {feZ*; f(x)> 0 for all xeZ+} defines a partial
ordering on Z*. A subset & of Z'* is called hereditary if

xeé, yeZ&t, x—yeZt=>yeéb.



12 MODULAR THEORY IN OPERATOR ALGEBRAS

For & =« +and # < &* we define & and #* by
& ={feq%; fx) <1 for all xe &),
F'={xex*; fix) <1 for all fe #7}.

Proposition. For Z as above the Jollowing statements are equivalent:

D E=E—*) n Z+ for every closed hereditary convex subset & of +;
(i) &= &"" for every closed hereditary convex subset & of I'+;
(ili) every subadditive, positively homogeneous, increasing and lower semiconti-
nuous function @: &+ — [0, + oo] has the property

¢(x) = sup {f(x); f€ X%, f< @} (xeZH).

Proof. We shall denote by %9 the polar of a subset & of & or &*.

(i) = (ii). Thesets F=&* and F' = — (=)= {fex*; fix) <1 for
all xe & — Z'+} are equal. Indeed, it is clear that & — &, Letfe F and xe X+,
Since 0 € &, we have f(— Ax) < 1 for all 1 = 0, whence f(x)> 0. Thus #' <« & *
and so F' < £,

By the bipolar theorem it follows that (& — & N=E - =(—~FP=
={xeZ; f(x) <1 for all fe #} and, using (i), we get & = CE—-FHYna+=
= {xeZ+; f(x) <1 for al feF} =6"".

(i) = (iii). If ¢ satisfies the conditions required in (iii), then the set& =
= {xeZ*; o(x) < 1} is closed, hereditary and convex. Also, F = &" = {fex*;
Jx) < ¢(x) for all x € Z+} and, by (ji) xeZth o)< }=6=%" = {xex™;
}c.up S(x) < 1}. It follows that ¢(x) = sup {f(x); fe #}, for all xe I+,

€F

(iii) = (i). Let & « &+ be closed, hereditary and convex. Define o(x) =
=inf{l > 0; xei8} if xelJ A& and ¢(x) = + oo otherwise. Then ¢ satisfies
A>0

the hypotheses in (iii) and therefore o(x) =sup {f(x); feF} (xe& *), where
F ={feZ%; f(x) < o(x) for all xeZ*}. It follows that & — &* < {xex;
J(x) < 1for all fe #} and, since the latter set is closed, we get (6 — ") n 2+ <
c{xeZ*; f(x) <1 for all feF} <&, hence (6 —F+) n T+ =6.

1.7. Proposition. Let .# be a W*-algebra and & < M+ a w-closed hereditary
convex set. Then & = (& — M*) n M+,

Proof. We shall use the properties of the functions f. from 1.5. For x e,
let o, = sup {& > 0; — & < x}. Consider the set

S = {xedy; f(x)e& — M+ for all a€(0,a,)},

and let 4, = {xe; ||x| < A}.
We first show that for every 4 > 0 the set& n #, is s-closed.

By
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- Indeed, let x €% n 5. Thereisa net {x;};,c; =& such that |[x;|| < 4 and

X; > x. ‘Then ax, = 1/4, hence f(x) €& — A+ for every ae(0,1/22) and every
i eI Let« e(O 1/27) be fixed. There is a net {y;};e; = & such that -

Sox) < i @iel.

Since f, is operator monotone,

fol) =LAD) <L) GeD.

Since f;, is operator continuous on [—4, -+41],

ﬁa(x i) j’ j;a(x)°

Since 0 < f(y;) < «™ and .#, is w-compact, we may assume that there is y €4
such that ' ’

1) 5 Y.

Since 0 < f)(y)) < y;€& and & is hereditary, f,(y;) €& and, since & is w-closed,
it follows that y € §. Then

— fed®) = w-lim; (£,(¥) — faalx))) = 0,
hence fy,(x) € & — #+. We have thus proved that
fi(x)e& — M+ for every a€ (0, l/l)

Consider now « €[1/4, &) and B €(0,1/2). Then f(x) < f5(x), hence f;(x) €@ —
— MYy — Mt =& — M+, We conclude that xS N A,.

We now show that & is convex.

Indeed, it is sufficient to show that each.S’ n #,is convex, and this will follow
from the equality

S 0 My=E =AY 0 MYy My for p> 12

If xe¥ n A#,, then f,(x) eé’ A+ for a (0, ax) and j;(x) e, for small o > 0,
hence

x=s—1lim f,(x) e{@ — A7) 0 ALY n A,

=0

Conversely, since é’ is hereditary and f(x) < x for all x€(0, a,), we have & —
— M+ =&, hence (8 —MY) 0 M, = 0 M, Using the first part of the proof

we get (6 — A7)0 M) =F .0 ./// and the desired inclusion follows.
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Using the Krein-Smulian theorem ([L], C.1.1; [79], V.5. 7), from the above
it follows that & is w-closed. We have seen that &~ Mt . Since x =
= w-lim f(x), we obtain & < & — M+ MY, Consequently, =(E—H +)”'.

o0

Finally, letxe(® —#*)" n 4+ =% 0 M*+. For every « >0 we have
Jx)e(E — A*) n M+, hence f(x) €&, as & is hereditary. It follows that x =
= w-hm f,(x) €8.

From Propositions 1.6 and 1.7 we obtain the equivalence (ii) <> (iii) in Theo-
rem 1.3, as the implication (iii) = (ii) is .obvious.

In Sections 1.8—1.12 we assume that ¢ is a fixed normal wexght on the W*-
algebra 4.

1.8. Lemma, There exists a linear mappmg D: M, > 7, (M)y, uniquély determined,
such that

(l) ¢(b*a) (T” = (Tla¢[b¢)¢ (T' € %(ny, a,be m").» T %

Moreover, for every xeM, n M, we have

@ IBGO] = inf {p() + @(2); y,zeM, n M+, x =y —z).

Proof. The uniqueness of & follows from the relation M, = NRIN,.

If a,b,ceN,, c* = c and c*c = a*a + b*b, then, by Proposition 1.4, there
exist x, y e.# such that a = x¢, b= yc and x*x + y*y = s(éc*) = s(c), and for
every T'en: o(#)" we have

(VT’c,,,Ic,‘p p = (T’ n(x*x + y*y) c,
| = (T'7y(3) cylmy(3) c,,),. + <T'n,,<y) o1 (3) €, 5
= (T'ala) + (Tbylby)y.. ) o
It follows that the mapping ‘ / ‘

$o: M, N A+ 5a%ar> @ | 1:,,(./()’ € (M)}

is well defined and addmve Clearly, P, is pos1t1vely homogeneous Slnce EDI =
=lin(M, n #*), &, has a unique linear extension ¢ to M,, and (1) follows
using the polarization relation ([L], p. 82). |
The function p defined on M, n .#, by the right hand side of (2) is a semi- b
norm on My N A, fxeM, n M then 1P = 2(x) (1) = ((xM2),](x2),), =
= @(x) = p(x) Consequently, for x =y-—2z with y,zeMM, n- A+, we have
I8 I<IPG + 18() ]| = () -+ ¢(z). Hence |@(x)fi<p(x) for all x €M, N My,
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Let x,e M, n #,. By the Hahn-Banach theorem there exists a real linear-
form f on M, n ., such thatf(x,) = p(x,) and |f(x)| < p(x)forevery x € M, N A,.
Then f can be extended to a complex linear form, still denoted by f, on M. Since
— @(x) < f(x) < @(x) for any xeM, n A+, we may consider ¢ +fand ¢ — f
as weights on .. Consequently, using the Schwarz inequality 1.2.(3), for a,be R,
we obtain

f¥*a) < 23lilp + ) %) + (o — ) G*)l]
<2 (@ + 1) @@ + 1) GBI + (o — f) (@) (@ — ) (B*E)2]
< 71 + 1) (@) + (0 — ) @AFRL + 1) B%B) + (9 — ) BB
= p(a*a)li2 pB*BY2 = (g, l, 15, -

Thus, there exists an operator " € 4(#,), |IT'|| < 1, such that fib*a) = (T"a,lb,),
for all @, b€ N,. Moreover T’ € n,(#), since for every x €4 and every a,be N,
we have

(T'm (%) a,lb,), = f(b*xa) = (m,(x) T'a,|b,),-

It follows that p(xo) = |f(xo)] = |P(xo) (T)] < [P I T}l < || (xa)1l-

1.9. Lemma. Let {x,} be a norm-bounded sequence in M, n A such that the
sequence {®(x,)} is norm-convergent in n(M)y. Then:

) Xy xcl >xecM, n M+,
)] x, = 0 = [|(x,)]| - 0.

Proof. Let ¢ > 0 and |// = lim B(x,) € m,(M),. Without loss of generality

n
we may assume that [|d(x,) — ¥|l < /2% so that [|P(x,,; — x,)]| < &/2" for all
nelN. By Lemma 1.8 there exist sequences {y,} and {z,} in M, n .#* such that

Xng1 — Xp = Vn— 2 and (P(yn) + (D(Z,,) < 8/ n1 (ne N)'

We shéll again use the functions f, from Section 1.5.

d . . .
- (1) Since X431 < X + Y, W and Xp4g > x, we obtain
: . k=1 ‘ : o

£ = selim fi(x) < sp 1, (xl +3 y,,)
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and then, using the normality of ¢,

k=1 k=1

_co(f;(x)) <supg (f. (xx + f} yk)) < sup ¢ (x1 + )5 yx)

<00 + ¥ 000 < o) + 3 625 = o) + 2.
k=1 k=1 ‘

Since f,(x) 1 x, again using the normality of ¢ we get

o(x) = fl’},’ P(fi(¥) < ¢(xy) + 2¢ < + oo,

hence x e M, N+,
n

(2) Since — sup [|x,|l € x; — X,y < Y 21, for a > (sup ||x,l)™ we obtain
. n i I‘_l < n . .

Sty = o) < sm;pf;(i z.‘)-

k=1

Since x; — x,,, = x,, it follows that

S5 = sim £05y = 5y.2) < sup 1, ( 3 z,,) :

k=1

Using the normality of ¢ we infer that

o2 = o0 < s (1§ )

k=1

n (-3
< sup ¢ (Z z,,) < Y, /251 = 2s.
n \k=1 k=1

Consequently, ||yl < ||y — &(x,) If + | PGl < 8/2 =+ 2¢ = 3¢/2. We conclude that
¥ =0, | , - » :

1.10. Let 4, = {(x, x,); xeN,} = A X #y. Since every Hilbert space is a
reflexive Banach space, # X ', is the dual of the Banach space J, X # . For
App>0let M, = {xed; x| <A} and ()= {E e, lEI < u}.

Lemma. If # is countably decomposable, then Go N (M X (Hy),) is o(M X H,, :
My X H)-compact, for every A, u > 0. E
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Proof. Since 4,0 (A, X (#,),) is convex and bounded, it is suflicient
to prove that it is closed with respect to the product topology 7 on /4 X i, of
the s*-topology on .# and the norm-topology on J#,. Since .# is countably decom-
posable, .#,; is s*-metrizable ([L], E.5.7; [236], 8.12).

If (x,&) el X #, is t-adherent to G, n (M, X (,),), then there exists
a sequence {x,} in 4, such that x, > x, [|(x,),ll, < g and [|(x,), — &| = 0. Then
x*x, S x*x and P(xtx,) = O, is norm convergent to w,, whence x €%, by
Lemma 1.8.(1). On the other hand, (x, — x)*(x, — x) = 0 and

g @((x" - X)* (xn - x)) = C0(.7:,.)¢~—x'P - w{-x¢

so that Ogx, = 0 by Lemma 1.8.(2). Thus ¢ = x,, and (x, £) € %,,.

1.11. If # is not countably decomposable, we consider the set .J)’o of all countably
decomposable projections of .# and put

My= U pMp.

DPEP,

It is easy to check that .#, is a self-adjoint ideal in .#.

Lemma. Let & be a hereditary convex subset of MonM*. Then & is w-closed
in My if and only if &n pMp is w-closed for every peP,. . -

Proof. Assume that & n p#p is w-closed for every pe#,. The set F =
= {xed; x*x €&} is convex and a¥ < & for all ae ).

* We first show that p#, or equivalently & *p, is w-closed for any p € #,. Using
the Krein-Smulian theorem and the fact that any s-closed convex set is also w-closed,
it is sufficient to show that F*p n.#, is s-closed for every 4 > 0. Let xe.# be
such that x* is s-adherent to F*pn.,. Since #pn.#, is s-metrizable, there
exists a sequence {x,} in pF, ||x,ll < A, with x > x*. There exists a projection
q €2, such that x, € g.#q for all n e IN. Thus

x,€F nqhqg={yeqlq; y'vebnqghg (mneN).

By assumption, & n g.#q is w-closed, hence F n g.#q is s-closed. It follows that
F n q.#q is w-closed and, consequently, x € # n q.#q. Since px = x and ||x|| < 4,
we get x* € F*p n A ;. Hence pF is w-closed. : ,

Let x €.#, be w-adherent to &. There exists a net {x;};e; = & such that x, S x.
Then p = I(x) € ?, and px}/? = px1i2 = x1/2, By the above paragraph we know that
pF is s-closed, hence x12 € pF < &, i.e. x € . Hence & is w-closed in .

The converse is obvious. ’

2 - 707
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1.12. Proof of Theorem 1.3. As we have already seen (1.7), (ii) <> (iii). The impli-
cation (ii) = (i) is obvious. To show that (i) = (i)) we have to prove that the set

E={xed+; o(x) <1}

is w-closed. Clearly, & is hereditary and convex.

Assume first that . is countably decomposable. As in the last part of the
proof of Lemma 1.11, it is sufficient to show that the set # = {xed; p(x*x) < 1}
is w-closed. Since & n.4, is the image of G0 (M, X (#,),) by the canonical
projection mapping (x, &) ~> x, from Lemma 1.10 it follows that & nA#, is
w-compact for every 4 > 0. Since & is convex, we infer that & is w-closed.

Consider now the general case. By the above argument and by Lemma 1.11
it follows that & n.#, is w-closed in .#,. Let x e.#* be w-adherent to &. There
exists a net {x;};e; = & such that x; > x. Also, there exists an increasing net
{PiJrex = P, with p, 1 1. Since &, is a two-sided ideal in A, for every ke K
we have '

8 0.My> x}Pp IR ,%», x12p, x112 ¢ 4,

hence x1%p,x1/2 € & n M. Since x}/2p, x1/2 4 x, using the normality of ¢ we infer that
o(x) = sup o(x}?p,x1?) < 1, ie. x€é.
keK

1.13. We recall that a positive form ¢ on the W*-algebra .# is normal if and
only if it is completely additive on projections ([L], 5.6, 5.11). This statement
cannot be extended to weights, as the following example shows.

Let #£°(IN) be the W*-algebra of all bounded complex sequences. The weight ¢
defined on ¢*(IN) by ¢({a,}) = ¥ a, if the set {neIN; a, £ 0} is finite, and

¢({a,}) = -+ oo otherwise, is completely additive on projections, but is not normal.

1.14. Proposition. Let ¢ be a normal weight on the W*-algebra M and a,beN,,.
Then the mapping '

@o(b*-a): A 5 x > @(b*xa) € C

is a w-continuous linear form on 4.

Proof. Since a,beN,, for any x e.# we have b*xa e NgN,, = M,, hence
@(b*-a) is well defined. If x;4 x in .#*, then a*x,at a*xa in #*, and hence
o(a*x,a) 4 p(a*xa), since @ is normal. It follows that ¢(a*-a) is w-continuous
([L], 5.11) and the general case is obtained using a polarization relation ({L}, 3.21).

1.15. Notes. The main result (Thm. 1.3) of this Section is due to Haagerup [101).
For our exposition we have used [101] and 236]. ) i
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§2. The standard representation

In this Section we prove that every normal semifinite weight is the supremum of
an upward directed family of normal positive forms; also, we review and complete

the results in ([L], Chapter 10) concerning the associated standard representation.

2.1. Let ¢ be a normal weight on the W*.algebra 4.
Using ([L], 2.22) and the normality of ¢ it is easy to see that

) xed*, 9(x) = 0 = p(s(x)) = 0.

If e,fe# are projections and ¢(e) = o(f) = 0, then g(ev f) = ¢(s(e + ) =0.
Thus the family & = {e € Proj (#); ¢(e) = 0} is upward directed. Let e, = sup &.
By the normality of ¢ it follows that ¢(e,) = 0, so that e, is the greatest projection
in .# annihilated by @. The projection s(¢) =1 — ¢ is called the support of .
Using (1) we obtain :

) o(x*x) =0 <> xs(@) =0  (xe.).
In particular, ¢ is faithful (1.1) if and 6hly if s(p) = 1. Also
3 o(x) = o(s(p) xs(@))  (xeAM).

On the other hand, the w-closure N of N, in a w-closed left ideal of .,
hence NY = .#e for some projection e €.4 and My = ete ([L], 3.20, 3.21). The
weight ¢ is called semifinite if e = 1, i.e. if R,, or equivalently, M, is w-dense
in #. In this case there exists an increasing net {#;};e;in F, = M, n#* such that
u; 41 ([L], 3.20, 3.21). _

We abbreviate the words ‘normal semifinite faithful’ to n.s.f. Recall that on
every W*-algebra there exists an n.s.f. weight, while the countably decomposable
W*-algebras are characterized by the existence of a normal faithful positive form
(IL], 10.14, E.5.6). ’

2.2. Theorem. Let ¢ be a normal weight on the W*-algebra M. Then the associated
GNS representation m,: M — B(H,) is normal and non-degenerate. If ¢ is semi-
finite, then A

a1 (@R, is dense in #, (neIN).

If @ is an n.s.f. weight, then &, is a *-isomorphism of M onto the von Neumann
algebra (M) = B(H ,).

Proof. Clearly, m (1) =1, hence 7, is non-degenerate. To show that 7, is
nprmal, i.e. w-continuous, we have to check that we 7, € #, for every @ €B(H )x-
Since the vector forms are total in B(# )y ([L], 1.3) and N, is dense in K, it is

32



20 MODULAR THEORY IN OPERATOR ALGEBRAS

sufficient to do this only for © = w, b with a, b € N,,. In this case we have @a,,. b, °
° p, = @(b* -a) € #,, by Proposition 1.14. Since T, is normal and non-degenerate,
- 7y(#) = B(#,) is a von Neumann algebra ([L), 3.12). :

: If ¢ is semifinite, then there exists an increasing net {u;};¢; in &, = M, AL+
with #;4 1. For ae 9, we have

@ lla, — (), lls = o((a — ua)* (@ — u,0)) < 2[p(a*a) — p(a*u;a)] - 0.

Since u; € §, = Ny and ae N, we have yae NIRN, = M, and from (2) it follows
that (M), is dense in N, hence also in H,. Statement (1) follows now using (2)
repeatedly.

 Assume that ¢ is an n.s.f. weight. If x €. and Ty(x) = 0, then @(xa)*(xa)) =
= [Imy(x) @,llz = O for all ae RN, Since ¢ is faithful it follows that xRN, =0 and
hence x = 0, as ¢ is semifinite. Consequently, r,, is a *-isomorphism.

In the next three sections we study the majorization relation between weights
in terms of the associated GNS representation.

2.3. Proposition. Let ¢, be weights on the C*-algebra of such that < o, i.e.
Y(x) < @(x) for all x € o4 +. There exists a unique operator T' e (), 0 < T’ < 1,
such that '

) Y(b*a) = (T'a,IT',), (a,beMN,).

Proof. Sincey < ¢ wehave N, N, and, foreveryae N, ||a, (2 = Y(a*a) <
< ¢(a*a) = | a, 3. It follows that there exists a unique linear operator S': 8, — H#,,
18"l <1, such that S’a, = a, for all acN,. Then T' = (S*S)2e B(s#,), 0 <
< T' <1 Foreverya be M, and every x € o we have

lp(b*a) = (alp]bq(l)u[l = (S'quls’ ¢).[: = (T’za(plbqa)q» = (T’a:plT’ ¢)q”
(8™ S'74(x) a,lby)y = Y(b*xa) = Y((x*bY*a) = (n,(x) S'*S'a,lb,),,

hence T"2=S"*S" € n,()'. Since n,(£)" is a C*-algebra, we infer that T = (T2 ¢
en, ().

From (1) it follows that the numbers (Ta,lb,), (a,beMN,), are uniquely
determined by § and ¢, and this implies the uniqueness of T".

If ¢ and ¥ are finite and & is unital, then from (1) it follows that
@ Y(x) = (m,(x) T'1,| T'1,), (xe).
24. Corollary. Let ¢ be a weight on the C*-algebra s/ and denote by T, the

set of all T' em () such that there exists some Ar > 0 with the property that
1T'apll, < Az~ ||a| for all a€R,. Then T, is a left ideal of the W*-algebra ()
and: :
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(1) for every positive form f on o with f < ¢ there exist a umque T’ €T 4
0 < T’ <1, and a unique 1 e n,(R3)H, such that '

" fb*a) = (T'a,|T'b,), (a,beR,);
f&)=(0,°m) (x)  (xeMy).

(2) for every T'€ T, 0 < T' < 1, there exist a positive form f < ¢ on oA
and a unique n € n,(RE) A, such that

fb*a) = (T"a,|T'b,), (a,beMR,);
T'a,=n(@)n (aeN,).

Proof. 1t is clear that 7, is a left ideal of = o). Also, if f<opisa posi-
tive form on &, we infer from 2.3. (1) that ||T'a ,,II,, < [IfIM3all (@€ R,), hence
TI

Let {u;};e be a right approximate unit for the left ideal 9, of &/ (L], 3.20).
For T'e 7, and ae M, it follows that

n,(a) T'(u), = T'(au;), — T'a,,.

Thus, if @ eMN, e, 1 <k<n), and (=Y 7(ag) & em(N})H,,
k=1
then

¥, GIT @),

k=1

= Ixm I(C[T'(u,)q,)(, Az 1 Ll

It follows that the mapping { i (&IT'(ar),), -defines a bounded linear form
knl

on n,(N*) A, and consequently, there exists a unique vector n € 7, (93) 5, such
that

(é]T,arp)q) = ({ln‘,(a) '7)¢ (a € mw é e‘#q:),

ie. I'a, = n,(a) n for all ac N,,. . In particular, f= ,° T, is a positive form on &
and f(b*a) = (T' a,|T'b,), for alla,be N,. »

2.5. Corollary. Let ¢ be a normal weight on the W¥*-algebra # and f, a positive
Jorm on M. If fy < @, then there exists a normal positive form f on M such that
S < ¢ and 1M, = folBR,.

Proof. By Corollary 2.4. (1) there exists a vector n € 5, such that fy(x) =
= (0,° T,) (x) for every x.€ M,. Since ¢ is normal, 7, is normal (2.2), so we can
take f W, T,

\
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2.6. By Haagerup’s theorem (1.3) every normal weight ¢ on the W*-algebra 4
is the pointwise supremum of the family &, = {fe#}; f < ¢}; thus ¢ is also
the pointwise supremum of the family {fe.#] ; there exists & > 0 such that (1 +
+ &) f < @}. The next result shows, in particular, that every normal semifinite weight
on a W*-algebra is the pointwise supremum of an upward directed family of normal

positive forms.
Theorem (F. Combes). Let ¢ be a normal semifinite weight on the W*-algebra 4.
Then the family

{fest§; there exists e > 0 such thqt (A +9ef<o}

is upward directed.
We first prove two general results of independent interest.

2.7. Proposition. Let N be a left ideal of the W*-algebra #. Then § = (*N) n
nAtis a face of M+, N = {xeM; x*x€F} and WN = lin §. In particular,
N*N is a facial subalgebra of M.

Proof. Clearly, %t  {x €.#; x*x € §} and, by the polarization relation ([L],

3.21), R’*% = lin §.
Let x €.# be such that x*x < b € §. Since b is self-adjoint, using again the

polarization relation we can find x;, y, €M (1 < k < n) such that

| n n n
— ] L ] * —
x*x <b=Y xfxx — Y, Yo S Y XX = a.
k=1 k=1 k=21

By Proposition 1.4 there exist z,z,€# (1 < k <n) such that x = zal? x, =

= z;a'’? and i z¥z, = s(a). It follows that
k=l .

n n
x = za'? = z( Y, z,:"zk) alr= Yy zzfx, e N.
k=1 k=1

Hence & is a face of &+ and {xe/; x*xe§F} = N.

2.8. Proposition. Let o/ be a C*-algebra and M a facial subalgebra of 4. Then
the set {xeM n o*; ||x|| <1} is upward directed. .

Proof. Let x,yeM n &%, [x <1, |iyll<1, and let u=x(1—x)7,
v=31—y) z=@+v)(1+u+0v) Then u,v,zes*, |z <1 and
x=u(l +u)?, y=v(l + v)™. Since the function f; defined in Section 1.5 is -
operator monotone, we have x < z, y < z. Since M is a facial subalgebra in #,
Mn L+ is a face of L+, We have u <||(1 —x) Y xeM n &+, so that
ueMn L+ and, similarly, veM n L+ and zeM n .
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2.9. Proof of Theorem 2.6. We have to show that for every f,, f, € #, and every
£ > 0 there exists fe F, such that (1 — &) f; <fand 1 — &) f <f. .
Let f;,f. € #, and & > 0, By Corollary 2.4, the set 7, of all the operators
T’ em,(#) such that there exists some Ar- >0 with the property
IT'a,ll, < Arfall  (ae9,)

is a left ideal of the von Neumann algebra n,(/£)’; there exist Ty, T; € 7, such
that 0 < T; <1 and

0)) fi(b*a) = (Tja,\Tiby,), (a,beN,, j=1,2).

By Proposition 2.7 it follows that TNT pisa facial subalgebra of 7,(#)". Using
Proposition 2.8 we obtain an element X’ €(7,)*7,, such that (1 — &) Ij*T; <
< X' <1 (j=1,2). Let T' = (X")42. Using again Proposition 2.7 we see that
2 T'e7,0<T <1 and A=) T*T < T*T" (=12).

By Corollaries 2.4 and 2.5, there exists a normal positive form f < ¢, that is fe #,,
such that ‘ ‘
3) f(b*a) = (T"a,|T'b,), (@a,beNn,).

From (1), (2) and (3) it follows that
@ (1—8fix) <flx) (xeM,j=12).

Since ¢ is semifinite, M, is w-dense in A. As f, f1, f; are w-continuous, it follows
that inequalities (4) remain valid for every xe., ie. 1 —8)f;<f(=12).

2.10. Corollary. Let ¢ be a normal semifinite weight on the W*-algebra M. For
+00

each W-continuous functioﬁ R>tw+> x(t) e M such that S 1x(®)] dt <+ oo .we have

+oo +00 -
qp( S x(t) dt) = S o(x(t)) dt.

—C0 —00

Proof. Since M = (#,)* (L], 1.10; A.16), the properties of the function
t — x(t) show that there exists a unique element x = Sx(t) dte.#+ such that

J&x) = S f(x(2)) dt for all fed,.



24 MODULAR THEORY IN OPERATOR ALGEBRAS

By Theorem 2.6 there exists an increasing net {filier = M} such that ¢ =
=supfi. For each iel we have fi(x)= Sx(®) dt. Since fi(x(1)) 1 o(x(£))
i i ,
(teR), using the classical Beppo-Levi theorem we obtain @(x) = sup fi(x) =
1

= sup Sfi(x(t))dt - Ssgp Sx) de = S«p(x(z» da.

2.11. Using the theorems of Haagerup (1.3) and Combes (2.6) we can now extend,
without any modification, the statement and the proof of the standard respresentation
theorem ([L], 10.14) for weights which are normal in the sense defined in Section 1.3:

Theorem. Let ¢ be an n.s.f. weight on the W*-algebra 4. Then N, n NE, endow-
ed with the x-algebra structure inherited Jrom M and the scalar product of #,,
is a left Hilbert algebra A, = H,, such that A, = A, n (M) = £U,) and

{EIR if there exists §Gﬂ¢ with m,(a)'? = L,
+ o0, otherwise.

¢(a) = { (ae™).

Indeed, from Theorems 1.3 and 2.6 it follows that every normal semifinite
weight is the supremum of an upward directed family of normal positive forms
and it is exactly this definition of normality which is used in the proof of (L],
Thm. 10.14).

Consequently, every n.s.f. weight on a W*-algebra is the natural weight
associated with a left Hilbert algebra ([L}, 10.16). Since these natural weights are
sums of normal positive forms ([L}, 10.18), any n.s.f. weight has the same property.
In Section 5.8 we shall give a simpler proof of this result.

2.12. We shall use the notation and results of (L], Chapter 10) for left Hilbert
algebras and the objects associated with them.

Let ¢ be an n.s.f. weight on the W*-algebra # and A, < i, the associated
left Hilbert algebra (2.11). In this Section we recall some of the notation and results
Jjust used, together with some new results. '

Since the weight ¢ is faithful, the left ideal N, = A will be also considered
as a linear subspace of 3, via the mapping N,2x+>x, €H,.

The closed antilinear operator S = S, In 5, is the closure of the preclosed
antilinear operator :

So: Uy 3 X, > (x,)* = (x*)q, €H,.

For each e 2, one defines a linear operator R; on i, affiliated to =, (),
with domain D(R})) = ¥, =9, n N and '

Rix, =m(x)n (xe N, n N
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If n € D(S*), then R" is preclosed and its closure R, = R0 satisfies RY o Rge, .
The right Hilbert algebra A, = A, is the set

A, = {n € D(S*); R, B(H,)}
with the scalar product of 5, and with the operations

= S*, mita = Rytty (1, M, 12 € A).
We have

n (M) = (W) = {R,; n € A}
If R} (1€s#,) is bounded, then
1) R,,xq, = T,(x) 7 (xeN,).

Indeed, if {y }ier © R, is a norm-bounded net with y; 5 1, then for every x € N,
we have y¥xeR, N ‘R* and, by the deﬁnmon of R},

Rx, = hgn 7,(¥¥) R,,x,, = lim R,7,(y¥) x,
= 11m R"(y,*x),, = hm n¢(y;"x) 1 = m,(x) 1.

Similarly, for each £ €, one defines a linear operator L on i#,, affiliated
to w,(.#), with domain D(L}) = QI' and

L =RE (e

If {eD(S), then L} is preclosed and its closure L; = L" satisfies the relation:
L} o L ™. By Theorem 2.11 we have

€A, = ‘l[;' = {¢ e D(S); L. e B(#,)},
.p(J/) = {Ly; £ U }*.
For { e, we have

) L} is bounded <> there exists x € R, with & = x,;
in this case L; = m,(x).

*! The equality is not always true (cf. [L], C.10.1 and an example by M. Pimsner).
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Indeed, let x € R,. By (1), for every # €U, we have
ngn = R,x, = my(x) 1.

Conversely, assume that L} is bounded. Then L, € m (), hence there exists x € .#
with 7,(x) = L,. Let x = v|x| be the polar decomposition of x in .#. It is easy
to check that

Lﬁ,p("‘)c = v(v*) L{ = 7‘¢(V*x) = (p(lxl) = ngl >0,

Using ([L], 10.8) it follows that 7 ,(v*) & €A, and then, using Theorem 2.11 we.

get p(x*x) = ||z (v*) £l = [1€ll; < -+ oo, hence x € N,,. Since Ly, =m,(x) = Ly,
we conclude that ¢ = x,,. '
Also, note that x € R, x, € D(S,) = x, €Y, i.e.

3 N, n D(S,) =N, n N,

Indeed, the inclusion 9, n N =AU, =N, n D(S,) is obvious. Conversely, if
x €N, and x, € D(S,), it follows from (2) that x, = A’ = A, hence xR, n N

From the polar decomposition S, = J,41* of S, one obtains the modular
operator 4, = SgS, and the canonical conjugation J, = J* = J-1, associated
with U, < 5¢,. Since J,, is antilinear and J,4,J, = 47, it follows that

wa(Av) Jo =]—(A;1)

for every Borel function f. In particular, J,4¥% = 4%J,, (t€ R), and S, = J 42 =
= A7y, S§ = T4, = 42U,

By Tomita’s fundamental theorem (IL], 10.12) we have A4, = A,, A% A =
= (feR), J,o, = U, and |

Ldg.‘.' = A:;LC’A; 4 RJ,& = J,L¢J, (Ee,),
@ | ,

Rag', = A}R,4.%, L_,y,, =JRJ, (neW).
Using the definition of the operators L° R® the validity of (4) can be extended to
arbitrary vectors &, €5#,, replacing the operators L, R by L% R®, respectively.
If the operators L§, R} are preclosed, these identities can be extended to their closures,
i.e. they remain valid in the above form.

From Tomita’s fundamental theorem it follows that the mapping j,: x >

> J my(x*)J, defines a *-antiisomorphism j, of .# onto r,(.#)’ which coincides with
7, on the centre of # ([L], 10.13). We note that

(5) ol J¢7T¢(x)"¢y4p = 75¢(y)J,,,x¢ (x, ye 914,).
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Indeed, using the extension of (4) as well as (1) and (2), we obtain J,m,(x)J,y, =
= J¢Lx¢‘]¢y¢ = RJq,x,,yq» = (V)Xo o

Using the isometric character of J,, it is easy to check that the n.s.f, weight
@' on m,(#) defined by

). PG(3)) = 0(x) (xeA7)

is just the natural weight on n (M) = &(A,) associated with the right Hilbert al-
gebra A, = #, (L], p. 287), i.e.

) @' (RER,) = (l0)y

for every n, { €, such that R,, R; are bounded, in particular for every n, { € .
We note that the standard representation of ,(.#)" associated with the n.s.f. weight
@' is unitarily equivalent to the identity representation n (M) = B(H,) and we
have :

®) Sy = S% Bo= A;‘, o = Jpe
On the other hand, it follows from Tomita’s fundamental theorem that the

relation
1, (08(x)) = Aim,(x)4;*  (xeM,teR)

defines an s*-continuous group {o6f}er of *-automorphisms of .# which act identi-

cally on the centre of . ([L}; 10.13). With an argument similar to that used in prov-
ing (5) we obtain

R(67(x))y = Te(a®(x))n = R, 43x,
for every x € M, and every n € ;. Letting R, 2 1, we conclude
©) (@2(x), = 4itx, (xeM,, teR).
Since 4, = 4,7, for the weight @' on 7, (A) we have

10) o?(Jo(0) =Jjp(02,x) (xe, teR).
, The weight ¢ is invariant with respect to the modular automorphism group

{6?}ter, that is p°of = @ (t€R), and satisfies the KMS condition with respect
to {6¢};er in any two elements x, y € R, n N7, that is, there exists a function f=

= f,,, defined, continuous and bounded on the strip {¢eC; O <Re a < 1},
analytic in the interior of this strip and such that

flit) = ¢(xa?(»), f(1-+it)=@(e?()x) (teR). -
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These properties characterize the modular automorphism group associated with ¢.
More exactly, in ([L], 10.17) one actually proves the following uniqueness
~ statement:

if {0, }ier is a group of *-automorphisms of # with the properties:
a) g0, = ¢ for all teR;

(11) b) there exists a s-subalgebra & < A, such that S,|% = S, and ¢
, .satisfies the KM S condition with respect 1o {6,}scR in any two ele-
ments of & ;

then o, = o for teR.
If the weight ¢ is finite, i.e. if @ e}, then
12) Xp = x in M = [(x}), — Xll, = 0.

Thus, in this case we can replace & in condition b) of (11) by any w-dense *-sub-
algebra of /.

If ¢ is not necessarily finite, we still have the following convergence result

] |
(13) Ny, % X €l (x)y s E ey > xEM,, E=x,.

Indeed, for n € ¥, and { e, wehave LenDp = (REID), = lim (R,,()ci),,l(),, =
= lim (m,(x)10) = (r,(x)11(),, and using (2) we conclude x e N, and ¢ =x,.

Using (13) and the w-compactness of the closed unit ball of .#, we obtain
also the following result: I

if {x;} = R, is a norm-bounded net and if {(x)e} is weakly convergen
to some & € A, then there exists x € N, such that x, S x and X, = €.

(14)

An important technical tool in the standard representation associated with ¢
is the Tomita algebra (L], 10.20, 10.21) 4

T, cUyn U, 0 m¢D(A;).
{3

Recall that ¥, is a left Hilbert subalgebra of 9, equivalent to 2, and J X, =13,
45T, = %,, 43T, = A% (x € €). The identities

A5(Cn) = (458) (45n), ToEm) = U (,8) (& neg,)

are straightforward consequences of (9) and (5).
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The arguments in ([L], 10.21) prove that for £ € #, we have

(15 Ee, ¢ €\ D(U3) and L3L T, < #, for all neZ.

Using this criterion and arguing as in ([L], p. 302), it is easy to obtain the
following approximation result:

Jor every x eR,, there exists a sequence {x,} = T, such that

16
( ) ”xn“ < ||.7C||, Xn 5 x and ”(xn)q> - xq;”a g 0;
in fact we can take
400
x, = njn S e~ "a?(x) dt.

If x e M, n N}, then the approximation is stronger, namely we have also ([L], Cor.
2/10.21) x¥ S x* and ||(x¥), — (x*),ll, = O.

In the next Sections we define the translation of a weight by certain elements
(2.13), consider analytic elements with respect to a weight (2.14—2.16), give some
useful reformulations of the KM S condition (2.17—2.10), study the centralizer of a
weight (2.21,2.22) and use the standard representation in order to introduce a
natural topology on the group of all *-automorphisms (2.23—2.26).

2.13. Proposition. Let ¢ be an n.s.f. weight on the W*-algebra M. If ac T, then
the linear form

x = @(xa)  (resp. x = @(ax))
is defined and w-continuous on the set
(xed; xT, =W} (resp. {xeM; T,x = W})

which contains T, and can therefore be extended to a w-continuous linear form on A,
denoted by ¢(- a)) (resp.@(a-)).

: The sets {p(-a); ac I} and {p(a-); a €T} are norm-dense linear subspaces
of M

Proof Let @ = bc* with b, c € T, and x €.# with x22 < U,. Then xb e, <
< NE, c* e N, hence xa e M, and we have

O - @(xa) = (7,(X)by|44Co)o-
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Indeed,
Q(xbe*) = ((C)l(6*5%),)p = (SpclS,(xb),)y
= (J,dY%c oA} (xb),), = (41 (xD),|4%c,),
= ((xb),|44¢p)p = (n,(x)b,,|A¢c,, »
Similarly,
) p(ax) = (my(x)4,b,lc,),

This proves the first part of the Proposition. Moreover, (1) and (2) give the explicit
form of the extensions ¢(-a) and ¢(a-).
Assume that the linear subspace {¢(-a); a€I}} is not norm-dense in .//1,
Then, by the Hahn-Banach theorem, there exists x e.ll x # 0, such that ¢(xa) =
for all ae&2. Using (1) we infer that (m,(x){In), =0 for all ¢ neT,, hence
74(x) = 0, contradxctmgx # 0.

Note that, conversely,
A3 if0 < aeN, and N% > x > ¢(xa) is w-continuous, then a € M,,.
Indeed, there exists a sequence {e,} of spectral projections of a such that ae, >

> n7e, and e,  s(a). We have e, < n%ae,ac M, sothat N3 >e,41 and hence, by
assumption, sup o(e,a)<-+oo. On the other hand we have e.a=a'%e,a'’? 4 a, hence

¢(a) = sup go(e a) < oo, that is a e M.

2.14. Let ¢ be an n.s.f..weight on the W#*-algebra # and a e 4. :

The element a is called analytic in the vertical strip {o. € €; —& < Rea < &},
(0 < g, &;< +0o0), if there exists an .#-valued function F, defined and w-contmuous
on this strip and analytic in the interior of the strip, such that

F@t)=0%@) (t€R).
In this case, for each x € C, —¢; < Rea < g, we let
02u(@) = F(o).

For a € @€ we shall write a € D(6?) if the element a is analytic in some vertical
strip containing ix. The following statements are easily verified:

) a e D(o?) = a* € D(c%), o2(a*) = o%(a)*;

) a,b € D(6%) = ab € D(6?), 6%(ab) = 0%(a)o2(b).




NORMAL WEIGHTS 31
Using ([L], 9.21), from the relation T, a‘:’(a))AgC = Agnq,(a)f we infer that
@) aeD(o%y), L DA2) = 7,(a) & € D(AT), A5m,(@)E = m,(0%:u(@))Az

or, using ([L], 9.24) and replacing o by —ia,

“@ a e D(6?) = n,(0?(a)) = An,(a)4, " D(4,;%).
It follows that if the element a is analytic in the strip {a € €C; 0 < Rea < }
then the function & > 62;,(a) is norm-continuous and norm-bounded on this strip’
Also, we have
&) ae D(of), oj(a) € D(G") = a € D(0f.p), 62.4(a) = 0Z(c§(0));
6) a € D(6?) = a¥(a) € D(0%,), 62.(0%(a)) = a.

Proposition. Let ¢ be an n.s.f. weight on the W*-algebra #, a el and 4 €(0, -}-00).
The following statements are equivalent:

() o(ax*xa*) < A%p(x*x) for every x e M,

() xeRN,=xa*eN, and |[(xa*),l, < A x,llo;5 -

(ili) @ € D(02;;p) and ||o2;p(@)] < A
If ae D(02;p), then
@) (xa*), = Jomo(02ip(@)px,  (xeN,)
and if moreover ¢¢(aa*) = aa* (t € R), then
8) : (p(o’fljilz(a)*x*xa‘&;,z(a)) = @p(aa*x*x) (xeRN,).

Proof. 1t is clear that (i) < (ii).

(ii) = (iii). From (ii) it follows that there exists T'e %(o,), || Tl < 4, such that
Tx, = (xa%), (xeR,). For x e, we have

Tx, = (xa*), = S,(ax*), = ‘Sq,nq,(a)S,,,xq, = J AP n (@)4 VT x,

so the operator Alr (@) AU is bounded with norm <A. Since 47 ml%[;
= 4,2, using ([L? 9" 24) we infer that a € D(az,,g) and ||o%;p(a@)l < 4.
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(i) = (). Let x €U, = N, nN3. Then (x*), € D(4}®) and, using (3) with
o= 1/2, we get

4 yznq’(a) (X*)dp = ”v(ﬂ iIZ(a))A .lplz(x*)q”

S, (ax*), = JoTe(02i(@)) o So(x*)ps
hence
) (xa*)¢ =J, ] 1[,,(0’“_’_3,2(0))-’ o~ (xe thp)'
It follows that
o(aza*) < 02Dl e2) (zed™),

and this proves (i). Indeed, if ¢(z) = +oco the inequality is obvious and if ¢(z) <
< +oo then x = z12 €U, and we use (9).

Consider now x € R,,. There is a sequence {x,} = U, such that [[(x,);— Xpllp =
— 0. From (ii) it follows that xa* e N, and ||(x,a*), — (xa*),ll, = 0. Thus, (7)
follows from (9) in the limit.

Finally, we prove (8). Let b = 62 ;,(a). Using (1) and (6) it follows that b* €
€ D(62;5) and 02 ;,(b*) = a*. On the other hand, since 69(aa*) = aa* (t € R), itis
obvious that ¢?;.(aa*) = aa*. Using (7) we obtain:

(P(b*x*xb) = “(xb)q)”z = ”Jq)n¢(a*)‘,¢x¢"i

= (xp W, p(aa*)Wx,), = (X,l(xaa*),), = @(aa*x*x).

2.15. An element a €.# such that a € D(¢2) for all x € C is called an entire analytic
element. We put

M2 = {ac./; ais an entire analytic element}.
Using ([L], 10.20, 9.24) we see that
1) aelT,=>acMg and c?(@) €, for all o € C.

From Section 2.14 it follows that .#¢ is an s*-dense *-subalgebra of .#. Moreover,
the sets R, A, M, are all invariant under left or right multiplications by elements
of 42, Note also that

)] acZ, = A%, = (6¢(a)), and L dita, = T,(02(a)).

Indeed, for & € T, we have -
'LA%%& = Rid“a, = Aj;RAq_’i,{ a, = A};'L%A i

_ fim @3¢ = m(o(@)t = g &

s T
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In particular,
3 Riroy = Ry iz, =JoL iz, Ty = J,m,(c2(@)J,.

2.16. Proposmon Let Q be an n.s. f. weight onthe W*-algebra My {xJkex = Wy
a net such that x; —> 1, sup xll <1 and

N o - +w
© 'ak=l/m8e-"a:’(xk)dt (k<K).

—CQ

Then {a;}xe K < I, c M and fbr everyaeC, k e K, we have

V) L | o%(ay) 51,
(3) log(a)ll < exp ((Im a)z)

Proof. Arguing as in ([L], p. 302) we see that a, €%, and

+oo
o2(a) =V S e~ (xy) dr.

-0

Let r =Rea, s=Imoa. Then (1 — 2)®* = ¥s2+(t—r)2—2is(t—r), 50

+00 +-00
lo?(@)l < e* VT/T: S e~ =" |lo(x)ll dr < e [1/n S e " df =,

Let A < .@(.9?’) be reahzed as a von Neumann algebra. For ¢ €. we have

: +00 C
ué ~ ogail < o S_e-"-"’ Jozcl — xpeld
v +oo :
= S e log(l — =)El df -0,

since 11m lo?(1 — x )¢l =0 (te R), using the Lebesgue dommated conver-
gence theorem Consequently, 6?(a) = 1 and, similarly, 0®(a) > 1.

3 - 707 32
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2.17. Proposition. Let ¢ be an n.s.f. weight on the W*-algebra M, x, yeM and
ae@. If xeNEnD(og_), o7-i(x) € N, and y €N, 0 D(c?), 02(y) € N3, then

)] p(xy) = @(02(¥)oZ-i(x))-
Proof. By Proposition 2.16, there exists a net {a,} = T, such that of(a) 51

for all pe C.
Using Properties 2.14.(1), 2.14.(4), 2.14.(6) and 2.15.(3), we obtain:

nnp(ak)y:p = (aky)cp = S«p(y*alt )o = S¢7t¢(y*)stp(ak)¢
= S¢7'C¢(0"_ a("g()’*)))s¢(ak)¢ = quA; ii%(“‘{()’*))d f qu(ak)np
= Jw A;ii+(l’2)n¢(og(y)‘) 4 f-—(m) J¢(ak)¢

=J,4; iiJ'-(lmRA;:'(I/Z)Jq,,(ak ),(a:(y)*)v

= Jod; EHW)J:»%(“:-(i/z)(ak))J.p(UZ()’)*)o
and taking the limit over k it follows that

Vo = Jp45 4+ 0(g2(3)*),.

Similarly, we obtain
(x*)p = Jp4; 1%~ VP02 _i(x)),-
Consequently,

963 = l(x%),)y
= (45 0) A7 <O 2 () o
— (2 ADG20)p)y = POZD)E- ).
In particular, for & = 0, @ = i and & = i/2 we have:
@ 0(17) = 9702 () = P(ETOI) = P(TT(No2ialx),

whenever x, y € T,,. These identities replace for weights the relation ¢ (xy) = o(yx),
which is valid only for traces.

2.18. Another similar result, which (formally) follows from 2.17.(1), is con-
tained in the next statement:

()] acMe, zeM, => ¢(z02(a)) = ¢(62,i(a)z) for all e C. .
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We give a direct proof here. Since z € M, ‘R,,,ﬂtq,, we may assume z = y*x
with x, y e R,. Using Proposition 2.14 we get:

(y*xaq,(a)) = ((xa¢(a))¢|y¢)¢ ( lp(agi/2(aa¢(a)*))', ¢x¢ly¢)¢
= ( n¢(aa+(|/2)(a))*‘] x¢|y¢)¢ (x | ¢(aa+(x/2)(a)) J oY ¢)¢
(x(al‘, ﬂ"<:o(0>‘-’;1/2(0' +1(a))) y tp)(p — ((y (4 +l(a)*)¢! )q) = (p(ag+i(a)y *x)'

As o > (x,|J, n,,(a,H,,z,(a)) Vo) 1S an entire analytic function, bounded
on horizontal stnps it follows that the functions

o > ¢(202(a)) and a > ¢(02(a)2)

are entire analytic and bounded on horizontal strips, for all a € ¢, and all z € n,.
On the other hand, if a e #% and ze M, n.#*, then for all ae@ we havc

9(c2(a) 202(@)*) < ll0Z_ (@) I 9(2),
@
p(e2(a)* z6%(a)) < ||07+ i@ P @(2).

Indeedv, z = x*x with x = z!/2 e N, and using Proposition 2.14 we get
p(og(a)zag(a)*) = ||(xag(a)*),|l;
< Moty(0252(a(@))) J, 12 |Ix¢|lf, = [l67-a(@) |I* ¢(2)

and the inequality is verified in a similar way.

We note that the right hand side of (2) depends just on {Im aj, as the 6?(t € IR)
being *-automorphisms, are isometric.

Properties (1) and (2) characterize the entire analytic functions of the type
a > 62(a) with a €.#%, as we shall see in Theorem 2.19.

The identity (1) is meaningful also for certain other a and z. Indeed, since
M, is contained and w-dense in the set {ze.#; zT, c U, T,z < A,}, using Pro-
posmon 2.13, we infer from (1), taking the 11m1t the followmg statement:

ifaeXl and ze M, 2T, ¢ W, T,z = U, then
(3 ‘
o(zo2(a)) = ¢(02,i(a)z) for all ae .

Under the same conditions as in statement (3), the functions

o > (262(a)) and @ > p(a2(a)z)

23
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are entire analytic and bounded on horizontal strips. Indeed, if a = bc* with b, c€ T,
then, using 2.13. (1) and 2.13.(2), we get

0(202(a)) = (202 (B)02(c)*) = (R,(2)A5bld™* 'c,)y,
9(02(a)z) = 9(a2(B)0%(c)*2) = (no(2)4** byl A%c,)p.

2.19. Theorem (A. Connes). Let ¢ be an n.s.f. weight on the W*-algebra # and con-
sider a function F : € — # such that:

a) for every zeM,n.M* we have F(x)zeM, zF(x) €M, the functions
a > @(F(@)2) and o> @(zF(®)) are entire analytic and ¢(zF(2)) = o(F(o + i)z)

for all ae C;
b) for every § > O there exists & > 0 such that ife € C, [Im a| < d,andzeM,n

nA+, then o(F(x) zF(®)*) < ep(2) and o(F(@)* zF(a)) < ep(2).
- Then F(0) e Mg and F(x) = o2(F(0)) for all a € C.
~Proof. We have to show that Fis an entire analytic function and F(t) = a?(F(0))

for all telR.
By assumption, N, F(2) = N,, RF(0)* < N, M, F(x) = M, Fl@)D, = M,
and, for x e 9N, and a € €, Im | < 0, we have:. L

o [F@)ellp < e[| X llgs [(XF(@*)pllp < &2 (1 Xpllp-

Leta,b, e X,. For every y € € we have ag(ab) = of(a)of(b) € T,T, = NN, =
= M. We define a function G of two complex variables by

@ G(a, B) = @(F(x)og(ab)) = ((65(),|(a5(@)* F(@)*)e)o-

‘By assumption and by the first equation in (2) it follows that o — G(a, p) is an entire
analytic function and

3 _ G(x + i, ) = @(o%(ab) F(2)).

Using (1) and the second equation in (2) it follows that § G(a, B) is also an"en'tire
analytic function. Consequently, G is an entire analytic function in both variables,
by the Hartogs theorem ([271], 2.2.8). On the other hand, using (3) and 2.18.(3),

we obtain . v
G+ i, B + 1) = ¢(o§.41(@D)F(®) = @(F(x)o5(ab)) = G(a, B).

Thus, o+~ g(e) = G(x, @) is an entire analytic function and g(x + i) = g(a).
Using (1) with 6 = 1 and (2), for « € € with |Im ] < 1 we get:

lg@| = [((62(®)),!(c2(@)* F(@)*)o)p

< &2 [|(a2(B)yllp | (02(@) )y llp = 21| 45D, [l 45+ Py,
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Therefore, the entire analytic function g is bounded, and hence constant, by the Liou-
ville theorem. In particular, for € R we have ¢(c2(F(t))ab) = ¢(F(t)o¢(ab)) =
= g(t) = g(0) = @(F(0)ab). Since T, is dense in #,, it follows that F(t) = ¢?(F(0))
for all te

In order to prove that F is an entire analytic function, it is sufficient to show
that F is bounded on each compact subset of €, as the set {¢(-2); z€ X2} is norm-
dense in .#, (2.13) and the functions o > @(F(2)z) (z € X;) are, by assumptlon,
entire analytlc (use the Montel theorem and [L], Lemma 9. 24)

According to (1), the boundedness of F on compact subsets of € will follow
once we establish the following identity (compare with 2.14. (7)):
“@ J i (F@)],a, = (aF(x -+ (i/2))*), (aeZ,, aeC).
Since the assumptions are stable under translations « + o + a,, it is sufficient to

prove (4) only for « = 0.
To this end, consider a, b € T,. For f € C let

£(B) = (m,(FO)A4;#(a*),14; Pb,),,
£:(B) = (T, 457, |(@F(B)*),),-

The function f; is obviously entire analytic and the function f; is entire analytic by

: the assumption b). For ¢ € IR it is easy to check that fl(t) Ja(t), since F(t) = g2 F\ (0))

Hence f; = f;. In particular, f,(i/2) = f3(i/2), that is

(Jomo(F(O)pa,l 7,4, 12p,), = ((aF (/24| Tp4;1%b,) -

' Since b € T, was arbitrary, we obtain (4) for @ = 0.

2.20. The results presented in Section 2.18 involve several variants of the XM S
condition.

For instance, if ac.#% and zeM,, then from 2.18.(1) it follows that the
equation

J@) = ¢(z62:,()) (2 C)

defines an entire analytic function f, bounded on vertical strips, such that

- f(it) = o(zop(a)), f(1 + it) = @(0P(a)z)  (teR).

Also, if a ezi and zed, 2T, c U, T,z = A, then the same conclus1on
is obtained from 2.18.(3).

We record here one more variant of the KM S condition, where the similarity
to, as well as the contrast with, the trace property is very striking.



38 MODULAR THEORY IN OPERATOR ALGEBRAS

Proposition. Let ¢ be ann.s.f. weight on the W*-algebra 4 and let x € R,. There
exists a bounded regular positive Borel measure u on (0, -+00) such that

P(x*a9(x) = Sz" du(h), olex*) = Sz ()  (teR).

Proof. Let {e; = x0,1(4,)}1>0 be the spectral scale of 4, (IL], E. 9.10). Since
x € N,, we obtain a bounded regular positive Borel measure u on (0, --co) setting

du(d) = d(eyx,lxp)es

i.e. p is “the spectral measure associated with 4, and x, € #,”. According to ([L],
E.9.11) we get

P(x*0P(x)) = (4gx,lxp)p =\ A* du(d)

Ot §

and, if x, e N, n N,

Pxx*) = (| = | Syl = oA, 2 = [| L2, |2 = SA du(3).
. ;0 ’

The proof is completed by the remark that x € D(S,) = D(4}?) < S Adu(l) <
‘ V]

<+ o0 and 9, n D(S,) = RN, n NE 2.12. 3)).

2.21. Let ¢ be an n.s.f. weight on the W*-algebra .#. The centralizer of ¢ is the
W*-subalgebra of # defined by

M = {aeM; o?(a) = afor all teR}.
Since m,(c?(a)) = A¥n(a)4;* (t € R), it follows that a ¢ if and only if =,(a)

commutes with 4,, ({L], E.9.20, E.9.23).
Clearly,

acHe =aecME and 0%(a) = a for all a c C.
Also, it follows from statement (7) of 2.14 that

)] acH?, x €N, = xa* €N, and (xa*), = J (@) J X,
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The Pedersen-Takesaki theorem ([L], 10.27) shows that if a €.#, then
) acHe < a,cM,, Ma c M, and p(ax) = o(xa) for x e M,.

The implication (=) follows obviously from 2.15 and 2.18. (1). Conversely, we have
a¥, c A, T,a = A, hence (2.20, 2.18. (3)) for every x € T the function f(0) =
= (p(aaq’ I,‘(x)) is an entire analytic function, bounded on vertical strips and
such that

FAl +it) = ¢(0P(x)a) = ¢(acP(x)) = f(it)  (teR).
By the Liouville theorem it follows that f is constant and hence
o(o?(a)x) = p(ao? (x)) = fi(—it) = f(0) = plax)  (teR).

Since x € T2 was arbitrary, using Proposition 2.13 we infer that 6f(a) = a (te R),
so that a e.#°.

Let v € be a partial isometry such that vv* e #?. We define a normal semi-
finite weight ¢, on ./ by

P,(x) = p(vxv*)  (xeM).
It is easy to check that s(¢,) = v*v. '

In particular, for every projection e € 4 we have defined a subweight ¢, on .ll
with s(p,) =e.

Proposition. Let ¢ be an n.s.f. weight on the W*-algebra M and v € M a partial
isometry such that e = v*veH® and f= vv* e M®. Then: ¢@,= @, <> veHe.

Proof. We assume first that v € .4#¢. By (2) we have ft,v =« N, and R,v* = N,,.
Since N, = {xeM; xv*eN,} and N, = {xeM; xe€ ER,,} and since e = v*v,
v*¥ = ev* it follows that %, =N, and hence M, = M,,. For xeM, =M,
we obtain vxv* eM,, exe e‘.m and since v = ve e.///"’ (p(vxv*) = <p(vexv*) =
= g(exv*v) = qo(exe) "We conclude that ¢, = ¢,.

Conversely, assume that ¢, = @,. For every x €e.#* we have ¢(vxv*)=
= p(exe). Replacing x by v*xv here, we get p(v*xv)=0(fxf). If x € R, then xfe N,
as fe#?; consequently, (p(v*x*xu) = o(fx*xf) < +o0, i.e. xv€N,. Thus, R,v =
<N, and similarly, R,0* = N,,. It follows that vM, = M, and im ve M, Then,
for x € M, we have

P(vx) = o(fox) = @(vxf) = @(vxvv*) = p(exve) = p(xve) = p(xv).

Using (2) we conclude that v e .#°.
In particular, for a unitary element u € .# we have ¢, = ¢ if and only 1f ueHe,

2.22. If ¢ is a normal, semifinite, but not necessarily faithful, weight on the W*-al-
gebra ., then we shall denote by {0¢}:cr the modular automorphism group associ~
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ated with the n.s.f. weight on the W*-algebra s(p).#s(p) defined by the restriction of
- @; also, we shall denote by ¢ and .#¢ the »-subalgebra of all entire analytic elements
and the centralizer of (plS((p).//S((p) respectively. .

The results obtained for n.s.f. weights, in particular the characterization of
the modular automorphism group with the aid of the KM .S condition, Proposition
2.20, etc., can easily be extended to normal semifinite weights.

For instance, if ¢ is a normal semifinite weight on 4 and v €. is a partial
isometry with vv* €%, then we get a new normal semifinite weight ¢, on ., with
s(¢,) = v*v and, using the KM'S condition it follows that

a 079(x) = v*o?(vxv¥)v  (x € v*olv*y, teR),
hence
@ MO = v* M.

In particular, if e e .#? is a projcctién, then |
3 o?e(x) = o?(x) (xcedle, teR),
@ M = eM7e.

We mention also that if ¢ is an n.s.f. weight on .# and ¢ is a *-automorphism
of #, then, using the KM S condition we get

6 6i°=01log?o6 (teR),

6) ’ M9 = ¢TI M?).

2.23. Recall ([L], 10.23) that a von Neumann algebra # < B(oF) is called hyper-
standard if there exists a conjugatlon J:# —> 3 and a self-polar convex cone
B <o with the following properties: a) the mapping x +» Jx*J is a =-antiisomor-
phism of . onto .#’ which acts identically on the centre; b) JE= é for every & €B;
©) [x(UxJ)] P = P for every xe.#.

For any n.s.f. weight ¢ on the W*-algebra .#, the von Neumann algebra
n (M) = B(H,) with the conjugation J, and the self-polar convex cone

' Bo = {me(X)pxp; x€ 2,,} = {m, () xp; x €Wy}

is a hyperstandard form of .# (L}, 10.23). Usmg statement (16) of 2.12 and arguing
as in ([L], 10. 23) -one  shows that

(1) P ,,—{n,,,(x).ﬁpxq,;xeinq,}.
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Also, any two hyperstandard forms of .# are spatially isomorphic by a unique uni-
tary operator which preserves the self-polar convex cones and hence also the con-
jugations ([L], 10.26, 10.23). : .

' Let .# be a W*-algebra and (4, #, J, PB) a hyperstandard form of #. As
usual, we denote by Aut (/) the group of *-automorphisms of .# and by U(s¢)
the group of unitary operators on #. Also, for u € U(#) with udlu* = M, we de-
note by Ad (u) € Aut (#) the #-automorphism defined by [Ad ())(x) = uxu* (x € M).

It follows that there exists an injective group homomorphism L

Aut (M) > 6 > u, € U(H),
uniquely determined, such that ¢ = Ad(y,) and u,(P) =P (o € Aut (#)). Clearly,
' {u,; o€ dut (M)} = {ue UH); ublu* =M, u(P) =P}

The mapping ¢ > u, is called the canonical implementation of Aut (A).

On the linear space 4,,(.#) of all w-continuous linear mappings T .# — # we
may consider several locally convex topologies, for instance:

the n-topology, defined by the seminorms T +> || x|},

the p-topology, defined by the seminorms T+ |p(Tx)|, -

the u-topology, defined by the seminorms T+ ||@° T,
where x €.# and ¢ €.4#,. Clearly, the u-topology and the n-topology are stronger
than the p-topology.

By restriction, we obtain the topologies n, p and u on Aut (A< B.(A).

On the other hand, on U(s#) the topologies wo, so, so*, w, s, s*, and also the
Mackey topologies 7, 7,, all coincide and, with this topology, U(#) is a topological
grouo (on the unit ball of Z(s#) the Mackey topology 7, coincides with the
s*-topology by the theorem of Akemann ([1]; [3]; [236], Cor. 8.17)).

If o is separable, then U(#) with the two-sided uniform structure associated
with this topology is a complete separable metric space, i.e. a polish group.

Theorem (U. Haagerup). The canonical implementation ¢ v~ u, of Aut (A) is an
isomorphism of topological groups between Aut (M) with the u-topology and a closed
subgroup of U().

Proof. Let o € Aut (H) and let {o;} be a net in Aut (#); also let u = u, € U(K)
and u; = u,, € U(K). We have ¢; = o in Aut (#) if and only if ||@°o; — @°a|—> 0
for every @ €4, i.e. (L], 10.25) if and only if ||@; - 6;—w, o [|>0 for every EeP,
that is, if and only if llw,,;f,: — “’u*c” — 0 for every ¢e®P. According to ([L],
Prop. 10.24), this means that ||u*¢ — u*£|| — O for every & e P and, since S is the

linear span of B ([L], 10.23), it follows that u; = u.

Thus, the canonical implementation is a homeomorphism of Aut (#), with
the u-topology, onto the set {u € U(H): utlu* = M, u(P) = B}, which is clearly a
closed subgroup of U(s#). In particular, Aut(#) with the u-topology is a topological

group.
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In view of the above Theorem, we shall consider the u-topology as the natural
topology on Aut (#). In general, the u-topology does not coincide either with the p-
topology, or with the n-topology. For instance, if .# is the von Neumann algebra
2°([0,1]) = #(£*([0,1])), then the u-topology is not comparable with the n-topo-
logy and hence both of them are strictly stronger than the p-topology ([102], 3.14).

Note that if the W*-algebra # has a separable predual (i.e. if F# is separable),
then Aut (M) with the u-topology is a polish group.

Finally, we note that if {0,},50 < Aut (#) is a sequence such that o, % 0o, then,

Jor every compact set K < U(#), we have

XOES oo(u) uniformly for uecKk.

Clearly, it is sufficient to show that ¢,(u) > o4(x) uniformly for ue K. Let ¢ €4,
and £ > 0 be fixed. The set {¢° 6,; n > 0} = 4, is norm-compact and hence also
o(M 4, #)-compact. Since the topology on U() is equal, in particular, to the topo-
logy induced by the Mackey topology 7, on .#, it follows that the function
u > sup {|p(s,()|; n > 0} is continuous on U(). Thus, there exist uy, ..., v,k
such that inf {|o(o,(u — u)|; 1 <j<m} <ef3 forall ueK and all n >0. On
the other hand, as g, % gy, there exists n, > 1 such that l9(ox(u))) — p(ao(u))| < &/3
for all 1 <j < m and all n > n,. It follows that |p(a,(1)) — @(oo(1))| < & for all
ueKand all n > n,.

2.24. Let o be an action of the locally compact group G on the W*-algebra .#, that
is a group homomorphism
0:G - Aut (H).

In Section 13.5 we prove that the homomorphism ¢ is p-continuous if and only if
it is u-continuous; in this case we say that o is a continuous action.
The following result is an obvious consequence of Theorem 2.23:

Corollary. Let a: G — Aut () be a continuous action of the locally compact group G
on the W*-algebra M, let (M, 3¢, J, B) be a hyperstandard form of # and denote by
u(g) = u,, (g € G) the canonical implementation. Then

G g u(g) e U(K)

is an so-continuous unitary representation and o, = Ad (u(g)), (g € G).
2.25. We now show that in certain cases the u-topology coincides with the p-topology.
Let ¢ be an n.s.f. weight on the W*-algebra .# and let
Aut (M) = {0 € Aut (M); ¢° 0 = @}.
If o € Aut (M), then the canonical implementation of ¢ in the hyperstandard form
(m (M), H# o, J,, B,) has an explicit form, namely
) U, = (0@), (acM,).
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Indeed, for ae N, we have (e (), llz = @(a(a*a)) = p(a*a) = lla,llz and hence
(1) defines a unitary operator u, € U(#,). For every xe.#, acN,, we have
U m(X)uta, = um,(x)(074(a)), = u,(xs7(a)), = 7,(6(x))a,. On the other hand, for
aeA, we have u,S,a,= uya*), = (o(a*), = (6(@*), = S,(0(a), = Sty
hence u, commutes with S,. Consequently, #, commutes with J, and with 4,,. More-
over, we have u,m(a)J,a, = m(0(@)u.J,a, = n(c(@) U0, = 7, (a(@))J (0(a)),
hence u,(PB,) = B, by 2.23. (1). We conclude that u, is the canonical implement-
ation of o.

Corollary. Let ¢ be an n.s.f. weight on the W*-algebra J#. Then the p-topology
coincides with the u-topology on the u-closed subgroup Aut, (M) of Aut (H).

Proof. Let 6, > o in Aut,(H). Let & = a, € R, and 1 = Ry, with 75, 7, € .
Using (1) we obtain: '

gl = (C@DIRET, = (R, (G@)ol12)y
= (@ (0@l > (To@)lns)y

= (Ry(0(a)), 1) = ((0(@))g| Rrsttz) = (toElt),-

It follows that U, 2 u and hence, by Theorem 2.23, o, 5 oin Aut(M).

In particular, if / is a factor of type I, or a factor of type I1,, then the p-topo-
logy coincides with the u-topology on Aut (), because in these cases every #-auto-
morphism preserves the trace on ..

2.26. Finally we consider the particular case of a von Neumann algebra .# = #(#)
with a cyclic and separating vector ¢ € #. Then ¢ = wg|# is a faithful normal
positive on .# and we can identify #, with # via the mapping x,, — xE(xeMH);
let S=S,, J=J,, 4 = 4,. We have the convex cones ([L], 10.8)

@
Ps= {x&; x é-//l*'}s P+ = {x'&; x' € M}
polar to one another, and the selfpolar convex cone ([L], 10.23)

P = AVIP = A VIPss = {xIxJE; x € M},
Proposition. P = {xJxJE; xe M*}.

Proof. 1t is sufficient to show that for every x €.#* there exists a sequence
{x,} = #* such that x,Jx,J¢ — AY%x{. Moreover, we may assume that x is inver-
tible. In this case both & and x¥2¢ are cyclic and separating vectors for #' < Z().
By the uniqueness of the hyperstandard form of a von Neumann algebra, there
exists a unitary operator u € (.#')’ = 4 such that ux'/2{ e P.
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Thus, y = uxV2e /4 and y¢eP. If

+ 00

yo = Vilm S e o?0)dt  (melN),

—Q0

then (2.12.(16)) 2 3y, > yand (L], 10.23. (6))

»é = YTz S et fityEdte®  (nelN).

-0

Let x, = 0f(y,) = 4 V4y, 4% el (neIN). Then AVix,¢ =y feP, that is,
x,$ € AP < P, and hence x, > 0. In particular x, = x¥ = o{,(,)* = 0%,,0'%),
by 2.14.(1), and using this identity it is easy to check that

Xl = AUAYEy,E  AVAHYE = AR .

2,27, Notes. Theorem 2.6 and the technical results (2.3, 2.4) used for its proof are due to Combes
[30]. Proposition 2.15 is due to Connes [38). Proposition 2.16 and the various forms of the
KMS condition (2.17, 2.18, 2.20) are due to Pedersen and Takesaki [187] and Connes {49].
Theorem 2.19 is due to Connes [36]. The canonical implementation of s-automorphisms (2.23—
2.25)is explicitly stated by Haagerup {102], having been obtained also by Araki [7]and Connes
[37). Proposition 2.26 is due to Connes [37].

For our exposition we have used [30], [31], [32], [36], [37], [38], [49], [61], (65],
[70], [102], [184], [233], [236], [244], and [245].

In the framework of quantum field theory, Bisognano and Wichmann [13] explicitly com-
puted the modular operator and the canonical conjugation for some von Neumann algebras
associated with a hermitian scalar field. Recent developments concerning geometric aspects of
standard representations are due to Haagerup and Skau (see [216]). Other related references
are [107} and [263].

§3. The balanced weight

This Section contains a detailed study , with applications, of the balanced weight,
which is the main technical idea in the proof of the Connes cocycle theorem.

3.1. Let # be a W*-algebra, ¢ an n.s.f. weight on .# and  a normal semifinite
(but not necessarily faithful) weight on .#. :

We define the balanced weight 0 = 0(p, ) on the W*-algebra A" = Mat,(#),
of all 2 X 2 matrices over .#, by ’ i

o5 ) =eem e (( ewr).

Xo1  Xag Xoy  Xge

e it i i i
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It is easy to check that 6 is a normal weight on #". We have

(x“ xlz) €My <> Xy, X €N, and Xy, X €Ny,
Xa1  Xoo
hence
% *
0 m=(o7 o) W=(or a)
n, *, ng o
* L]
%) monm*=(m¢”m" gQ*””m“’);
RN,ANE N, 0N
%* * *
o) M, = NIR, = (%m,, sn,,,m) — ("mw an,m).
wm, ow,)  (mgm, m,
In particular, 6 is semifinite. Also -
‘ ) o\
@ s(0) = ( )
. 0 s@

In the proof of the Connes cocycle theorem ([L], 10.28) we have already con-
sidered the case when both ¢ and ¥ are faithful. Taking into account the remarks
made in Section 2.22, we can extend the Connes theorem to the more general case
considered here.

Using Proposition 2.21 we obtain

((1) s(l//()))’ (é -—s(n//(;) eN® and hence ((1) g), (g s(l;;)e#".

Using, as in ({L], 10.28), the KMS condition, we infer that

o (i (Y wen
® (o )))=0 we) O s
Since (g(!/’) g) €s(0)A47s(6) and since |

(o 3)“‘9((:(-#) g))=°8(((1> g)(g(w) g))=°’ |
"?((:(w) g))(g s(w(;)z"‘o ((g(w) g)(g s(w(;))=°’
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it follows that there exists u, € .# such that

“(w o)) =, of

Thus, we get an s*-continuous mapping R 3 t > u, € 4 such that

™ up = s@) = uo, ufu, = of(s()),
@® Upss = U,07(Uy),

®) u, = o%(u?),

(10) ot (x) = u o () (x esE)AsW)).

The arguments for checking (7), (8) and (10) are similar to those given in ([L], 10.28)
and (9) is an easy consequence of (7) and (8).

For X = [x;Je#” we have Xes(8)A4s(0) if and only if x;, = x,8(¥),
Xg1 = S(Y)Xz1, Xp2 = S(Y)X22 = Xp,S(¥); in this case

(11 of ((" x)) _ (vi”(xu) o? (xio)ul )

Xo1  Xao u,07 (x2) o7 (x22)

On the other hand, the weight 0 satisfies the KMS condition with respect

to {67} ,er. In order to avoid notational complications we assume that s(}) = 1.

Then, for any X, Y € M|y n NF there exists a function F defined, continuous and

bounded on the strip {« € €; 0 < Rea < 1}, analytic in the interior of this strip,

and such that F(it) = 0(Xo?(Y)), F(1 + it) = 6(c?(Y)X) for all ¢ € R. In particular,
0 x

if X— (0 °) ¥= (0 -g withx € R, n RE, y € R, n N, then FGir)=o(xua?(),
y
F(1 + it) = Y(c¥(y)u,x) for all teR.
We have thus proved the existence part of the following

Theorem. (A. Connes). Let .# be a W*-algebra, <p an n.s.f. weight on # and
a normal semifinite weight on M. There exists an s*-continuous mapping R 5t 1>
> u, € M, uniquely determined, such that:

) o uat = sW) = uy, u¥u, = a?(s(Y))
2) Uprs = U,00(u,)
3) U, = 0%, (u¥)

N or (x) = uof(uft  (x es()As))

T T e < i s — e
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5) for every x=xs(0)eN,nNE and every y=sW)ye N, NNE  there
exists a function F defined, continuous and bounded on the strip {o. € €;0 < Rea < 1},
analytic in the interior of this strip, such that F(it) = ¢(xu,6f(y)), F(1 + it) =
= Y(of(y)u,x) for all te R.

To prove the uniqueness part of the Theorem, we consider an s*-continuous
mapping [R 5 ¢ +> v, €.# with the same properties and we assume that s(y) = 1.
For each t € R we define a mapping o,: 4" - 4 by putting:

. ((xn x12)) _ (Uy(xn) v;"‘a,'"(xu))
. = .
X321 Xag 0,07 (X21) o7 (xz0)
Conditions 1)—4) insure that {¢,},egr iS an s*-continuous one-parameter

group of x-automorphisms of .#° which preserve the weight 6.
For X =[x;1eRynNF and Y =[y,;;]eNyn NF we have

0Xo (V) = p(ru0? () + @ (xsgtio? ()
+ Yot o (712)) + V(e (720)),

0@ (1)X) = 007 uen) + V(6T Oaduir)
+ (oGt + Yo ).

Using the KMS condition satisfied by ¢ and ¥, we find two function F,, Fs
defined, continuous and bounded on the strip {# e €C; 0 < Rea < 1}, analytic
in the interior of this strip, such that ,

Fiy(it) = (x110fO010)),  Fu(1 + it) = (6 (y11)x11)s |
Fooit) = Y207 (722)),  Faa(1 - it) = Y(0¥ (Vag)x2s)-

By condition 5), there exist two functions Fy,, G,y defined, continuous and bounded
on the strip {« € €; 0 < Re a < 1}, analytic in the interior of this strip, such that:

Fi(it) = @(r1u,08(yn)),  Fio(1 + it) = Y(of (Ve X1o),
Gy(it) = o(xhu,of (), Gu(l -+ it) = Y(o¥ (uxd).

Then the function F, (@) = G, (— & + 1) satisfies the equalities:

Fulit) = Gt 7 1) = Vol ORamd) = Yt o (o),

Fy(1 + it) = Gy(it) = @(xd1u,67 (¥}y)) = @(0f (10)u xz)-
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Putting F = Fy; + Fy» + Fy + Fp, it follows that
F(it) = 0(Xo (Y)). F(1 4 it) = 0(c(Y)X) (teR).

‘We have proved that 0 satisfies the KMS condition with respect to {o,},eg. Conse-
quently, ¢, = ¢? and hence v, = u, for all € R.

The mapping R >t~ u, €.#, uniquely determined by the above theorem,
is called the Connes cocycle associated with the normal semifinite weight ¥ with
respect to the n.s.f. weight ¢, and is denoted by [Dy: Dg], that is

[Dy:Dgl,=u, (teR).

3.2. Let # be a W*-algebra. Let U(#) = {ueM; u*u=uu* =1}, Int(#H) =
= {Ad(u); ue U(H)} = Aut (#). Then Int (#) is 2 normal subgroup of Aut (#):

o° Ad(u)° 071 = Ad(oc(w)) (o € Aut (M), u c U(A)).

Let Out (M) = Aut (M)[Int(#) and let 04: Aut (M) — Out () be the canonical
quotient mapping.

An obvious and important consequence of Theorem 3.1 is that the mapping
.42 IR = Out (#) defined by J.4(t) = o.(0f), (t€R), is a group homomorphism,
independent of the choice of the n.s.f. weight ¢ on 4. The mapping 64: R —
- Out (#) is called the modular homomorphism of M.

Using 2.22.(5) we see that 54(IR) is contained in the centre of the group
Out (M).

3.3. Let ¢4, @s,. . -, @, be n.s.f. weights on the W*-algebra /.
The equation

00x,) = kz"; o) (xiy) € Mat,(4))
2]

defines an n.s.f. weight 6 on the W*-algebra 4" = Mat, (.#) of n X n matrices over 4.
For each i,je{l,...,n} we denote by e;e Mat,(C) the matrix e;; =
== [5hi6kj]1<h,k<n' Then {eu}1<,'j<,, is a System of matrix unitS in Mat,, (c),
that is ‘
el = e, eyen = Open A <ijhk<n),

and the mapping .
) Mat,, (.//[)5 [x”] > Z xu ® e,j /4 ® Mat,, (¢) .
ij
is a #-isomorphism. R v
Using, as in Section 3.1, Proposition 2.21, we see that all elements of the
form ), 41 ® e are contained in the centralizer of 6, hence
17

1 ® ey €N? (1 <k <n).
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Proposition. For every i,j,ke{l,...,n} and every x e # we have:
¢y ol(x ® ey) = oTH(x) ® ey (teR).
2 o/(1 ® e;)) = [Do;: Doy, ® ey; (teR).

Proof. Equation (1) is easily proved using the KMS condition. To prove (2)
we may assume, for instance, that 7 =2 and j = 1. By the preceding remarks,
the projection e =.1 ® (ey; + e,,) belongs to A%, so that we may consider the n.s.f.
weight 0, on the W*-algebra ef’e (see 2.21). Itis clear that e./"e can be identified
with the W*-algebra-Mat, (/) in such a way that 6, corresponds to the balanced
weight 6(¢p,, ¢,). Using this identification, with 2.22.(3) and the definition of the

Connes cocycle we obtain: ~

0 0
ol(1 ® e3) = O'fe(l ® es1) = O'f(%%) ((1 0))

0 0 :
= = [D@,: D ®e
([D(l’z:D(Pﬂg 0) [Do.: Do,], | 21

3.4. Corollary. Let. 01, @2 be n.s.f. weights on the W*-algebra 4. Then:

it
[Dg,: D@y), = [Dpo: Dot (1< R).
Proof. This follows from Proposition 3.3, with n =2, as e; = e.

3.5. Corollary. Let ¢y, @3, @5 be n.s.f. weights on the W*-algebra #. Then the
Jollowing “‘chain rule” holds:

[Doy: Dol = [Doy: Dol Doy: Dogl,  (teR).

Proof. This fogloWs from Proposition 3.3, with n = 3, as e;3 = e12€,3.

3.6. Corollary. Let ¢ be an n.s.f. weight on the W*-algebra # and let Y., , be
normal semifinite weights on M. Then:

- [Dy1: Do) = [Dyry: Dl <> Yy = 5.

Proof. We remark first that s(Y,) = [Dy;: D]y = [Dyro: Do)y = s(z). Thus,
using a slight extension of Corollary 3.5, we get: .

v [Dy,: DY) [DYy: Dol = [Dyrs: Do), (teR).
If [Dy,: D] = [Dy,: Do), it follows that [Dy,: Dyy], =1 for all 2 R.
Consequently, it is enough to show that if ¢ and ¥ are n.s.f. weights on .4
and [Dy: D] =1, then ¥ = ¢. Let 0 = 6(¢p, ) be the balanced weight on

4 — 707
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Also, for x e.# and € IR we have
3 af*?(x*) = (o ¥(x))*,
and, if tis a third n.s.f. weight on ., then for x, y €A and t € R we have

@ ot *(xy) = o¥"*(x)o7 °(),

using the chain rule (3.5).
The one-parameter group {o¥"?}, < satisfies also the following KM S condition :

Jor every x e R, 0 NG and every ye N, n Ny there exists a function F

©) defined, continuous and bounded on the strip {fee€C; 0<Reax1},
analytic in the interior of this strip and such that E(it) = p(xaf"°()),
F(l +it) =y (6 °(y) x) for all teR.

Properties (2) and (5), together with (4) with 7 = ¢ and with 7 = ¥, determine
uniquely the group {6}’ ®},cg. The proof is similar to the proof of Theorem 3.1.

3.11. Let ¢, be n.s.f. weights on the W*-algebra .# and let 0 = 0(p, ¥), the
balanced weight on the W*-algebra .#"=Mat, (). Using 3.1.(1) and the fact that,
for X = [x,j]eJV‘, we have

1 Xoll§ = 11 GeadplI2 + 1l 12y I, + 11 (xaa)p 12 + [ Grao) 12

it follows that the mapping

(xn)q»
(xn x1z) > (xm)y;
Xa1  Xa2 (le)q,
(xzz)w

determines an identification of Hilbert spaces:
¢)) Hog=H,DHy DH,DH,.

Since M, is densely imbedded in #,, from 3.1.(3) we infer that
Q) NN, is densely imbedded in H#,, .

Consider the antilinear operator Sy, , from #, to #,, defined by:

Sy, o(xp) = (x*), for x, € D(S), o) =R, 0Ny < #,.
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It is casy to check that
(Sp.0)t =S5,

On the other hand, we have the preclosed antilinear operator S3 in o, defined by
the n.s.f. weight 0 as in Section 2.12. With respect to the decomposition (1) of o,

into a direct sum we have
D(S3) = D(Sg) @ D(S3,,) ® D(SY,,) ® D(SY)
and
Sy 0 0 0
50— 0 0 S,,",,(, 0
o s, O 0
0 0 0 s°

v

Since S§ is preclosed, it follows that

o
Sy, o is preclosed.

Indeed, if D(S,,,)5 ¢, — 0 and 89, ¢, — 5, then D(S9) 5 (0, 0, &,,0) - (0,0,0,0)
and §3(0,0, &, 0) = (0, S}, ,&,, 0, 0) — (0, 7,0,0), hence 5 = 0.
Let Sy, , be the closure of SJ . With a similar argument we get

) 0 0 s, 0

In particular,

@ D(Sg) = D(Sy) @ D(S,,y) ® D(Sy,,) ® D(S,),
®) | Svb = So.y-
Now, 4,,, = S§,,S,,, is a linear positive self-adjoint operator in #, and

the polar decomposition of S, ,, is

— 1/2
S-Ir.w - J,,,, tpAwp

with J,, ,: 3¢, — #, a surjective isometric antilinear operator. Since

—_ Q-1 __ 1231 . 7-1 —-1/27-1
S¢»w - Swp — (Jw, ¢Aw/m 1= J.,,,¢(J.p, ¢A wm/ pr ]
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it follows from the uniqueness of the polar decomposition that
) : J:-o':";.}r:‘lv-*’
) A;-lqv = Jo,ydo. vl 0 - |

It is easy to check that
S 0 0 o0
0 o S}, O

® S¢ = 1
0 s, 0 O !
0o o o s :
4, 0 0 0 Jj, 0 0 0
© 4,=|0 Qv O of ,_|0 0 Ju
0 0 4,, O 0 J,, 0 0
0 0 0 4, o 0 o0 J,

For X = [x,]] € &', the operator m,(X) € B(#) is defined by n(X)Y, =(XY),
for all Y = [y;]eN,. It follows that

Tp(X11) 0 7t¢(x12) 0
(10) %y ( (xn x12)) — 0 Ty(X11) 0 7‘.&(-"12)
X1 Xaa Tp(X21) 0 To(X22) 0
0 7‘4«("21) 0 “w(xzz)
|
i
In particular, for X = (0 0 we have ¢f/(X) = (0 0) and ‘
x 0). o ?(x) O
o o0 00
0 0 00 '
7rl?(A,) = ’
_ Tx) 0 0 O
0 Ty(x) 0 0

so that, as my(6?(X)) = Aiiny(X)A7 ¥, we get
an ﬁq.(vai" "2(x)) = 4Y, m ()4, ",

(12) | n (0¥ ?(x)) = Amy(x)4, 5, -
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3.12. Let ¢, { be n.s.f. weights on the W*-algebra .#. For the s*-continuous one-
parameter group {0}’ ?},cr of isometries of .# we can develop the same theory
of analytic extensions as in the case { = ¢, considered in Section 2.14. Thus,
for a,b € # and « € € with Re « > 0, we shall write

acD(E"?) and o¥2(a) =10

if there exists an ./-valued function F, defined and w-continuous on the strip
{f € €; 0 < Re f < Rea}, analytic in the interior of this strip, such that

F(it) = o¥?(@) and F(x) =b.

It follows froin 3.11.(11) and 3.11.(12) by analytic continuation that for every ’
acD(c¥?) we have

0 R0 *(@) = 45, ;7o(@) 45 D(AG);
@ my(o¥*(@) = A3r (DA75ID(AZE)

Thus if a € D(¢¥¢), the function f > ¢¥%(a) is norm-continuous and norm-
bounded on the strip { €; 0 < Re f < Rea}. '
On the other hand, using 3.10.(1) we see that

ac D(c?®) and o¥?(a) = b «

0 0 e D(a'g(¢r 'I’)) and 0-2(‘?' v) ((0 0 . (0 0
a 0 ‘ a 0 b 0

(€)

so that, in view of the results of Section 2.14, we can obtain several properties of ¥ ¢
in a very simple way.
For instance, statement 2.14.(1), applied to the balanced weight, gives

C)) a € D(c¥®) = a* € D(c%'¥) and o2 ¥(a*) = o¥ ?(a)*.

Note that the same re‘sult can be obtained from (3.10.(3) by analytic continuation.
Also, by applying Proposition 2.14 to the balanced weight 6(¢, ) and the

element 0), and using the results in Section 3.11, we obtain the following
a

Proposition. Let ¢, \ be n.s.f. weights on the W*-algebra M, a € # and A € (0, +00).
The following statements are equivalent:
(D) Y(ax*xa*) < 22 o(x*x) for all xe M ;
(i) x €N, = xa* e N, and [|(xa*),ll, < AUlx,lp;
(i) a e D(p¥2) and |jo*S@)| < A.
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If a€ D(c%},), then
5) (xa*)y = Jy, p7a (62 (@)T X, (xeN,),

and if moreover aa* € MY, then
© (6% h(@)*y*yof(@) = Y(aa*y*y) (¥ eMy).

3.13. In particular, taking 4 = 1 and @ = 1 in Proposition 3.12, we obtain:

Corollary. Let ¢,y be n.s.f. weights on the W*-algebra 4. The following state-
ments are equivalent:

Dy <eo;

(i) there exists an M-valued function F, defined and w-continuous on the
strip {xeC; 0 < Rea < 1/2}, analytic in the interior of this strip, such that
F(it) = [Dy: Dg),, (t€ R), and || F(1/2)|} < 1.

If W < @ there exists an element a (=F(1/2)*) in # with ||al|<1, such that

VU(x*x) = p(ax*xa*) (xeM).

Indeed, since o¥ ?(1) = [Dy: Do],, (te[R), we can take F(x) = o%;¢(1),
(e @,0 < Rea < 1/2). _

We remark that it follows from 3.1.(8), by analytic continuation, that
F(it + o) = [Dy: Dg),0?(F()), hence || Fir)[| < 1, | FGt + (1/2)| <1 for all te R
and the Phragmen-Lindeldf theorem implies that ||F(®)|| <1 for all aeC,
0 <Rea < 1/2. ‘

3.14. Since F(1/2) = o¥,5(1), it follows from 3.12.(4) that F(1/2)* = ¢{3¥(1) and
hence (see 2.14.(6))

F(1/2)* ep(at-i,;) and o®%(F(1/2)*) = 1.

Corollary. Let ¢, be n.s.f. weights on the W*-algebra M. The following state-
ments are equivalent:

) Y(x*x) = p(x*x) for every xeR,;

(i) there “exists an M-valued function F, defined and w-continuous on the
strip {ae €C; 0 < Rea < 1/2}, analytic in the interior of this strip, such that
F(it) = [Dy: D], (t€R), and F(1/2)*F(1/2) = 1. ' :

Proof. We shall use the notation of Section 3.13.

(i) = (i). We have a = F(1/2)* € D(6%{%;), 6%}3(a) = 1 and, by (ii), aa* = 1.
Thus, (i) follows from 3.12.(6) with ¥ instead of ¢, and ¢ instead of Y.

. (i) = (i). From (i) it follows that § < ¢, so that the function F of Corollary
3.13 does exist and || F(1/2)]| < 1. Let '

x = (xu x12) e, - «, 0 N,

Xo1  Xp2
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00 1 0

2.21.(1), we get
0 0 2
oma ((F(l/z). 0)) Yoo

0
= ”(xe;l)o“% = O(eyx*xez)

10 0 . .
and e; = ( ), ey = (0 ) € /" = Mat,(#). Using Proposition 2.14 and

= || Joms(0 o—i/z(ezl))"oxo 115

= Y(xfiXy + XFXen) = @(xFix1y + X31%21)
= O(eyx*xey) = Il(xeu)ollﬁ = ”Jaﬂo(eu)-’axeug-

Taking the limit it follows that

" (C)m/z) g))f

for all ¢ es#,. Consequently, (;(1/2). g) is a partial isometry with initial support

equal to e, hence F(1/2)*F(1/2) = 1.

3.15. The next result is both an extension of the Pedersen-Takesaki theorem concern-
ing the centralizer (2.21.(2)), and an algebraic characterization of the operator 6%;° .

Theorem. Let ¢, be n.s.f. weights on the W*-algebra M and a,beM. The
Jollowing statements are equivalent: :

(i) ae D(c¥®) and c¥#(a) = b;

@) aftt <= Ry, Nb = N, and Y(ax) = o(xb) for all x € RTN,.

Proof. Taking into account remark 3.12.(3), 3.1.(1) and the definition of

the balanced weight, we see that it is sufficient to consider only the case Y = ¢.
(i) = (ii). If a € D(6%;) and 02(a) = b, then (2.14) a€D(c%p), b€ D(of)

and 02 ;,5(a) = 6¥5(b). Since a € D(62;,) and b* € D(62y;), it follows that (2.14)
Na* <« N, ie. aRy < N, and N,b <= N, . Moreover, for every x € R, we have

= || meler)E llo

)

plax*x) = (x,l(xa*)e),
== (x,le(pnq,(a?;i,z(a))Jq,xq,)q, = (x¢qu,n¢(a}’}2(b))J¢x¢)¢
= (annqa(o-q—,-ilz(b*))J¢x¢|x¢)¢ = ((xb)tp‘xtp o = (p(x*xb).

| (ii) = (i). Let x, y € T,. Assuming (ii), it follows from 2.13.(1), 2.13.(2) and
2.15.(2) that
(@45 %p14,7,)p = (e (@) (07 (X))el45Y0)e

= @(ac? (X)y*) = (o7 (x)y*D)
= (nq)(b)Aq:(a?(x))tp'y ¢)¢ = (n¢(b)x¢ly¢)¢ .
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Consequently, m,(a)4,'x, € D(4,) and d,my(@)A ] x, = m(b)x,, for all x,e%,.
By ([L], 9.24) it follows that

a > Fla) = Ain(a)4,% € B(H,)
is a function defined and w-continuous on the strip {ae C;0 < Rea < 1}, analytic
in the interior of this strip, such that F(it) = n(0f(a)) e (), F(1 + it) =

= m,(0f(b)) € m(#) for all ¢ e [R. We conclude that F(a) € n () for all « € € with
0 < Rex <1, and hence ae D(0?;) and ¢2;(a) = b.

In particular, for v € U(#) and 1€ (0, + c0) we have

Q) o ®(v) = 1'v, (teR) = Y = Ao,

as both sides are equivalent to o*2(v) = Av.

3.16. Let ¢, ¥ be n.s.f. weights on the W*-algebra .#. We consider the standard
representations m,: .4 — B(H,), ny: M > B(H,) the self-polar convex cones
B = Hy, By < Hy, and the canonical conjugations Jp:p = H,, Jo: oy >,
(2.23). Let 0 = 6(¢, ¥) be the balanced weight.

By ([L], 10.26) there exists a unitary operator Ve, o: ¥y = 'y, uniquely
determined, such that

't T (x) = Vy, o0 mp(x)° Ve o (xed)

1#)] : Ve o(Bo) =B, .

Since the self-polar convex cone determines the canonical conjugation ([L}, 10.23),
we have also

16)) VeooJo =0y Vy 0.
From the uniqueness assertion we infer that
(4) VO' ¥ = V;o [

Proposition. We have
) oo =ViooJo =04 Vy,,.
Proof. By ([L], 10.14, 10.1, 10.4) we know that S,[My = S,. Using 3.1.(3)
and 3.11.(3), we deduce that S, ,[M*N, = S, . Thus, if we show that
(6) ) J¢V¢- wa. ¢|mv‘;m¢ >0,

the uniqueness of the polar decomposition of Sy, Wwill imply the equalities
Jvo=UpVp,)* = Vo.olo -
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Forxe®R,, ye Ny, we have
VoV o, 4S50, oY *X)pl (7*X)p)e = oV, ox*l0*%))

= (V,, .,,J,,,n,p(x*)y,ﬁlnq,(y*)x,,),, = (m,(NV, ,./;Jw“.p(’f*)wlxq,)q:

= (Vo Oy 1y 34\%g)e = Vo, pIymy )y (D4 el Xeo
= (Vo y Ty Wy D2y 1% ode = Tt oX)* Vo, yJymy DMy 3y %o
= (I mo(X)* Vo, gy y ¥yl Xo)e = Vo, sty Yl oo () pX0)e -

By 2.23.(1) we have n,(3)J,py € By and m(x)J,%, €P,. Since V,, ,(B,) =P, and
J,(PB,) = B, it follows that both sides of the last scalar product belong to the self-
polar cone P, and therefore this scalar product is positive. :

We have thus proved (6) and hence the Proposition.

We record also the following identities which are easy consequences of the
Proposition:
Q) Jy = V¢,¢°J¢_° Vo,u»

(8) V'I,'¢=J¢,.¢°J¢=Jw°]w.’¢,
and, if 7 is a third n.s.f. weight on ./,
(9) . Vw'q, = V¢;t° th, .

3.17. Let @, { be n.s.f. weights on the W*-algebra /. We shall identify the Hilbert
space #,, with the Hilbert space o, via the unitary operator V,, y: Hy = Hy(3.16).
Then we have J,, = J, and my(x) = To(X) (x €M). Also, thereis a s-antiisomorphism

Ji M > M) = Ty (M)

by means of which we define the weights o' and Y’ (see 2.12.(6), 2.12.(10)). With
these identifications it is easy to check that

[Dy': Dg'l, = j(DY: Dol )  (te).

3.18. Finally, we consider the particular case of cyclic and separating vectors.

Let # = () be a von Neumann algebra with two cyclic and separating
vectors &;, & € and @y = @g,| M, @ = 0|/ the corresponding faithful normal
positive forms on /. For k€ {1, 2} identify the Hilbert space .#q,k with o via the

mapping X,, +> X5, (x € #), and for every i,j € {1,2} let S;; = S,,i, oy Jiy= Jq,i,q,j,
Aij = A‘Pi' 9; and Vij = Vq,i’q’j =W /A
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In order to identify the balanced normal positive form ¢ = 0(ey, ;) on
Mat(tt) =t ® Mat,(C) as a vector form, we consider the 4-dimensional Hilbert
space 3¢y with the orthonormal basis {ey; 4,7 = 1,2}, the factor & < B(o#,)
linearly spanned- by the operators e; € B(H,),

€;jCp = 5jh3ik G j h ke {1, 2})'
and its commutant &' #(o#) linearly spanned by the operators ey € B(H#,),
AL Oxi€hy Gjsh kef1,2)).

Then Mat(t) =t @ # acts on the Hilbert space .9?”4 =¥ 5.}?4 and its
commutant is Maty(A#') = ' @ &, Moreover, the vector

a) §¢=§1®811+§2®3226-’?4
is cyclic and separating for #/ @ F < &?(.9?4) and the balanced form @ = 0(o1, ¢,)

is the vector form Q= w¢¢lﬂ ® ZF. As above, we identify the Hilbert space

with 5, and we consider the operators Sy, J,, 4, en #,,.
Consider also the isometries

upHsEE@e e, (ije {1,2).

Then Y uuf=1e B(#,) and Uit = 805 € B(H) for i,j, hke{l,2). As
2.
in Secticj)n 3.11 we see that

)] Sy = 121 uij%}"ﬁ, S: = izj uyShuf;,
(3) J‘P = izj u,j.’ﬂuj',f ’ A? = Zj u,jd,ju,"}.

Using the above expression for J, we get

@ WA@eadl,=1@ef  (ke(l,2))

and, using also 3.16.(8), it is easy to check that

&) Jol(1 @ e, =V, ® .

Proposition. Ler (A7, PB) be a hyperstandard von Neumann algebra with two
cyclic and Separating vectors £y, £, € B and ¢, = Qg | M, @y = Wy, | M the corresponding

Jaithful normal positive Jorms on M. The Jollowing statements are equivalent :
@ & < & with respect to B;
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(i) there exists on .M -valued function F, defined and w-continuous on the strip
{ee@; 0 <Rea < 1/4}, analytic in the interior of this strip, such that
F(it) = [Dg,: Do,], for every te R and | F(1/4)|| < 1;

(i) || AExEx |l < AYExE, || for every x e .

Proof. We shall use the notation introduced in this Section. Since &, &, ePp
we have ([L], 10.24) B, = PB,, = P, hence Jy; = Jp, = Jand Vy; = 1; using Propo-
sition 3.16 we obtain also J;, = Jp; = J.

(@ = (ii). Let xe.#. Then JxJx¢ €P and, assuming (i), & — &, €P, so
that (&, — &|JxJxE) = 0 and hence

”4;449551”2 = (4y2x&[x¢y) = (JSZIxfllxﬁzl) = (Jx*lexfl)

= (&,|IxJxE) < (&ilIxxg) = ||A}44x€1”2-
It follows that

§ e D(4i!) = £ e D(4}) and ||4FE| < [|41{¥]).
Using ([L], 9.24) we infer that the function o > F(¢) = 4%,45® is defined and w-
continuous on the strip {« € €; 0 < Rea < 1/4}, analytic in the interior of this
strip and, clearly, || F(1/4)| < 1. Also, for t€ R and ¢ e we have ‘
(Aiztl'f) ® &y = Az(f ® &) = Aiﬁ(l ® ezl)A;“AZ(f ® &11)
=0P(1 ® e)((4'18) ® &) = ([D@s: Doyl ® e;)((448) ® ey)
= ([Dgy: Do, 4%1&) ® ex
hence F(it) = A%, A5 = [Do,: Doy, .

(i) = (iii). Since 6P(l ® €yy) = [D@,: Doyl ® ey, (t€R), assuming (ii) it
follows that

6) b=1® eycD(e2y) and 02;(b) = F(1/4) @ ey.
For every y e .#/ ® # we have y*{, € D(4Y*) and, using 2.14.(3), we get
(7) Ggi/4(b)Ay4y*fqp = A;,Mby*éq) >

that is ozi,4(b)J¢21,‘,,’4yf¢ = AV'by*¢,. Replacing here y by by* we obtain
02;4(b)J, 42 by*E, = AYtbyb*¢,, and by (7) we conclude that

®) 02 ia(B)] 02, (D), 414y, = AV*byb*E, .
In particular, using (1), (3), (6) and (8) for y = x ® e;; with x €.#, we obtain
(435%82) ® &92 = (F(1/DIF(1[A)AHXES) ® ean.

Since || F(1/4)]| < 1, the desired conclusion (iii) follows.
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(ili) = (i). Assuming (iii), for every x € .#* we have
® (IxJE|Ce) = 1428 xEo | < | A11%E | = (xIxJELEY).

Since y = xJxJ > 0, by the Schwarz inequality we get (PENEDIR < (EED(VEIED) <
< (616D We have &, €P and also yé, €, so that (y5|¢,) >0 and hence
¥1le) < (¥4,1¢D), that is

& —&lUxIxE) =20 (xet).

By Proposition 2.26 it follows that (§; — £,]€) > Oforevery & € P, hence & — &, €ePB,
as P is a self-polar cone. Thus, & < & with respect to P.

3.19. Notes. The results included in this Section are essentially due to Connes [36], [37], {38].
Proposition 3.15 is explicitly stated in [103]).
For our exposition we have used [33], [36], [37], [38], [61], [70], [83], and [103).

§4. The Pedersen-Takesaki construction

In this Section we present the canonical construction and properties of the weight ¢ ,
associated with a given weight ¢ and a given positive self-adjoint operator 4
affiliated to the centralizer of ¢. We also consider several commutation properties
of weights.

4.1. Let ¢ be a normal semifinite weight on the W*-algebra .# and ae.#®, a > 0.
A weight ¢, on  is defined by

Pox) = @(@2xa?)  (xed™).

It is clear that ¢, is normal. Since ae.#® we have (221.Q2) R, < m,,,a,
M, = M, and
Pu(x) = p(ax) = p(xa)  (xeM,). .
In particular, ¢, is semifinite. Also, s(p,) = s(a).

We remark that the notation ¢, introduced here agrees with the notation Do
introduced in Section 2.21, since the only positive partial isometries are projections.

4.2. We begin the study of the weight ¢, by considering the case when ¢ is an n.s.f.
weight on # and @ e #°, a > 0 is invertible. In this case it is clear that

o imrpa =M,, R, =R,.

Recall (2.21) that the condition a € .#% means that T,(a) commutes' with 4, .
Let x,yeN, = ﬂtq,a. By 2.21.(1)

(xly)¢a = (Pa(y*x) = (o(ay *x) ='(x4p|(ya)¢)¢ = (xtpl"q:nq:(a)" ¢y¢)4p .
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~

As @ < J,m,(a)], < [al), it follows that the scalar products (+1-)p, and
(+1-)p are equivalent and hence the Hilbert spaces #, and 5, are the same set.
We put

@ H=Ho,=Hy,
but distinguish the two scalar products. It is clear that
3 Sp, = S Ty, =Ty

On the other hand, it is easy to check that if T is a closed linear or antilinear
operator in 3, and T* denotes the adjoint of T with respect to the scalar product
(:|+), then the adjoint of T with respect to the scalar product (-|-),,,.' is

J (@), T*J m,(a)], . Consequently,

S:a = J,m(a)J,S3J,m,(a)],, and hence

A, = Sq. S, = J (@) VAL T 7 o(a)] T, AL

¢ 990
= J,m(ay WV, 42r (a)4}2 = (J,ny(a) ), (a)d, -

The three positive self-adjoint operators appearing in the last term of the above
equation mutually commute so that, for ¢ € [R, we get

Ay, = U@ ) (@) Ag = T 7 (@) Ty (a) Ag
as J, is antilinear. Thus, for xe.#, te [R, we have
7, (7e(x)) = A 7o ()45
= ([, (@) ) (@) Al (x)4 5 7 (@) (I m (@) ) ,)
= (Jq,n,,,(a)i‘Jq,)n¢(ai‘a?(x)a‘i’)(J¢ﬁ¢(a)‘i‘J¢).
Since J,,,ﬁ,,,(a)“J‘, e n(#)', we conclude that
Q) ola(x) = d'of(x)a*  (xed, teR).

Note that this conclusion can be also obtained by using the KMS
condition. ' '

4.3. Let ¢ be a normal semifinite weight on the W*-algebra .# and a,be.#%,
a,b >0. We have ' .

@) . Pasy = Pat @5
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Indeed, if @ and b are invertible, then M, =M, = M =M, (4.2.(1))
(4 @y Pasd P

and for every xeM, we have (4.1) o@,.4(x) = ¢((a + b)x) = p(ax) + ¢(bx) =
= @ (x) + @4(x); so (1) is obvious in this case. ;
In the general case consider the elements

u=wlima%(a+ b+ &) V2, o= w-lim b¥2(a + b + ¢) V2,
&—+0 e=0
Then we have u, v € .#? and (compare with 1.4) g1/2 = u(a - b)V2, bV2 = y(a + b)v2,
wut v*o=s(@+b). If xe SUI%W n#A*, then y=(a+ b)Y2x(a+ b)V2e m,
and, using 2.21.(2), we deduce further that uyu* € M, and vyv* e M,, i.e.
+ 00 > o(uyu*) + o(vyv*) = p(a2xal?) + p(bV2xb12),
Thus, again by 2.21.(2), we get
Pu(%) T @u(x) = 9OV (u*u + v*0)) = o(y) = @, ,4(%).
Conversely, let xeM, ,, p N Then a'2xa'? e M, n A+, bU2xbY2 e M, .M +
and by a further application of 2.21.(2), we infer that u*aV2xq2y e M,nA+,
o*OV2xb2p e M, 0 M+, As
(a + b)'2x(a + b)V2 = w-lim (a + b + &) V2(a + b)x(a- + b)(a + b + &)1z
e—0
< w-lim 2(a + b + &) V2(axa + bxb)(a + b + gz
e~0

= 2(u*al2xal%y + p*pU2xplizy
?

it follows that xeﬂﬁq,“bn #*. Thus, (1) is completely proved.
From (1) we infer that

2 a<b=0,<g¢,.

Finally, if ae#®, a >0, and {a;};c; = .#° is a net of positive elements,
then ' ,
3) GTa=q@,1e,.

Indeed, let xe.#+. From (2) it follows that sup ¢,.(x) < @, (x). On the
. i §

other hand, since ¢ is normal (1.3) and a}2xa}? 5 gl2xg12, we have @ (x) =
= @(aV2xa'/?) < lim ililf o(aj?xal?) < sgp ?a(a).-

4.4. Let ¢ be a normal semifinite weight on the W*-algebra .# and A a positive
self-adjoint operator affiliated to .#° (A.16).
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‘We shall consider the bounded positive operators
A=A+ edytest® (o> 0);
Recall (A.5) that A, T4 f;)r ¢ } 0. Also, for eéch nelN,n>1, let
€ = Kpuinm,m(4) € M®;

we recall ([L], 9.9) that Ae, is a bounded positive operator, invertible in e, M,
and e, T s(4). : D
In view of 4.3.(2), a normal weight ¢, on . is defined by

P4(x) = sup P4(x) = lirr(l) Pa4,x) (xed*). - B
| &> 8- ‘ ' - . . .

If Aisbounded, then by 4.3.(3), we see that the weight ¢, defined here coincides
with the weight defined in' Section 4.1. , . '
If xe.#* and s(x)s(4) =0, then clearly ¢,(x)=0. On the other hand,

if x € e, (M, nA +)e"¢mt¢ nNA+ c:ﬁltq,A‘e n.#*, then ¢ (x) = lim (4%, xe,AL?) =
: \ L . n e—0
= lim ¢((4e,);”x(4e,)” = ¢, (x) < + o0.It follows that the weight ¢, is semi-
&0 : "

finite and s(p,) < s(4). , : ‘ ' :
Actually, we have

M B (9. = 5(d). |
Indeed, if xe.#* and ¢ (x) = 0, then for every ¢ > 0 we have @(AV2x AL = 0,

AxAVs(p) = 0, x4, =0, xs(4,) = 0, and hence xs(4) = 0.
We remark that for every x € i, we have

(2) ‘ (pA(x*x) = ” nqz(A)llzjtpxq:“:, < - co.
Indeed, using 2.21.(1) and (A.5), we obtain

@ 4(x*x) — lim (A Px*x A7) = lim @(A,x*x) = lim (x,/(x4,),),
DY -0 8-0

= linol (%o (A) X ) = I (AT X0 |15 .
4.5, Proposition. Let ¢ be a normal semifinite weight on the W*-algebra 4 and
let A, B be positive self-adjoint operators dffiliated to M?. Then: A < B+ ¢, < @ B-

Proof. If A < B, then (A.4) for every ¢ > 0 we have 4, < B,, so O4, < @p,
by 4.3.(2), and hence @4(x) = lim @, (x) < lim @p (x) = @y(x) for all xes+,

ie. ¢, < @p.

5 — 707
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Conversely, assume that @, < @p. Let ¢ > 0 and f, = yq, n(B) € 4° for each
neN. Then for every x € R, we have (2.21.(1)):

(o(fade fi) %ol ToX0)e = P4 Lfix*X.) < @5(fix*xf,)
= (no(BfuWoXe VX p)e

so that f,4. f, < Bf,. Since f, 1 s(B) = s(¢5) > s(p,) = s(A), it follows that A, < B
Since 4,1 A, we conclude 4 < B. :

4.6. Proposition. Let ¢ be a normal semifinite weight on the W*-algebra # and
let A, {A;};es be positive self-adjoint operators affiliated to M®. Then: AitAd=
<> @4(X) 1 @u(x) for all xe M+, :

Proof. Assume that 4;1 4 and let x e#*. From Proposition 4.5 it follows
that sup ¢, () < ¢4(x). On the other hand, since 4,1 A4, we have (4). 1 A, for
i

all ¢ > 0 (A.5) and using 4.3.(3) we deduce sup Pu ‘)‘(x) = @4(x) for all > 0.
i
Consequently, ¢ ,(x) = sup P4(x) = sup sup Pupdx)< sup P4, (%)

Conversely, if ¢,, T ¢, then, by Proposition 4.5, {4,},c; is an increasing net
bounded above by 4. By (4.5) there exists a positive self-adjoint operator B such
that 4; 1 B. It follows that B is affiliated to .#® and, by the first part of the proof,
©4, T @p. Consequently, 5 = ¢,. Using Proposition 4.5 again we obtain 4 < B

and B < 4, that is (A4) 4 = B.

* In pafticular, with the notation of Section 4.4, we have the following equivalent
definition of ¢ : '

0)) Pa(x) = sup Pge () = li’l_n P, ¥)  (xed?)

4.7. Proposition. Let ¢ be a normal semifinite weight on the W*-algebra # and A4
a positive self-adjoint operator affiliated to M®. Then

orA(x) = A“a?(‘x)A“‘ (x es(A)#s(4), teR).

Proof. Assume the W#*-algebra .# realized as a von Neumann algebra
M < B(H). Then Als(4)# is a non-singular positive self-adjoint operator on
the Hilbert space s(4)s#, so that for each 7€ R we can form the unitary operator
A" = (A|s(4))* on s(4)s#. Of course, the operator A can also be regarded as
a partial isometry in .. :

We shall use the notation introduced in Section 4.4.

Let ncIN be fixed. Then @, is an n.s.f. weight on the W*-algebra e, /e,

and Ae, is a bounded invertible positive operator in e,.#%e,, which is the centra-

s L L
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lizer of the weight Pe, - Using 4.6.(1) we see that (¢ A)en = ((p,n 4e,, 35 n.s.f. weights
on e,#e, Thus, taking into account 2.22.(3) and 4.2.(4), for x c e, #e, we obtain

07 4(x) = of Dn(x) = o *PMen(x) = (de,)'o}n(x)(e,) ™
= Al'e,0f(x)e, A = A'aP(x)A7.
Since e, 1 s(4), the set Ue Me, is w-dense in s(A4).#s(4). Thus, the assertion

of the Proposition follows

4.8. Corollary. Let ¢ be a normal semifinite weight on the W*—algebra M and A
a positive self-adjoint operator affiliated to #. Then

[Do,: D], = 4*  (teR).

Proof. Consider the balanced weights 6 = 6(p, ¢) and 7 = 6(¢p, ¢,) on
Mat, (#). Then 1 = 0y with B = ((1) 3) By Proposition 4.7 we have ¢3(X) =

= Bi'o{(X)B for all X es(B)[Mat,(#)]s(B). In particular, for X = (O(A) g)
s

we obtain the desired result.

From the above Corollary and from Corollary 3.6 lt follows again (see 4.5)
that (p A= B <> A B a

4.9. Corollary. Let ¢ be an n.s.f. weight on the W*-algebra M and let A, B be
two commuting positive self-adjoint operators affiliated to #®. Then the weights

@75 (©)s (95)4 are defined and equal:
| (9)p = P = (®B)4 -

Proof. Since A and B commute, the closure AB of AB is a positive self-

adjoint operator and (4B)* = 4“B* (1€ [R) (A.6). It is easy to check that 4B
(resp. A, B) is affiliated to the centralizer of ¢ (resp. ¢z, ¢,), hence the weights
o5 (@ A),,, (pp),4 are defined. Using Corollaries 3.5 and 4.8 we see that the Connes
cocycles of these weights with respect to ¢ coincide and hence, by Corollary 3.6,
these weights are equal.

4.10. Theorem (G. K. Pedersen, M. Takesaki). Let ¢ be an n.s.f. weight on the
W*-algebra M and y a normal semifinite weight on M. The following conditions
are equivalent:

@) Yoof = for all teR;

(ii) [Dy: Do}, e MY for all teR;

(iii) [Dy: Do), € M for all telR;

(iv) {[DY: D@l,}ew is an s-continuous group of unitary elements of s(f).#s(y);

(V) there exists a positive self-adjoint operator A affiliated to M*® such that

V=0,



‘68 MODULAR THEORY IN OPERATOR ALGEBRAS

If moreover  is faithful, then also the following statement is cquivalent to

those above:
(vi) ¢ of =@ for all teR.

Proof. Let u, = [Dy: D¢], (teR).
() = (ii). From (i) it follows that s(¥) and .#"¥ are g®-invariant. In particular,

for every te[R we have

02, U)o (u)* = () = 02 (u)*o2,(u,).

Then, for every x & (s()#s(¥))* and every ¢ € R we obtain
WEWIASE)) = Y(x) = Y(or(x) = Y(u,o?(x)u?)
= (o7 (02 (u)x0% (uF))) = Y(o® (U)x0® (u)*).

By Proposition 2.21 it follows that 6® ,(u,) € .#%, and hence u, = 6f(c? ,(u,)) € A".

(ii) => (iv). From (ii) it follows that u, = a¥(u,) = u,c?(uu¥ = u,, u¥ and
‘therefore u,, , = uu, for all 5, 7€ R.

(iii) <> (iv). If u,e#®, then u,,, = uo?(u,) = uu, Conversely, if uu, =
= u,, , = uo¥(u,), then u, = o¥(u,), hence u, e 4°.

(1v) = (v). If the condition (iv) holds then by Stone’s theorem ([L], 9.20),
there exists a positive self-adjoint operator A4 affiliated to .#°, with s(4) = s(¥),
such that [Dn/z' Do), = A" =[Dg¢,: D¢}, (tcR). By, Corollary 3.6 it follows
that ¥ = :

V) = (1) This follows obvnously from the definition of ¢,.

If  is faithful, then (vi) is equivalent to the other conditions owing to the

symmetry between (ii) and (iii).

If the above equivalent conditions are satisfied we shall say that the normal
semifinite weight  commutes with the n.s.f. weight ¢ (see also [L], Cor. 10.28).
Thus, the weights of the form ¢, are exactly the weights commuting w1th .

Clearly, if ¢ commutes with ¢, then s(y) € .#¢.

4.11. Corollary. Let ¢ be an n.s.f. weight on the W*—algebra A with centre Z(A)
and \ a normal semifinite weight on M. The following conditions are equivalent:
(i) ¥ satisfies the KM S condition with respect to {6¢},er;

(ii) s(Y) € Z(MA) and o¥ = of|Ms(Y) for all teR;
(iii) there exists a positive self-adjoint operator A aﬁ‘ilzated to (M) such that

V=0,
Proof. Let g=s(y)and p=1—q.
© (i) = (ii). Since Y° 0 = ¥, we have p,qge#?. Let x,ye N, N NF. Then
W((xp)*(ep)) = Y(px*xp) = 0 and Y(22)*(py)) = Y(r*py) < ¥(3*y) < - oo, hence
xp, py € N, N N, By assumption, there exists a function f, defined, continuous
and bounded on the strip {te €C; 0 < Rea < 1}, analytlc in the interior of this

strip, such that f(ir) = Y(of (xp)py) = Y(of(x)py) and f(1 + it) = Y(pyef(xp)) = O
for all ¢ € IR. It follows that f is identically zero, in particular x,b(a;"(x)py)=0 (teR).
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Consequently, Y (xpx*) =0 for every x € |, n N}, so that xpx* = pxpx*p
for all x e#. In particular, for x = v €4, unitary, we have vpv* < p, vpv* =p
and therefore pe Z(#) and s(f) =g=1—pe Z(M).

Now, the restriction of ¥ to .#q is an n.s.f. weight on .#g which satisfies the
KMS condition with respect to {6f|.#q},cr, So that of|.#q= o} (t eR),
by 2.12.(11).

(ii) = (iii). From (ii) it follows that Y- of = ¢, (e [R). By Theorem 4.10
we have = ¢, for some positive self-adjoint operator 4 affiliated to ¢, Then
for every x € #q and every t € R we have ¢¢(x) = a;"(x) A"a‘P(x)A"‘ hence A4
is affiliated to Z(H)q = Z(A).

Finally, the implication (iii) = (i) follows from Proposition 4.7, as
s(y) = s(4) € Z(#), while the implication (u) (i) is obvious.

The equivalent condition in the above Corollary hold for mstance, if ¢,y
are n.s.f. traces on /.

4.12. From ([L], 10.29) we know that a W*-algebra # is semifinite if and only if
there exist an n.s.f. weight @ on A and an s-continuous one-parameter group
{u}er of unitary operators in M such that cf(x) = uxu¥, (xeM, t € R). The
preceding results allow a simple proof of this theorem.

If u is an n.s.f. trace on # and ¢ is any n.s.f. weight on ., then

= [De: Dy],(t € IR) satisfies the required condition because any trace
commutes with any weight. Conversely, if this condition is satisfied and.A is the
unique positive self-adjoint operator such that 47 = u,(t€[R), then p= ¢,
is an n.s.f. trace on «# because o%(x) = x(x €.#, t € R).
4.13. Corollary. Let ¢ be an n.s.f. weight on the W*-algebra M of type III and
BeR, B#1. Then no n.s.f. wezght on M satzsﬁes the KM S condition with respect
10, {aﬁt}tE]R

Proof Assume to the contrary, then there exists an n.s.f. weight ¥ on .
such that oﬂ, = g¥, (t € [R), in particular Y commutes with ¢. Consequently, there
exists a positive self-adjoint operator A affiliated to .#¢ such that y = ¢4 . It follows
that ¢f,(x) = A'eP(x)A™" (xeM, teR). Putting o= (f—1)7, we obtain
1 6f(x) = (A4 (x e, te IR), contradicting the fact that . is not

‘ semiﬁmte 4.12). : ’

4.14. Let ¢,y be n.s. f weights on the W*-algebra .# and ¢ € Aut(#). By 2.22.(5)
we get

¢)) peo0=@=>0f°0=gc°0f for all teR.
In particular, »
¥))] Y commutes with ¢ = 6f°c? = a¥°a? for all s,teR.
In general, the oonvefse of (1) is not true. For instance there exist measurable

but not measure-preserving transformations on measure spaces. Even with the
supplementary assumption that ¢ acts identically on the centre Z(#) of ., the
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converse of (1) need not hold, as there exist *-automorphisms of type II-factors
which do not preserve the trace.

Also, the converse of statement (2) is not valid in general, as we shall see in
the next section in an important example. Following this example we shall say that
the weights ¢,  anticommute if they do not commute but the corresponding modular
automorphism groups commute.

However, there are certain special cases in which the converses of (1) and (2)
are true. These cases are considered in Sections 4.17—4.20.

4.15. Consider the Hilbert space ## = £*(IR) and the operators u,, v, € Z(#)
defined by

@) =Er+ 0, 0O =e7¢r) (e, rsteR).

Then {u,},er and {v,},er are so-continuous one-parameter groups of unitary
operators on 5, which satisfy the following anticommutation relations:

) vu, = e up, (s,teR).
By Stone’s theorem ([L], 9.20) there exist positive self-adjoint operators 4, B
in 5, uniquely determined, such that u, = A" (f€[R), and v, = B“ (seR).

Thus B¥Ai = ¢ #4*B* (s5,te[R), and using the definition of the operator A
([L], 9.20) we infer that

2 B¥4B*=¢'4 (seR).
Consider the W*-algebra # = 2(o#) with the canonical trace tr and the n.s.f.

weights @ = tr,, Y = tr5 on #. Then, by Proposition 4.7, we have of = Ad(u,),
of = Ad(v,) (5,t€R), and it follows from (1) that

(€)) afeo¥=0%af (5,telR).
However, ¢ and ¥ do not commute, more precisely we have
()] peo¥Y =¢e¢9 (selR).

Indeed, let xe#/* and A, = A(l + e4)? (¢ > 0). From (2) it follows that
B#4,B* = (e°4), (seR, ¢>0), and therefore

o(c¥(x)) = tr(B“xB™*) = lim tr(4}*B*xB*4L"?)

e~0

= lim tr(x12B7*4,B*xV2) = lim tr(xV%(e*A),xV'?)
&0

e-»0

= lim tr((e A2 x(e ) = tr,, (x) = e¢(x).
=0
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4.16. Let ¢ be an n.s.f. weight on the W*-algebra #, ¢ € Aut(#) and 4 a positive
self-adjoint operator affiliated to .#. :

The operator A is affiliated to.#°*’ if and only if the operator o(A4) is affiliated
to A% (see 2.22.(6) and [L], 9.25) and in this case we have

) (@°0)s = Poray° 0
Using Corollary 4.8 it follows that if A is affiliated to .#°, then

1)) @0 =0, 9°0 =@ =0(d)=A.

Note that the set of all non-singular positive self-adjoint operators affiliated
to the centre Z(#) of # is a group with respect to the operation (4, B) > AB.

Proposition. Let ¢ be an n.s.f. weight on the W*-algebra # and o: G — Aut (M)
an action of the group G on M. We assume that each *-automorphism g, (g€@),
acts identically on %(M). Then the following statements are equivalent:

(i) a,°6f = af 0, for every g€ G and every tcR;

(i) there exists a homomorphism g A, of the group G into the group of
all non-singular positive self-adjoint operators affiliated to % (M) such that ¢ Oy = Py,

for every geG.

If moreover G =R and the action ¢: IR — Aut(#) is continuous, then the follow-
ing statement is equivalent to (i) and (ii).

(iii) there exists a non-singular positive self-adjoint operator 4 affiliated to
Z (M) such that @6, = @ 45 for every seR.

Proof. 1t is clear that (iii) = (ii), and (ii) — (i) follows by using Corollary 4.11
and 2.22.(5). With the same arguments, from (i) it follows that for each g € G there
exists a unique A, such that ¢° o, = ¢, .- Since each o, acts identically on Z(.#),
for g, h € G we obtain

Pugp, = (9°6))° 03, = @ 4.0, = (@ 04) 4, = (P ap)a, = (0,4"—,,,.

by Corollary 4.9. Hence (i) = (ii). =
We now show that (ii) = (iii). By assumption there exists a homomorphigl

R>s 4, such that oo, = ¢, (s€R). Let 4=4,. Since 4,,,= A,
it follows that 4, = A* for every rational number s € [R.
Let e, = Jpy/n,ny (4) and x € N,,. The function

3) R 5 > g(Aoe,x*x) = ||To{de, /25, |1
is continuous and bounded. On the other hand we have

o(oilee*x)) = lim p((4).ex*5)

= lim 7, ()i (e) vy I = (e 2, -
&= .
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Since the weight ¢ is normal, it follows that the function
@ - Ras oo ex*x) = || (d,en)li2x, |2 € [0, + o]

is lower w-semicontinuous. As the functions (3) and (4) coincide for every rational
s€ R and every x € R, we infer that

Ae, < A%, (seR).

Consequently, s+ (A,e,,)(Av‘e,,)‘1 is a one-parameter group of positi\/e operators
with norm < 1 on e,5#. Since the only such group is the trivial one, it follows that
Ase, = A’e,, and, since e, 1 1, we conclude that 4, = 4° for all s [R.

Let 6: G — Aut(4) be an action of G on . which is trivial on 2(A) and
satisfies the equivalent conditions (i) and (ii) of the above Proposition. Then
G, = {g€G; ¢poo,= ¢} is the kernel of the homomorphism g + 4, and hence
a normal subgroup of G. Since {4,},¢¢is an abelian group, it follows that the quotient
group G/G, is abelian. '

4.17. Corollary. Let ¢ be a faithful normal state on the W*-algebra # and o: G —
= Aut(#) an action of the group G on .# which is trivial on Z(M). Then the
Jollowing statements are equivalent: -
: () poa,= ¢ for all geG;

(i) ofco,=0,°0f for all ge G and all teR.

. Proof. By 4.14.(1) we know that (i) = (ii). If (ii) holds, then we can write
9o, =@y (g€G), as in Proposition 4.16. Let geG, >0 and et
€ = Iit+e, +co(4y). Then for every keIN we get ||p]l > g(ck(e,)) = p(4ke,) =
= (1 4 &)*¢(e,), hence e, = 0. It follows that 4,1, 50 1<A4;'=4,-1<1
and hence 4, =1 for all geG.

4.18. Corollary. Let ¢, be n.s.f. weights on the W+*-algebra M. If ¢ is finite,
or if ¢ <Y, then the following are equivalent:

() @ commutes with ¢; :

(ii) of 0¥ = 0¥ 0f for all 5,1 R.

Proof. By 4.14.(2) we know that (i) = (ii). Also, if ¢ is finite, then (i) = (i)
by Corollary 4.17. ‘ _

Assume that (i) holds and ¢ < y. By Proposition 4.16 there exists a non-
singular positive self-adjoint operator 4 affiliated to the centre (M) such that
9°0f = @5 (s€R). Let e, = x4, +0)(4). For xeM,nA+ and seR, s >0,
we have 400 > Y(x) >¥(e,x) = Y(e,0¥(x)) >0(e,0¥(x)) = o(Ae,x)>(1 + &)'p(e.x).
Consequently, ¢(e,x) = 0. Since ¢ is normal and semifinite, it follows that o(e,) =0;
since ¢ is faithful we conclude e, = 0. Thus, 4 < 1. Similarly, using f= yxp,1-,(4),
we get 4 > 1. Hence 4 =1 and ¢ commutes with V.

4.19. Let .4 be a W*-algebra and ¢ €.#,. Put
2, ={xe; plax) =0 for all act},
R, = {xed; p(xa) =0 for all a €M},
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Then £, (resp. R,) is a w-closed left (resp. right) ideal of .#, hence ([L], 3.20)
there exists a unique projection e €.# (resp. f€.#) such that &, = .#e (resp.
R, = f#). The projection r(p) =1 — e (resp. I(p) =1 —f) is called the right
support of ¢ (resp. the left support of @) in 4. Thus, : :

) L, =M1—r@), R,=(1—Np)A.
Since 1 —r(p)e L, and 1 — K@) eR,, we get‘

) ' o= 0(-x9) = e(l(@)).

Also, using the Hahn-Banach theorem, we infer from (1) that

{¢(a-); aeM} is norm-dense in M ,-¥(p),

3
{p(-a); aeM} is norm-dense in W)+ M 4.

Since 2, = (R,4)*, we have r(p) = 1(p*). In particular, if ¢ = ¢*, then r(p) = (o)
is called the support of ¢ and is denoted by s(¢). If ¢ is positive, then the Schwarz
inequality implies {x e #; @(x*x) = 0} = &, = #(1 — s(p)), hence s(p) is the
usual (2.1) support of ¢. - ,

Consider now @,  e#;}. It is easy to check that if ¢ is faithful, then the left
and right supports of the forms ¢ + iy and ¢ — iy are all equal to 1, hence their
absolute values |@ -+ ity| and |¢ — | are faithful normal positive forms and the
partial isometries from the corresponding polar decompositions are unitary elements
([L), 5.16, E.5.10). ' ’

Proposition. Let ¢,y be normal positive forms on the W*-algebra 4 and s(¢) = 1.
Then the following conditions are equivalent: ‘

(i) ¥ commutes with ¢;

(i) lo + iyl = lo — W; » -

(iii) [assume also s(f) = 1} of° ¥ = o¥° af for all s,teR.

Proof. The equivalence (i) <> (iii) follows from 4.18. ~

(i) = (ii). By assumption (4.10) we have y = ¢, for some positive self-adjoint'
operator A affiliated to «?. It follows that

(@ F W)(-(1+ 1)) = ¢ = (p — W)(-(1 — id)),

hence u= (1 —id)(l +id)™ e#® is a unitary operator and we have
(o +ip)(-u) =@ — iy o ) )

If ¢ + iy = o(.v) is the polar decomposition of ¢ + iy, then ¢ — i =
= w(.uv) is the polar decomposition of ¢ — iy, and hence |¢ +iY| =0 =
= |p — iy|. -

(ii) = (i). Let ¢ -+ iy = w(-v) be the polar decomposition of ¢ + iy, with
o=|p+iy| and ve.# unitary. By assumption we have w=|p —iy|=
=|(¢ + iY)*|=w(v* v). It follows that ¢ + iy=(p + iY)(v*- v), that is =0 (v*: v)
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and ¥ = y(v*.v). By Proposition 2.21 we infer that v€.#°? On the other hand,
we have ¢ + iy = o(.v) = o(-v*0*) = (p — iY)(-v?), that is o(-(*— 1) =
= iY(-(v* + 1)). Since v e.#°, it follows that Y(-(v*+ 1)) is af-invariant (teR).

For fixed 7€ R let e =s(y — Yeaf). By the above arguments we have
(*+ 1)e=0, hence ‘e = — pe. Consequently, ¢(e) — iY(e) = — p(ve) +
+ W (ve) = — (¢ — iY)(ev®) = — (¢ + iY)(e) = — o(e) — iy/(e), so that p(e) = 0
and e = 0. Thus, Y- 6f = ¢ (t€[R), that is ¥ commutes with ¢.

4.20. Proposition. Let ¢ be an n.s. f. weight on the W*-algebra # and - G-
- Aut(#) a continuous action of the compact group G on M which is trivial on
the centre (M) of M. The Jollowing conditions are equivalent ;

() ¢°6,= ¢ for all g G;

(i) 0f° 0, =0,°0f for all ge G and all teR.

Proof. By 4.14.(1) we know that (i) = (i). If (ii) holds, then by Proposition 4.16
Wwe can write

P00, =9, (g€0).

Let g € G be fixed. For the proof we may assume that G is topologically generated
by the element g.

If G is discrete, G is finite so that there exists ne N, n > 1, such that o is
the identity automorphism. It follows that Az =1, hence 4,=1 and ¢ G, = o.
If G is not discrete, then there exists a sequence 7, — - oo of positive integers

such that {g"}, converges to the neutral element of G.Lete > 0,e, = Xi1+ e, +o0)(A,)

and xeM,n.#*. Since o is a continuous action, the sequence {o; "k(e, %)}, is
w-Convergent to e,x, hence

¢(e.x) < lim inf p(o; "*(e,x)) = lim inf @(A; "*e,x)
k-sco k-+co

< liminf (1 + &) ™"g(e,x) = 0,
k-0

so that ¢(e,x) = 0 and e,x = 0. Since M, is s-dense in A we get e, = 0. Conse-

quently, 4, < 1. Similarly we obtain A, > 1,hence 4, = 1 and ¢+ g, = Q.

4.21. Proposition. Let # be a semifinite factor and o: G —» Aut(#) an action of
the group G on M. If there exists some non-zero o-invariant normal state ¢ on M,
then the trace y on M is c-invariant.

Proof. By Theorem 4.10 there exists a positive self-adjoint operator A affiliated
to . such that ¢ = pu, and by Proposition 4.16 there exists a group homomorphism
G>g > 4,eR+ such that pe 0, = A (g€G). Since ¢ =y, is g-invariant,
it follows that g (4) = 2,4 (g €G). :

Let g € G be fixed and assume that 4, < 1. For each ¢ > 0 and each kelN
we have :

‘P(X(o, z)(A)) = ‘P("f(X(m z)(A))) = (D(X(o. e)(“’é(A))) = (P(X(o. ,)(l’;(A)).
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Since 4, < 1, we have lim o, ;(252) = X0, +0)(#) for every te R. It follows that
k-co

O, o(4) = P(X0,+00)(4)), hence 4 = As(p) <& As ¢>0 was arbitrary, we

obtain 4 = 0, contradicting the fact that ¢ # 0. Consequently, 4, > 1 and, simi-

larly, 4, <1, ie. 4,=1.

4.22. Even though the commutation of the modular automorphism groups does

not insure the commutation of the n.s.f. weights, it does imply that the sum of
the two weights is still semifinite.

Proposition. Let ¢, be n.s.f. weights on the W*-algebra M such that of° ¥ =
= g¥o of for alls, t € R. Then the normal faithful weight @ +  is semifinite.

Proof. By Proposition 4.16 there exists a non-singular positive self-adjoint
operator A affiliated to the centre of .# such that
yoof = ./,A? (teR).

Putting e,, = Y0, m(4) (meIN), we have e, 1 s(4) = 1.
Let x €.# and n € IN. Consider the elements

4-00 +00

= S S e=n+62(o¥(x)) dt ds €. 4.

—00 —00

It is easy to check that x, = x, x, €.#% n.#% and

+00 +00
o2(x,) = % S S e~ mt-*+MNgP(g¥(x))dtds  (xe @),
+00 +00
oy(xs) = -7—’;— S S e—nt*+(s-MgP(o¥(x)) dr ds (ze ).
If xe M, nA+, then
400 +00
sred =1 | | eempiorioteen ar s
4o 4+
= Vll_ S e~""Y(of (xe,)) dt = V-.'}. S e—"(A'e,x) dt
7 - T
400

< V% S e~"(x)dt = m‘lk(x) < 400,

-0
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hence x,e, .42 n.2 0 M,. Since x,e,, = x, it follows that
MENAME N M, is s-dense in ..
Similarly,
ALNMENM, is s-dense in 4,
Consequently, the product of these two sets is w-denser in 4. On the other hand,

as we noted in Section 2.15, this product is contained in My N Dy M.,
hence ¢ + i is semifinite,

4.23. Let tr be the canonical trace on B(o#), A a positive self-adjoint operator in o
and ¢ =1r,.
For ¢, n €s# we shall use the notation ¢ @ #j for the operator
H 5 L (LInE e
It is clear that

(1) CON* =10 CO®NE®T) =)o 7

and, for x € B(#),
@) ERN=xQF, (O MHx==¢® .

On the other hand, we have

(€)) {®ie N,<>ne D(A12),
@ §®ﬁe§m¢¢>f®ﬁeﬂt¢nm;©§,qu(Al/z),
® & NED(AY?) = ot ® i7) = (4Y2¢| 4V2y),

Indeed, let x = ¢ ® fl. Then x*x = ||¢|P(y ® i7) and so, by (2),
AL X x4 = || E[(4Y @ AT
is a multiple of the orthogonal projection onto the linear subspace spanned by the
vector 442y, 1t follows that
- PO*x) = sup 1r(Ax*xAl) = || £| sup r(4:%n ® A¥%)
: &>0 e>0 .
= I¢IP sup 14" n 2 = || €118 Av2q |2,
&>

From this we obtain (3) and then, by polarization, (4) and (5).

S s gty e,
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4.24. Consider again the canonical trace tr on %(3¢) and two positive self-adjoint
A

operators 4 and B on . We recall (A.11) that the weak sum 4 - B is defined if

and only if .

) D = D(4Y* n D(B'®) is dense in
and, in this case, 4 —lt B is determined by

@ 4R+ BRI = (4 F BRI, €D = D((4+ By,

On the other hand, if the normal weight #r, + trp is semifinite, then (4.10)
there exists a unique positive self-adjoint operator C on & such that tr,+trp = tr.
If 4 and B are bounded, then C = 4 + B by 4.3.(1). In the general case we have
the following result:

Proposition. The normal weight tr, + try is semiﬁnik if and only if the weak sum
A .
A+ B is defined, In this case we have ‘

ryttrg=1rtp.

Proof. Assume first that the weight try + trg is semifinite and write
try + trg = tre as above. Since 1r, <tre, trp<tre, we have (4.5) A<C, B<C.
Thus, D = D(4Y2) n D(BY2)> D(CY?) is dense in o that is A-+ B is defined. If { € D,
then (4.23. (5)) o ’

| CY2ENR = tr(E ® &) = try(€ ® &) + tra(C ® &) = || AVE|? + | BV, |

hence C= 4 —T— B.
A
Conversely, assume that 4 + B is defined and consider the increasing sequence
{4, + B.},>, of bounded positive operators. It is clear that

lim ((4, + B,)¢IE) < +oo « L e D = D(4%) n D(BY).

Using (A.5) it follows that there exists a unique positive self-adjoint operator C
in # such that D(CY/?)=Dand A4,+B, 1 C. By Proposition 4.6 we have try, . 5 T trc.
Since tr, 4p, = try, + trg,, we conclude that tr, -+ trp = tr. is semifinite.

4.25. Notes. The construction of the weight ¢4, the definition of commutation for weights and
almost all the results contained in this Section are due to Pedersen and Takesaki [187]. Corollary
4.17 is due to Takesaki [245] and Proposition 4.19 is due to Herman and Takesaki [117]. Several
simplifications of the proofs givenin [187] were made possible by the use of the Connes cocycle
theorem.
For our exposition we have used [83], [187], [244:] and [269].

Further results related to Proposition 4.21 are contained in [187] and [219].
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§5. The converse of the Connes theorem

In this Section we state and prove a converse to Theorem 3.1 and give some appli-
cations.

5.1. Let .# be a W*-algebra, G a locally compact group and ¢: G — Aut (A) a
continuous action of G on .#. We denote by e € G the neutral element of G.

A o-cocycle (of degree 1) is an s*-continuous function w- G — A with the
properties:

w(gh) = w(g)o,(w(@), we™ = o7'(wg)*) (g, heG).

In this case w(g) are partial isometries and
wigw(@)* = wle),  wig)*w(g) =o,we) (g heG).

The set of o-cocycles is denoted by Z,(G; #). A detailed study of Z(G; HA) is
contained in Section 20.
If ¢ is an n.s.f. weight on .#, the modular automorphism group {6},ex is
a continuous action 0®: R — Aut (#) and, by the Connes theorem (3.1), for every
normal semifinite weight ¥ on .# the Connes cocycle [Dy: D] is a a®-cocycle.
Conversely, we have the following result:

Theorem (A. Connes). Let @ be an n.s.f. weight on the W*-algebra M. For every
o?-cocycle we Z o(IR; M) there exists a unique normal semifinite weight \y on M

such that [Dy: Do) = w.

The proof is contained in Sections 5.2—5.7.
We shall consider the W*-algebra 4 realized as a von Neumann algebra
M < B(HK). Also, we denote by F_, the discrete factor B(Z*(R)) and identify the

W*-algebras M @ F,, and Mat(A) as in ([L], 3.17). Thus, every element x €./ ® F.,
is determined by a certain matrix [x;] with elements in .#. Let e,cMQF,,
be the element corresponding to the matrix [x;] with x;; =0if i £ jorifi > n,
and xy; = xp=...=x,=1.

ll/We shall successively construct weights &, &', ¥, ¥’ on .« @.‘Fw and weights
Y, ¥ on .

5.2. We first define the n.s.f. weight @ on .# ® &, by
D(x) = ; @ (x) x= [xij] (A ggm)+)-

Then we have

¢)) | 6l =07 @1 (teR).




=R T A L X P e

NORMAL WEIGHTS ) 79

Indeed, using 2.21. (2) it is easy to check that the projection e, belongs to
the centralizer of @ and using 2.22. (3) and Proposition 3.3 we obtain :

of(x) = (6f ® 1)(x) ' (xee (M @ Fo)e,).

Since e, 1 1, this proves (1). . '

Actually, & is nothing but the tensor product @ ® tr where tr denotes the
canonical trace on &, (see 8.2). :
5.3. Let {u,},cr = B(L2(R)) be the so-continuous unitary group defined in Section
4.15. Using Stone’s theorem ([L], 9.20) and the Pedersen-Takesaki construction
(4.7) we obtain a new n.s.f. weight ¢’ on ./ @ &  Such that

of = Ad(1 ® u)-6? = o? ® Ad@,) (teR).

5.4. The von Neuinann algebra . # ® %, acts on the Hilbert space # @ Z%(R) which
can be identified with Z%([R, 5#) via the mapping

# Q@ LYR)> & Q@ fr> {t = f(1)E} € LX(R, #).

)
Using the given cocycle w e Zuw(lR; ) we define a partial isometry W on
this Hilbert space by

(M) WO =wt)i() (e L*R,#),tcR).

It is easy to check that W commutes with the commutant 4’ ® € of # ® F.,,

and hence We.# @.9"“, by the von Neumann double commutant theorem. Also,
we have .

@ WePWH =wit)®1 (teR).

Indeed, W is defined in (1) by the function s—>w(s) and, similarly, 62'( W*) is defined
by the function s+ of(w(s — £)*), so that We{'(W*) is defined by the constant
function s+ w(s)of(w(s — ¢)*) = w(t) and hence it is equal to w(r) ) ® 1.

We define the normal semifinite weight ¥ = ¢'(W*. W) on # ® F . Using
(2) and 5.3. (1) and Corollary 3.7, we obtain

3 o¥ = (AdWw()- a?) ® Ad(y) (teIR).

S.5. Using the Pedersen-Takesaki construction again, we obtain from ¥ a new
normal semifinite weight ¥’ on A4 ® %, such that

)] . o¥ = (Adw(®)-ef) ®1 (teR).
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5.6. Let p be a minimal projection of & .. Using the mapping x = x @ p we iden-

tify # with (1 @ p)(# ® F)1 ®p). It is clear that 1 ® p belongs to the
centralizer of %', hence ¥'= ¥,g, is a normal semifinite weight on

# = (1 ® p)(# ® Fo)(1 ® p). For x es(y’)Ms(y’) we have (2.22.(3))

o7 (x) = o (x ® p) = W(r)aP(RIW(1)* ® p = W) (IW()*, -
hence S . /
6} of’ = Adw())o of (teR).

S.7. Let w'(f) =[Dy’: Do), and a(t) = w'(t)*w(t), (t € R). Since Ad(w(t))o o? =
= af’ = Ad(w'(1))° o, it follows that {a(¢)},cg is a so-continuous group of unitary
operators in the centre of the von Neumann algebras (’).#s(y’). By Stone’s theorem
there exists a positive self-adjoint operator 4 in s, affiliated to the centre of .#,
such that a(f) = 4", (€ R).

Let = 4. Then y is a normal semifinite weight on . and, for every te R,
we have [DY: Do), = [Dy)y: DY')[DY’: Dol, = a(t)w'(t) = w'(H)a(t) = w(t).

Thus, the existence assertion of Theorem 5.1 is proved. The uniqueness part
has been already considered in Corollary 3.6.

5.8. Corollary. (G. K. Pedersen, M. Takeéaki). For every normal weight ¢ on a
W*-algebra M there exists a family {;};e; of normal positive forms on.# such that

0@ =Y ox)  (xes),
iel

Proof. We shall say that a weight ¢ has property S if ¢ is a sum of normal
positive forms. . .
If {®;};e; is a maximal family of normal positive forms on .# with mutually

orthogonal supports, then @ = Y, w; is an n.s.f. weight on . with property S.
i€l

Let y be an arbitrary normal semifinite weight on .# and w(t) = [Dy: Dw],

(t € R). By the proof of Theorem 5.1, the weight ¥ is obtained from by a repeated

application of the following operations:

0)) o= @ tr, (see 5.2);
) . P, (eeMl);

3) @ > @0, (0 € Aut(M));
“) @ > @4, (see 4.4).

The point is that all these operations preserve property S. This is obvious for -
(3) and also for (4) if 4 is bounded. In the general case, there exists a sequence
{e,} of mutually orthogonal spectral projections of A such that Ae, are bounded
and ¢4 = Y| @4, Thus every normal semifinite weight has property S.

n
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Finally, let ¢ be an arbitrary normal weight and denote by e the unique projeé-

tionin .# such that N=.#e. Then ¢, is a normal semifinite weight on e.#e, hence @,
has property S. On the other hand ¢;_, takes only the values 0 and +co so that
it is obvious that ¢,_, has property S. Finally, it is easy to check that ¢ = ¢, + ¢1_-

5.9. Corollary. Let ¢ be a normal weight on the von Neumann algebra M- c .é?(%)
Then there exists a family {&},e; = H# such that _ ,

o(x) = [ZI (x&:1ED (x eM).

Proof. Every positive normal form on .# has the stated property ([L], 8. 17),
so this result follows from the preceding corollary. -

In particular it follows that the function

M3 x = @(x*x)V2 = (Y] [|x€;[B)V2 €0, +oc0]
iel

is subadditive and lower w-semicontinuous (see also 2.12). -

5.10. Recall the notation (3.2) o4: Aut(#) — Out(#) for the canonical quotienf
mapping and 8 4: [R - Out(#) for the modular homomorphism of the /*-algebra .#.
Another consequence of Theorem 5.1 is the following

Corollary. Let 4 be a W*-algebra with separable predual and o [R - Aut(.///) a
continuous actioni of R on M. Then o is the modular automorphism group of some
n.s.f. weight on M if and only if 0.4(c;) = S.4(t) for all te R,

We give here only a sketch of the proof ([36], (120]). Let ¢ be any n.s.f. welght
on .. Since p4(c,) = & ,«(t) = 0.4(6?), (teR), there is a mapping v: R - U(4)
such that o, = Ad(s(t))° of, i.e.

o (x) = v(t)of (x)v(t)* (xed, teR).

Moreover, it is possible to choose a Borel mapping v: R - U(A) with this property
([134], ([163]). Then, for s, ¢t € R and x €.#, we have

v(8)of(v(1))0?, (X)L (0(t)*)p(s)* = T (%) = Vs + t)0s+:(x)v(s + t)*
so that we obtain a Borel function
a:[R2> (s, 1) = a(s, ) = v()o?(W®)v(s + 1)* U(i?’ ).

Since a(s, t) e ﬂ’(.//l), we have ¢9(a(s, 1)) = a(s, t) and an easy computation based
on this remark gives
a(r, s)a(r + s, t) = a(s, Dar,s +1) (s, )e R).

Now, by arguments of Borel cohomology ([126], [163]) it follows that there exists a
Borel mapping b: R — U(Z(.#)) such that

as, t) = b(s + )b B(t)t (s, teR).

6 — 707
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Let w(®)=b(t)o(t) (t€R). Then w: R—U(#) is a Borel mapping and w(s+£)=
= w(s)o?(w(t)) (5, teR), so that (see [36]) this mapping is continuous, i.e.
w € Z o(R; #). Also, we have g, = Ad(w(t))+ o? (telR).

By Theorem 5.1 there exists an n.s.f. weight ¥ on . such that [Dy: Dp) = w
and it follows that o, = o (t € R).

5.11. Notes. Theorem 5.1 and Corollary 5.10 are due to Connes [36]. Corollary 5.8 is due to
Pedersen and Takesaki {187] and the proof given here is that of Elliott [83).
For our exposition we have used [36] and {[83].

§ 6. Equality and majorization of weights

In this Section we present an important criterion which insures the equality of two
weights, study various order relations between weights, and give some examples.

6.1. Proposition. Let ¢ be an n.s. 1. weight on the W*-algebra M, ac #°, a > 0,
and  a normal semifinite weight on 4. If there exists a -subalgebra & — RN,,
o®-invariant and w-dense in M such that

YO = 0.0%) (ye B),
then Y < ¢,.

Proof. By the Kaplansky density theorem ([L], 3.10) there exists a net {b}iesc®
such that 0 < b; 5 1 and sup [|3,]] < 1.
J

Then

-+
0<gq = V% S e~Pof(bpdte I, = M2,
—00
and 6%(a;) > 1 for all « € €, by Proposition 2.16.
Let y € 4. By Proposition 1.14, ¢ (3*. ¥) and ¥(y*.y) are normal positive

forms on # and
YO*-») = 0.(*-y).
In particular, this equality is valid for

Youne=0f®) +#afb)e B (s, 1R, jeJ, k =0,1,2,3).

Since for every x €.# we have
+00 +co

1 3. v
ajxa; = ; Z ik S S e—(sl-!-t’)y;: 13 1o kX5, 03,k ds dt,
k=0
-—00 —00

by Corollary 2.10 we infer that
Y(axa;)) = @ (axa;) (xed).
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Let x € R,. Since Y is normal, ax*xa; = x*x and 62 5(a))> 1, using Propo-
sition 2.14 we obtain :

P(x*x) < lim i;xf Y (ajx*xa;) s lim ir;f @.(a;x*xa)
= lim i;xf ¢ (a'2a;x*xa;a'2)=lim i?f H(xajal/é),,,llﬁ,
= lim inf 1o (@202.(@)) Ty, I
= [T, (@) T, x, |2 = [|(xa*®), [} = @(a*Px*xa'’)

= Qu(x*x).

In particular, it follows that s(¥) < s(a). .
Consider now x € R, , that is xa'/? € 9,. There exists a sequence {e,} < A4,

of spectral projections of a such that e, } 1 and ae, > n'e,, (n€ IN). Since ae.#?
and ae, is invertible in e,.#%e,, we see again by Proposition 2.14 that xe, € RN,-

Consequently, we have

PY(x*x) = Y(s(a)x*xs(a)) < lim inf Y(ex*xe,)
< lim inf @ (e,x*xe,) < @ (x*x);

the last inequality is obtained by applying Proposition 2.14. once more.
Hence Y(2) < ¢,(z) for every zeM,, n MA*, ie. ¥ < @,
6.2. Theorem. Let ¢ be an n.s.f. weight on the W*-algebra M, a €M%, a > 0, and Y

a normal semifinite weight on M. If y commutes with ¢ and there exists a -subalgebra
B < N, go-invariant and w-dense in M such that

Vo) = 0,0*) (e D),

then Y = @,.
Proof. Since ¥ commutes with ¢, there exists a positive self-adjoint operator 4

affiliated to . such that ¥ = @, (4.10).

By Proposition 6.1 it follows that ¢, = ¥ < ¢, and then, using Proposition
4.5, we deduce that 4 < a, so that 4 € #¢ is bounded. Again by Proposition 6.1,
with ¢, instead of Y and 4 instead of a, we get ¢, < ¢, = ¥. Hence V=0,

The particular case a = 1 of the preceding Theorem is known as *“‘the Peder-

sen-Takesaki theorem on the equality of weights”.

s
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6.3. By the Radon-Nikodym type theorem of Sakai ([L}], 5.21), if @, ¥ are normal
positive forms on the W*-algebra 4 and ¥ < ¢, there exists a €4/ (actually, 0 <
< a < 1) such that = @(a - a*). The extension of this result to weights is contained
in Corollary 3.13.

We remark that Proposition 2.14 gives necessary and sufficient conditions
for the inequality o(a-a*) < ¢ to hold.

6.4. We now consider another form of Radon-Nikodym type theorems, which
has been pointed out by S. Sakai (see [L], C.5.5).

We begin with the case of normal positive forms. Let .# be a W*-algebra,
@, ¥ €M} such that ¥ < @, and de € with 4 + A= 1. The set & = {p(la- +
+1-a);ael,a=a* |a| < 1} = A" is convex and o(4,, )-compact. If ¢ Z,
then by the Hahn-Banach theorem there exists b € #, b = b* and t € R such that
Y(b) > t while p(lab + Aba) < t forevery ac M, a = a* llall < 1. Let b= y}b|
be the polar decomposition. Then veM, v=1% |lv|| <1 and (b = vb = b,
hence ¢ < Y(b) < Y(1b)) < (b)) = @(Avb + 7bv) <'t, a contradiction. Thus,
there exists a, .4, with a, =af, ||la)]| <1, such that Y(x) = o(layx + Ixay),
(x €#). Since ¢ >0, it follows that Y(ar) =0, hencea=a e#,0 <a <1 and

) V() = oQax + Txa)  (xer).

Proposition. Let ¢ be an n.s. f- weight on the W*-algebra 4 and Vel ¥ <o.
There exists a unique a € M,,0 < a < 1, such that

Y(x) = o(ax + xa)/2  (xeM,).

Proof. By Coiollary 2.4 there exists a vector 5 €l andan operator T” & nq,(./ll)’,
0 < T" < 1, such that '

) V() = me(Iln)y  (xed,),
3) T'x, = m,(x)n (x eA).

Let { = T'n and ¢ = 2(4,, + 1), From (3) it follows that ned,, Sen=rn
and R, = T". Hence { eW,, S3{ = { and R, = T2, Using ([L], 10.11)-we infer that
¢ €U, and, since St{=1{and JodoJ;t = 4., we have S,¢ = &, Using ([L], Cor.
9.23), we get .-

&= S,¢ =27 414, + 1)L = S 2™ + ey 41,2 d1,

-0
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Since (2.12.(4))

v LAj;J¢<: = 43T, R T4, = _4%7' A,
it follows that
+oo
L= S 2(e™ + ey 4RI, T, 457 dt.
-0

Consequently, a = L, e.#, 0 < a < 1. Also, since JoT'J, = JoRJo =L,
we get (2.11) ¢(a) = @(J,T%/,) = | J % < +oo, hence a e M,. For x €M, we
have

W) = 2 (mex)nin)y = 2 (T'xglm)g = 2 (x,|T"n),
= 2(%,0p = (Xpl(dy + 1) )y = (x,18), + (x,|S%S,8),
= (%618)p + (€1Sp%0)p = (¥pla,), + (35l(x*),),
= @(ax -+ xa).
To prove the uniqueness assertion, assume that aeM, 0<a<l, and

¢ (ax 4 xa) = 0 for every x €,. Then {=a,eMU,, S,£=¢ and for every
ne€Z, we have .

(1 — 8y = €Sy = (S,&lSymy = (4,118),.

Since 4, = A% = [4,]T,]*, it follows that ¢ €D(4,) and 4, = — ¢, which is
possible only if £ = 0, as 4, is positive. Hence @ = 0.

6.5. In order to treat the general case of two weights, we recall ([L], 10.22) that for
any n.s.f. weight ¢ on the W*-algebra .#, the set

S =T, nFU)n &4

is a left Hilbert subalgebra of 9, equivalent with 9, and J8,=6,, 4:8,=C, and
4518, = 43. Note that
S, = D(In 4,).

Also, the following approximation result holds:
Jor every £ e D(4}*) n D(4,'7) there exists a sequence {&,} =S, such that

1) 458, — 43¢
Sor each a € € with — 1/2 < Rea < 12
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Indeed, since 4;Y%3, = &, is dense in ', there exists a sequence {{,} =S, such
that 420, — A”’é + 4z ‘/25 If —1/2<Rea<1/2, then the operator A"+“/2’ (+
+ 4 )‘1 is bounded and sends the vector AV + A1 into the vector A‘é Thus (1)
follows with &, = (1 + 4,)* (,,

Proposition. Let ¢ be an n.s.f. wetght on the W*-algebra M and  any weight on M
with Y <@. There exists a unique element a € #, 0<a<l, such that S,acN, and

x€@} »ax+ xaeM, and Y(x) = p(ax + xa)/2.

Proof. By Proposition 2.3 there exists an operator " €7, (#), 0 < T' <1,
such that
Y(x*x) = (T'x,|T'x,), (x eN,).

Since J,T'%J, € n (M), there exists be#, 0 < b < 1, such that n (b) = J,T'%/,.
Define an clement ac#H,0<a<1,by

400
- S 2 (€ + €)1 Aib A7 dt.

—00

Let x €S,. Then Jx, e S, = D(4,;') n D(In 4,). Using Proposition A.13,
it follows that

(ax*), = mo(@)d; "2 x, € D(4Y®) = D(S,
hence (2.12. (1)) xa e %R, and
(xa), = S,m,(a) Syx, = J,AVPn,(a) A1 x,
»
= J,m (b) %, — 2i PV S (& — €)M i (B)4;  x, it
Since =, () = 0, we get
Re ((x8),1%,)p = TppB) JpXolXp)y = (T"2%,|%,)qs

that is @(ax*x + x*xa)/2 = Y(x*x). The desired conclusion follows now by pola-

rization.
To prove the uniqueness part we consider an element a = a* e, such

that S,a = N, and @(ay*x + y*xa) = 0 for every x, y €S,
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Let X = J,n,(@)J,. Then, for x, y€&,, we get
0 = (x,1(1a),)p + (x2),1¥,),

= (X, Spmy(@)Se V) -+ (Sem(@)SyX ol V0o

= (X4;'x,|4Py,), + (X4 x,145,),.

‘Using the approximation result (1), for every &, g e D(43% n D(4 -9 we obtain

(XA;%¢1 43P n), + (XAYPE| 451 2), = 0 and by ([L], 9.23) it follows that X = 0,
ie a=0. S

We now consider some examples.

6.6. Let K be an infinite dimensional separable Hilbert space and consider the von
Neumann algebras £/ =B(H) @ 1, ® lyand N = BA) Q@ B(H) Q 1 » acting
on the Hilbert space # =" ® # ® A ". By ({L], 8.15) we know that each of the von
Neumann algebras 4, .#', 4", /"' has a separating vector. By the Dixmier-Maréchal
theorem ([77]; [L], C.3.5), the set of separating vectors of any von Neumann algebra
is either empty or is a dense G, set. We conclude that there exists a vector in # which
is simultaneously cyclic and separating for both .# and 4"

Thus, there exist von Neumann algebras # < /"< B(#), M # N, having
a common cyclic and separating vector &, € *.

Let A= A(A, &) and B = AN, &) be the associated modular operators
([L], 10.6). Then 4 and B are nonsingular positive self-adjoint operators in # such
that

Q) D(4'2) < D(BY2) and || BM2E|| = || A2¢]| for all & € D(AY?2)
but
) , B # A.

Indeed, for the corresponding S operators we have S(/#, &)< S(A, &) and, con-
sequently, for £ € D(A41/2) we get

| A2 = | J(A, Eo) S(M, E)Ell = || S(H, E)O) | = | S, Eo)é|

= [J(H5 &) S, L))l = |l BYE]],

hence assertion (1) holds. Also (2) holds, for if A = B then J(A#, &) = J(A, E)=J
and, since A4 < ", we obtain 4" < A’ and also M’ = JMT <IN T = N, thatis
M = A, a contradiction.

Consider now the canonical trace tr on %(3#) and the n.s.f. weights ¢ = tr,,
Y=trp on B(H) (cf. 4.4). From assertion (1) it follows that B< A and hence (4.5)

) ¥ <o,

*) Using the T-theorem ([L]; C.6.1) it is easy to see that this situation can occur
only if #, o, #’, &, are all infinite.
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while from assertion (2) we obtain (4.5, 4.8)

@ v # 0.
Also, we have ,
®) Y(x*x) = @(x*x) for every x € N,.

Indeed, from (1) it follows that the operator BY/2471/2 is defined and isometric on
D(A47112) so, by ([L], Prop. 9.24), the function « > F(x) = B*A™* satisfies condition
3.14. (ii).

This example shows that the equivalent conditions of Corollary 3.14 do not
insure that Y = ¢, and that in Theorem 6.2 we cannot omit the condition that yy com-
mutes with ¢. Also, the example shows that Proposition 6.1 is no longer valid if the
operator a is not assumed to be bounded. A

6.7. Consider again the canonical trace tr on 2(5¢), a non-singular positive self-
adjoint operator A in 5# and the n.s.f. weight ¢ = tr, on #(¢).

Let a € N, and xy={Q@ 7 with £ € D(4*) and n ¢ D(4/2). Then (4.23) x, € NE,
hence x,a € qu,, but ax, = af @ 71 ¢ M, hence ax, + x,a ¢ M,.

It follows that the assertion of Proposition 6.4 cannot be extended toall xe H.

In what follows we show that nor can the assertion of Proposition 6.5 be ex-
tended to all x € M,,.

By (A.149) there exist b € #(s7), 0 < b < 1, a non-singular positive self-ad-
joint operator 4 in 5 and a vector { € D(A‘l/z) such that, putting

+o0
6)) a= S 2™+ ™)1 44~ dt e .@(.9?"),
Z
we have 0 < a < 1 and ad™12{ ¢ D(AY?). Then, for n = A™1/2{ we have
n € D(4'?), an ¢ D(4'7).
On the other hand, for an arbitrary vector &, € D(471/2) n D(In A), the vector & =
= A712¢, has the properties (A.13):
‘ ¢ € D(AY?), ak € D(AR),
Consider the n.s.f. weight ¢ = tr, on Z(2#) and the operator x, = & ® 7.

Then (4.23) xo € M, and ax, = a ® i1 € M, but xea = & @ an ¢ M,,, hence ax, +

-+ xsa ¢ EUI
Usmg the same arguments as in ([L], 10.16. (1), (2), (3)) one shows that a weight

¥ on B(oF) is defined by

N Tpm(BY2) J(M2), |12, if y € M,

1€ B()).
+ o0, in the contrary case 4 Sl

YO) = {

5
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Since b < 1, we have ¢ < ¢. The element a defined by (1) is exactly the elé-
ment given by the proof of Proposition 6.5, that is, the unique element aec.#,
0 <a <1, such that G,a = N, and

xe @} = ax + xaeM, and Y(x) = ¢(ax + xa)/2,
but x, € M, and ax, + xa ¢ M.

6.8. We now give an example connected with the Radon-Nikodym type theorem of
Sakai ([L], 5.21), namely we show that on B() there exist an n.s.f. weight ¢ and a
normal positive form < @ such that  # ¢(a-a) for all ae H+.

Indeed, let {&,},em be an orthonormal basis of the separable infinite dimen-
sional Hilbert space #. Let A be the positive self-adjoint operator in J#, diagona-
lizable with respect to {£,}nem, such that

Aé, =né, (melN),
and let e € #(5#) be the orthogonal projection onto the linear subspace spanned by

the vector £ = Y, n'i, €.

Define ¢ = tr, and Y = tr,. Then ¢ is an n.s.f. weight on #(), ¥ is a normal
positive form on (#(#), and Yy < pase <1 < 4.

Assume that there exists a € #(o#)* such that ¥ = ¢(a-a).

Let nes#, ||nll =1 and f= 5 ® if. Then

Em (ad,anln) = lim tr(fad,af) = lim tr(4}2afadl?) = ¢(afa)
€0 e-0 £=0 .

= Y(f) = tr(efe) = tr(fef) = (enln),

hence ad,a =3 e. Since 4, 1 4, it follows that ad.ate. As 4 > 1, we have 4, =
= A1 +e4)* > (1 + &), hence a® < e. Since e is a minimal projection, we
conclude a = le with 0 €< 4 < 1, so that

IEIE = (e€l€) > (ad.alld) = X(A4LE) = 22 Y n7 (1 + en)?

tends to -+oo when ¢ — 0, a contradiction.

6.9. Let us denote by W, (#) the set of all n.s.f. weights on the W*-algebra .
For A €[0, +oc0] and @y, @3 € W (M) write

@2 < 01(4)
if there exists an .#-valued function F, defined and w-continuous on the strip {x € C;

0 < Re a<4}, analytic in the interior of this strip, such that F(it) = [De,:D¢y],
for every t€ R and || F(2)|| < 1 for every a € €, 0 < Rea < 4.
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Proposition. Let .# be a W*-algebra. For each 1 €0, +o00], the relation “@,<¢,(2)"”
is an order relation on W,,(#). :

Proof. Let S()) = {a € €; 0<Rea<i} and D()) = {a e C; — A<Rea<i}.

It is obvious that ¢ < ¢(4) for all ¢ € W ().

Let @1, @2, @3 € Wy, (M) be such that @5 < @y(4), @, < ¢,(1) and denote
by Fg,: S(1) — M, Fyy: S(A) — A the corresponding functions. Using the chain rule
{3.5) it is easy to check that the properties of the function F3: S(A) — A defined
by Fy(a) = F(a) Fiu(®), (x € S(3)), yield the relation ¢; < @1(4).

Let ¢y, @,, € W,,,(#) be such that ¢, <¢,(4) and @, <@.(1), and denote by
Fy: S(A) - M, Fyp: S(A) > A the corresponding functions. Let ¥ be an arbitrary
normal state on . and f;, = Yo Fy, fio = Yo Fy. By Corollary 3.4 we have

Fy(it)= Fyy(it)*, hence fo(it)=f,,(it)=f15(—it) for all € R, It follows that the func-
tion f,, can be extended to an analytic function, still denoted by fa1, defined on D(4),
and such that |f(«)| <1 (z € D(A)). Since f;;(0) = 1, by the maximum modulus
principle we get fo(@) =1 (€ D(A)). In particular, Y(Fy(it)) = fu(it) = 1 for
allz€ R. Since Y was an arbitrary normal state on .# we infer that [De,: Do,); =
= Fp(ir) = 1 (t € R), that is, ¢, = ¢, by Corollary 3.6.

By Corollary 3.13, the ordering ¢, < @, (1/2) is the usual pointwise ordering
Po(x) < ¢4(x), (x €A)*. On the other hand, the ordering ¢, < @, (1/4) for faithful
normal positive forms is studied in Proposition 3.18.
It is clear that if ¢, < ¢,(1) and p < 4, then ¢, < ¢,(u).
In particular,

1 92 < @1 (00) = ¢, < .

6.10. With the help of the ordering corresponding to 1 = co we can define a metric
d on the set W,, (/) by putting, for ¢,, g€ W, (),

d(@1, 92) = inf {6 > 0; @, < €%9,(c0), @1 < e’py(00)}.

By Proposition 6.9, d is indeed a metric on Wos (M),
By remark 6.9.(1) we see that if d(¢,, ¢,) < 9§, then

e~%,(x) < 0o(x) < pi(x)  (xe?).
Tt follows that for every x e 4+
(1) the function W, (M)> ¢ — ¢(x) is d-continuous.

Also, if @;, @, are faithful normal positive forms on .# and d(¢p,, ¢;) < 8, then
192 — @1l < 2 sup {loo(x) — @:(x)|; x A, ||x]| < 1}

< 2 max {é"—-— 1,1 —e"% < 4,
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hence
2 lor — @all < 4 d(@1, 02)-

Let @y, ¢2€ W,gy(#) and assume that d(p;, 9s) <6 < +oo. Then there
exist .#-valued functions Gy, Gy, defined and w-continuous on {« € €; Rea > 0},
analytic in {a« € ©; Re « > 0}, such that [|Gu(®)|| < 1, |Ge@)|l <1 and

Gy(it) = [D(Dz:D(edq’x)]t = e~i®[Dg,: Do4],,
 Gy(it) = [Do,: D(e%p,)] = e~ “[Dgy: Dgs],.

Taking into account Corollary 6.4, we see that the function For:@€ — A defined by

= (e, it Res <0
is entire analytic and we have
3 [Fa@] < &Red (2e @),
“@ : Fy(it) = [De,: Doyl,  (teR).

Thus, the relation d(py, @) < 6 is equivalent to the existence of an entire analytic
M-valued function Fy, satisfying (3) and (4)
To continue the study of the metric 4 we need the following

Lemma. For every ¢ > 0 and every r > O there exists 6 = (¢, r) > 0 such that if F
is @ Banach space valued entire analytic function with the property || F(0)|| < efRea|

- (e e @), then :

| F(@) — FO)|| < & for all «e @ with |o} <r.

Proof. Let o be the linear space of all entire analytic complex valued functions
equipped with the compact-open topology and denote by A'() the set of those f € &
such that | (o)) <e’iRe el for all & € €. Then each #'(6) is a compact subset of &/ and
NS ={xeC; |of <1} =24(0). On the other hand, D, r)={fed;

§>0

|f(@) — £(0)| < & for all « € € with |« < r}is an open subset of o and 2(g, r) o £(0).
1t follows that there exists & = & (¢, r) > 0 such that 2(g, r) > #(J) and it is easy to
check that this & = & (¢, r) satisfies the requirements of the Lemma.

Thus, l.fd((pl’ (P2) < 5 = 5 (69 r)’ then
) (| Fou(e) — 11| < ¢ for all ae € with |a| <.
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Moreover, for any other ¢, e Wasy (M) such that d(p,, ¢,) = Y < 400 we have
Fyo(@) = Fy(0) Fyo(®) (2 € C), and using (3) and (5) we obtain

© | Fao(@) — Fo(@)]] < se?’lR? “ for all « € € with |a| < r.

Proposition. The metric space (W, (M), d) is complete.

Proof. Let {@,},5, be a d-Cauchy sequence in W,ss(4). By (6) it follows that

... the sequence {F,},., converges uniformly on compact subsets of € to a function
3 Fogt €@ = M. Consequently, the function Fooo is entire analytic and the mapping
il Rt Fit)eU(#) isa o®-cocycle. By Theorem 5.1 there exists ¢, Woss (M)
<+ such that Fit) = [Dg,,: Dey), for every ¢ € R,

[ Let ¢ > 0. Since {p,} is a d-Cauchy sequence there exists m e IN such that
U5 N @ < e*Reei (x e €) for every n > m.
- It follows that

I Foom(@ | == 1| Foop(®) Fom(@) || = 1if'n [l Fo(®) Fom(@)]

F e = lim || F,,,(#)]] < eriRee
forall ¢ e C, that is d(¢y, ¢,) < & Hence A(Poos ©p) = 0.

6.11. Notes. Theorem 6.2 is a refinement, given in [269], of the Pedersen-Takesaki theorem
on the equality of weights [187]. Propositions 6.4, 6.5 and the examples in Section 6.7 are due
to van Daele [66]. The examples in Sections 6.6 and 6.8 are from [38] and [187]. The material
contained in Sections 6.9 and 6.10 is due to Connes and Takesaki [61].

" ":*For our exposition we have used [38), [61), [66], [187], and [269].

. §7. The spatial derivative

** In this Section we introduce a positive self-adjoint operator called the spatial deri-
vative of a weight ¢ on a von Neumann algebra#/ = %(s#) with respect to a weight
¢’ on its commutant 4/’ < B(), as a generalization of the modular operator. By
way of applications we give several continuity properties.

7.1. Let § be an n.s.f, weight on the von Neuman algebra & = B(#).
. A vector n e5# is called Y-bounded if there exists a constant 0 < 4 < 400
+ such that ||bn|| < 4 16y lly for every b e N,. Let

DY) = {ne#;nis Y-bounded}.

i We show that
() » D(s2, ) is a dense linear subspace of 5.
" Indeed, by Corollary 5.9 there is a family {n}xex < 5# such that y(y) = Y, Omilmy)
Re &

for all ye #"*. For each k € K we have N € D(#, §) as ||byli2 = (b*bn.in) <
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< Y(b*b) = [1b, 1 (beN,). On the other hand, it is clear that D(o7, ) is an
A-invariant lincar subspace of 5, so that the orthogonal projection fe B(X¥)
onto the closure of D(5¢, ¥) belongs to 4", Since fi, = 1, (k € K), it follows that
Y(1 — f) =0, hence f =1 since { is faithful.

Each vector 1 € D(5¢, ) defines a bounded operator RY: oy, — X, uniquely
determined, such that RY¥b, = by, (beN,), and its adjoint (RY)*:5° Xy, is
uniquely determined by ((RY)*&1by)y = (£[bn) for every be Ny, ex.

It is easy to check that

¥)) neD(H,y)andy € /' = y'ne D(KF, ) and RY., = y'R?

and that the operators RY:#,~ 52 intertwine the standard representation =, of .¥°
and the identity representation of A4":

3) n€D(#, ¥) and y € 4" = yRY = R¥n,(3).
Also,
@) n € D(H, ¥) = n € RUHy) = s(RYRDH"H

since if N, > b, 21 then RY(by)y = byn — 1.
Let #(#, ) be the linear subspace spanned in #(#’) by the operators of form
RY(RY)* with 5, { € D(o¢, ). Then

) F(, ) is an s*-dense two-sided ideal in N,

Indeed, the fact that #(, ¢) is a two-sided idealin ¥~ follows from (2) and (3).
Let y' € 47, y* # 0. From (1) it follows that there exists n € D(o¢, ) with y'n # 0.
Using (4) and (2) we get 0 # RY,(RY%,)* = y'RY(R?)*Y'* < [|RYI? y'y'*. Thus, for
every positive element & = y'y'* # 0 of & there exists a positive element ¢’ =
== Ry, (R}.,)* # 0 of the two-sided ideal #(5#, ¥) such that ¢’ < &". By ([L), 3.20) it
follows that #(o%, ¢) is s*-dense in 4.

Also,

every positive element in J(, ) is of the form Y R:k(R:’k )*
o]
withn, € D(, ¥) and neIN.

(©)
Indeed, let 5’ = ¥ RY (RE)* € J(#, ¥), b’ > 0. Then b’ = (&' + )12, so
k=1

0< z-lkgl (Rr(RE)* + RE(RY)*) =b' < ' = 2“% R+ (RY 4 )%
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Since 0 < b’ < ¢, it follows (1.4) that there exists 3’ € #” such that &' = y'c’y'*.
Consequently,

br=2" 1;-:'1 R;’,(”kﬂk)(Rg,(”ka))*.
Finally, we show that

there exists a family {n}, = D(#, Y) such that
7 —
™ -3, Ry (Ry)* =1

Indeed, since the two-sided ideal #(#, V) is s*-dense in 4", there exists a series of
positive elements in J#(H, ¥) which is s*-convergent to 1. Thus (7) follows using (6).

7.2. In the particular case when 4" = n,(#") = B(,), the operators Ry are just
the operators R, € m,(4")' considered in Section 2.12. If Y’ is the natural weight
on m,(4"), then (2.12. (7))

Y'(RER,) = (MD)y (1, { € Dy, ¥)).

In the general case considered in Section 7.1, the following similar result holds:
O] n, { e D(#, ¥) = (RY*RY €My and Y’ (RY*RY) = (11 D).

Indeed, due to the polarization relation ([L], 3.21) it is sufficient to consider only the
case { = n. Then let (R¥)* = V(RY(RY)*)!2 be the polar decomposition of (R7)*.
Using 7.1. (4) and 7.1. (3) we see that the partial isometry V:3f" — 5, has the
properties
V*Vn =n and my(y)V = Vy foreveryye 4.

Since Vnex, and m,(b)Vn = Vbn= VR!b, (beR,), it follows that Vne
€ D(3#,, ¥) and Ry, = VR}. Consequently, RY = V*Ry,, (R})*R} = R},Ry, and
Y'((RO*RY) = ¥'(RY,Ry,) = | Vlly = lInlP.

7.3. Consider now a von Neumann algebra # < £(3¢) with commutant 4" = .#'c
c B(); let @ be a normal semifinite weight on .« and ¥ an n.s.f. weight on 4.

We show that the function

q: D(#, ¥)>n > q(n) = ¢(RY(R})*) €[0, +o0]
is lower semicontinuous and has the following properties:
() D(q) = {n € D(3%, ¥); q(n) < oo} is dense in H#’;
() q(An) = A2 q(n) for all e D(o#, Y) and A€ C;
3 gtn + O + gt — O) = 2q(n) + 29(0) for all n, { e D(#, V).
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Indeed, by Corollary 5.9 there exists a family {{,},e; = o such that p(x) =
= Y (x¢l&) (x e#*). Then, for n € D(¥, ), we get
i

g = Y IRND*IE = ; bsg [((RY)*& 1By,

i

l)b*"*<l

= Y] sup [(b*In),
{ beER,
Wyl <1

hence g is lower semicontinuous.

Since @ is semifinite, N7 is s-dense in 4 so that the set {xy; x € NI, y € D, ¥)}
is total in & and contained in D(#, §). For xeN% and ne D(o#, ¥) we have
g(xn) = @(R%,(RY,)*) = @(xRY(RY)*x*) < ||RY[*o(xx*) < +o00, so that xn € D(g).
This proves (1), while (2) and (3) are obvious.

By (A.10) it follows that there exists a greatest positive self-adjoint operator
A(@/y) in o such that

@ D(4(p/y)'?) > D(g),

)] n € D(#, ¥) = || d(p/Y)*nli* = @(RY(RY)*),
gnd we have '
©) A(p/Y)2D(g) = A(@/P)'2.

The operator A(/y) is called the spatial derivative of the normal semifinite
weight @ on # c () with respect to the n.s.f. weight ¥ on 4" =.4' < B(F).
Note that if ¢ e 4, then D(q) = D(o#, ) and hence

Q) A(@/) 2D, ¥) = A(p/P)'2.
Using (5) and 7.1 (2) it is easy to check that
® s(d(e/¥)) < s(o),

but we shall see that in fact equality holds (7.4).

Let us compute the spatial derivative in a very simple case, namely # = 2(¢),
so that 4 "=.4'=C-1,. On # we consider the weight :A- 1, ~» 1. An arbitrary
normal semifinite weight ¢ on.# is of the form ¢ = tr, with 4 a positive self-adjoint
operator in # (4.10). It is clear that J#,=Cand |- 1ely=I4| (A-1e€N).
Also, D(#, y)=2 and for n€# we have RY:C 5 A+ An €, hence (RY)*: ¥ 3
53¢ (¢in) e €. Thus, RY(RY)* =n® ij and q(n) = @(R%(RY)*) = o(n ® 7) =
= || AV2||® (see 4.23), hence 4(@/{) = A. Denoting the weight ¢ by 1, we can write

the conclusion as follows:

©) Ar,))=A (M= BH), ¥ =M'=CT-lg).
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7.4. The main result concerning the spatial derivative is the following

Theorem (A. Connes). Let # < () be a von Neumann algebra with commutant
N =M < B(HK), ¢ ann.s.f. weight on M and  an n.s.f. weight on A". Then:

1) s(4(p/¥)) =1 and A(/Y)* = AW/9);

(2 o?(x) = A(@/)'xd(p/Y)™™  (xed, teR);
3 of(y) = Ae/)~"yA(elY)*  (ves, teR);
and for every normal semifinite ¢, on .M we have

1O | s(d(e:/¥)) = s(e1);

) A(@u/V)" = [Doy: Dol A(olp)*  (te R).

The proof is given in Sections 7.5—7.10.

7.5. For the W*-algebra 4" we have the identity representation 1: .4 — #(#) and
the standard representation m,:.4" — %(s#,) associated with . We consider the
direct sum of these representations

N o B(H D HY)
and the von Neumann algebra
n(N) < BH# D Hy).

Every operator T € B(# @ ) is a matrix

e (Tu Tm),
T21 T23

with Ty, € B(F), Tyo€ B(Hy, H), To € B(H, Hy), Ta€ B(o#,) such that for
any vector { €5 @ X,
-(2)
Lo

TC = (TuC1 + szCz).
Tyl + Toals

with {; €5#, {s e, we have

i
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| Define
" F(n,, 1) = {Xe B(H,, #); yX=Xn,y)forall ye x},

1
4 S, ny) = {Xe (¢, H#,); Xy=mn,()X forall yer}.

~ It is easy to check that

TG n(./V)' <> Tll G./V' = .//, le € J(Tt‘, ‘), T!l € J(', ﬂ‘), Tz’ € ﬂ’(m)'

: Let ' be the natural weight on n,(A4")" (2.12.(6)). Then the weight ¥’ on
' my(#)’ and the weight @ on .4 define an n.s.f. weight 0 = 0(p, ¥') on n (4)’

0(T) = o(Ty1) + ¥'(Ty)

| As for the balanced weight (3.1, 3.10) one shows that

(T en(A)).

of Tu 0\ _ [o?(Tw) 0 )
% (0 T”)—-( 0 a"(nz)) (]‘ll G«”, T’:GR‘(_/V‘))

- and that there exists a group of isometries {S7};em on the Banach space S(n, 1),
- uniquely determined, such that

0 T,\_ (0 STy)
"’(o o)_(o : ) (Tus € H(mp, ).
Recall (7.1) that RY € #(n,, 1) for all n € D(#, ¥).

 7.6. With the assumptions of Theorem 7.4 and the notation of Section 7.5 we have
the following

; Lemma. There exists an so-continuous unitary representation

: Ro> 1+ uf € B(F),

uniquely determined, such that

() of(x) = ufxu®,  (xe.M)

[0)) a7 =ul ! (yes)
&) ST(RY) = R;.,q (n € D(#, ).

Proof. The uniqueness of 1 follows obviously from (3). The proof of the
existence statement is divided into three steps.

7 - 707 3
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(1) If the Lemma is valid for a certain n.s.f. weight ¢, on A, then it is valid
for any other n.s.f. weight ¢ on ..
Indeed, it is easy to check that the mapping

R >t uf = [Do: Doy uf* € B(HK)

is an so-continuous unitary representation with properties (1) and (2). Also (3)
follows if we note that

Rje, = [Dg: Dol Ry, (1€ DK, ¥)
and that for 6, = 0(p,, Y') we have

. _ {[Do:Dgo], 0
[DO: DO, ( . 1) (teR).

(IT) If the Lemma is valid for some particular realization of 4 (that is, of .#)
as a von Neumann algebra, then it remains valid for any other realization.

Indeed, if we have two different realizations of .4#°, then the corresponding
von Neumann algebras are s-isomorphic. Since any #-isomorphism between von
Neumann algebras is.the composition of an amplification, an injective induction
and a spatial isomorphism ({L], E.8.8), we may consider separately these three cases.

The case of a spatial isomorphism is trivial.

The case of an amplification: we assume the Lemma is valid for the von Neu-
mann algebras A" < B(F), M = N < B(#); we have to prove it for the von
Neumann algebras 4/ @ 1 < £(#) ® B, AQBED)= WV <
< B(H#) ® A(*(I)), where I is an arbitrary set.

A vector n = {n}ie;in¥ ® ¢¥(I) = (I, #) is yY-bounded whenever
cach m, e (iel) is Yy-bounded and Y ||R;"|P < + oo. In this case the ope-

i .

rator RY:#, —» # ® ¢(I) acts as follows:
RO =Ry (Lest).

If ¢ is any n.s.f. weight on . and tr is the canonical trace on #(¢*(I)), then
Ep= £)§ tr (see 5.2 or 8.2) is an n.s.f. weight on # ® #(¢*()) and of =of ®1
te .

It is now easy to check that if {uf}, satisfies the requirements of the Lemma
for (N, Y; #, @), then {UP = uf ® 1}, satisfies those requirements for (/" ® 1, ¥ ;
M ® B, P).

Taking into account step (I) of the proof, it follows that the Lemma is true
for the von Neumann algebras & @ 1, # ® B(¢XD)).
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The case of an injective induction: we assume the Lemma is valid for the
von Neumann algebras & = B(¥), M =N = B(H#) and we have to prove it
for the von Neumann algebras Ne = B(eX), elle = (Ne) c HB(exH), where
e€ is a projection with the central support z(e) = 1.

It is easy to sece that D(est, ) = eD(5#,y)and that for ne D(e#,y)
. < D(#,y) the operator RY:, — eX is the corestriction of the operator
; R:: .** - .

L There exists an n.s.f. weight @ on # such that e e.##. Indeed, if / is semi-
' finite, we can take @ equal to any n.s.f. trace on . ; if A is of type III, then A4 =~
. = Mat,(e.#e) and we can take ¢ equal to the balanced weight corresponding to
- an arbitrary n.s.f. weight on e#e with respect to itself. With this choice of ¢,
the restriction of the weight ¢, (2.22) to e#e is an n.s.f. weight on e.#e; its modular
automorphism group is the restriction of the modular automorphism group of o.

If {u?}, satisfies the requirements of the Lemma for (4", ¥; 4, @), then ufe =
. ==euj as e €M and it is casy to check that {ufe}, satisfies the requirements of the
Lemma for (A'e, y; ete, ¢,).

Taking into account step (I) of the proof, it follows that the Lemma is true
for the von Neumann algebras #e, e/e.

(IIT) By (I)and (Il)itis sufficient to prove the Lemma assuming 4 = #,(4")
c B(H,), # = n,(N) and @ = {’. In this case the mapping

Ratrrul =A4,"€ B(¥,)

is an so-continuous unitary representation satisfying (1) and (2). Also, the weight
0 = O(¢p, ') is just the balanced weight, so that S = ¢f by 3.10.(1), and conse-
quently

ST(R) = of(R)) = 4;"R,dy = R,-v, = R,
which proves (3).

7.7. By Stone’s theorem ([L], 9.20), there exists a unique positive self-adjoint ope-
-rator A, in & with s(4,) = 1 such that u? = A% (¢ € [R). In this Section we show
that A(e/y) = A,, thus proving statements (2) and (3) of Theorem 7.4, as well as
showing that s(4(p/y)) = 1.
By Proposition 2.20, we obtain for every T € n(A")’ with 8(T*T) < + oo,
a bounded regular positive Borel measure p on (0, 4 o0) such that

0(7"0?(7')) = Sl" du(®), O(TT*) = S/’- du(?) < + oo.

‘ Let ne D(o#,¥) and Ten(W) with Ty =RY and Ty = Ty = Ty =0,
. Then, using 7.6.(3) and 7.2.(1), we get

Sl“ du(2) = Y'((RY)* STRY)) = Y'((RY)*Rle,) = (uPnln) = (Agnin)
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hence p is the spectral measure associated with 4, and nes#. Consequently,
-]

M) 4= S 2 du(2) = o(RY(RO*) =[|A(e/)' it (n € D(o#, ¥)).
0

On the other hand, we infer from 7.6.(1) and 7.6.(2) that the *-automorphisms
B(H)>z>ulzu® e B(H) (teR) preserve A, N > @, ¥, hence uPd(o/y) u®, =
= A(p/Y) (t € R), that is

(2 the operators A(e/y) and A, commute.

Now, the conclusions (1) and (2) imply that A(p/i)) = A, (see, for instance,
Theorem 6.2).

7.8. We prove that for two n.s.f. weights Vi, Y2 On A
0 Apl2)~"A(e/n)* = [Dyy: DY),  (teR).

To this end consider the balanced weight ¥ = 0(y,, ¥,) on the von Neumann
algebra Maty(#) ¢ B(# @ i) with commutant 4 = Z(¥ @ ) isomorphic

to .# by amplification, and the n.s.f. weight $ on .# corresponding to ¢ under
this amplification. Also, as in 3.11.(1), identify the Hilbert spaces Ky =Xy, D

e‘*’. @xn @‘#71'
It is easy to check that the vector n=n @ ne€X @ N is Yy-bounded if and
only if n, € D(o#, y,), n,€ D(#, ;) and in this case

W v
Ry = R R3O0 P Hy N D,

0 0 R: Ry
hence

GRIR)®) = @(RT(RT)*) + @(RI(RT)®).
A@N) = Alolin) ® A(olpy).

Consequently,

Using 7.4.(3) which has already been proved, we get

(?Dw,zum. g)=°" ((1) 8)

6 o) o)

- (Z(qo/w,)-"d(«p/w,)" g)
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7.9. We now prove that A(Y/¢) = A(e/Y).
Taking into account the argument in 7.6.(I) and 7.8.(1), we see that it is suffi-

cient to prove the above identity only for a particular pair of weights @, . Then
by the arguments of 7.6.(II), it follows that it is sufficient for the proof to assume
that & = n,(A) < B(HF,), M = n,(N) < B(¥,) and ¢ = ¥, In this last casc
equality is obvious.

7.10. To complete the proof of Thecorem 7.4, we still have to check 7.4.(4) and
7.4.(5). If the weight ¢, is faithful, this has already been done in Sections 7.7 and

7.6.(1). Since, by 7.3.(8), s(4(¢e,/{)) < s(p,), the general case follows by considering
the induction of 4~ by s(@,), as the restriction of ¢; to s(p,).#s(p,) is faithful.

7.11, Corollary. Let M < B(X) be a von Neumann algebra with commutant
N =M< B(K), ¢ an n.s.f. weight on M and \ an n.s.f. weight on N'. For
every £ € D(¥, ¢) and every ne€ D(X,Y) we have

I€Im* < @(RI(RD*) Y(RE(RY)®) < + 0.

Proof. Let 4 = A(¢/P), hence 4! = A(Y/p). Using Definition 7.3.(5) we
see that if either & ¢ D(47172) or 5 ¢ D(4"?) then the right hand side of the inequality
is equal to + oo, while if £ € D(4712) and n € D(4'2) the incquality follows from
the estimate |($in)|* = [(A71/25[ A'2)|t < (|4712E(R (142212,

7.12. Corollary (U. Haagerup). Let A < B(X) be a von Neumann algebra with
commutant A = M' < B(X¥) and R >t u,e€ B(X) an so-continuous unitary
representation. Then the following conditions are equivalent:

(i) there exists @ € W,, (M) such that of = Ad(u,), (t€ R);

(ii) there exists € W, (N) such that of = Ad(u?), (e R).

Proof. By symmetry it is sufficient to prove (i) = (ii). Let ¥, be an arbitrary
n.s.f. weight on 4. Using (i) it follows that

Rotrew, =uld(p/Yo)! €M’ =N

is a g¥*-cocycle hence, by Theorem 5.1, there exists an n.s.f. weight ¥ on A such
that [Dy: D), = w, (1€ R). Then

o7() = wo Q) w = ulyu, ek, 1eR).

7.13. Some computation rules for the spatial derivative are contained in the
following

Proposition. Let .4 < B(X) be a von Neumann algebra with commutant N =
=.M'c B(X), p, ¢, ¢ normal semifinite weights on M, ¥ an n.s.f. weight on N
and ae.# an invertible element. Then

(1) @1 < @ae> A(/Y) < AuY)
) d(p(a-a*)ly) = a*4(p/y) a
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and, if @y, ¢, €My,

6] Aoy + @al) = A@ufd) T A(@alt).

Proof. (1) Let gy, g, be the functions associated as in Section 7.3 with the
weights @,, @,, respectively. If @1 < @;, then we obviously have D(g;) = D(q,)
and ¢,(n) < gs(n) for any y € D(g,), so it follows that A(@/Y) < d@ofy).

Conversely, if A(p,/{)) < A(@o/th), then by 7.1.(6) we infer that @1(x) < @a(x)
for every positive element x € F(t, ). Since F(o#, ) is an s*-dense two-sided
ideal of M =" (7.1.(5)), any element x € .#* is the s*-limit of an increasing net
of positive elements in _#(o#, ¥) (IL], 3.21). Thus, the inequality @,(x) < @5(x)
remains valid for all x e+, since ¥1, @3 are normal,

(2) By 7.1.(2), for every ne D(#¢, ) we have an € D(#, ¥) and

Il (@*4(p/¥) a)'en|* = || A(p/y)2an|* = P(RE(RE)*) = o(aRy(RY)*a*).

Since a is invertible, it follows from the definition of A(p/Y) that a*4A(p/Y)a is
the greatest positive self-adjoint operator which satisfies the above equation; hence
it coincides with the operator A(p(a-a*)/y).

(3) This follows from the definition of the weak sum (A.11), using 7.3.(7).

7.14. The operators of form A(@/\p) are characterized by the following
Theorem (A. Connes). Let # < B(K) be a von Neumann algebra with commutant
N =M< B(H#)and  an n.s. Jf. weight on A", For a positive self-adjoint operator
A in #, the following statements are equivalent ; ’
(i) there exists a normal semifinite weight ¢ on M such that A — d(o);
(ii) A"y = 6%,(») A" for all yeN¥ and all te R;
(iii) 4'2D(A4'72) n D(o¢, Y)= A and, for any v, ..., N, € D(#¥, ), the
n

number Y. 142, i depends only on i; R:k(R,','k)‘.
ka1 kel

Proof. The implications (i) = (ii) and (i) = (iii) are obvious.

(i) = (i). If @, is any n.s.f. weight on ., then by (ii) the mapping R3¢+~
= AYA(po/Y)~ is a o®-cocycle; thus by Theorem 5.1 there exists a unique normal
semifinite weight @ on # such that [Do: D), = A¥A(ofh)~¥ (1€ R). By
7.4.(5) we get A(p/y)" = A" (1€ R), whence A — A(o/).

(iii) = (i). Assuming (iii), we infer from 7.1.(6), 7.1.(5) that there exists a
unique weight @, on #(¥, ¥) such that

M 0o@) = 3 [ 41| for 0 < a = 3, RRI)* € 58, 0).
kol -l

If {z}} = .# is a net such that z, 5 1, then

¢3] ?4(a) < lim inl; @o(zaz®),
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since the mapping & 5 { = [|AV2{|{* is lower semicontinuous and @o(zaz?) =
= 3 14¥ 2z 1.
k-‘For xeM* let
@(x) = sup {@y(a); ae #(F, ¥), 0 < a < x}.

We thus obtain a function @ : .4+ — [0, + co] with the properties

3) o) =29(x), @(x+) > () + @) (x,yel*, 1 >0).

Assume that x; 4 x in #+. By Proposition 1.4 there exist ziel, with [z, € 1,

such that x; = zxz* and 2y > 1. If a € #(o#, ) and 0 < a < x, then 0 < za2f <
< zixz* = x; and

@4(@) < liminf @y(z/a2*) < sup @(x)).
{ {

It follows that ¢(x) < sup @(x,), and hence ¢ is normal. Since FOF, ) is an
{

s*-dense two-sided ideal in ./, the elements of . * can be approximated by increas-
ing positive nets in #(o2, ). Since @ is normal and superadditive (cf. (3)) and since
@1 F(F, ¥) = @, is additive, it follows that ¢ is a normal weight on ./ such that

@ PRIRD®) = [ A"Pq[*  (neD(#, y)).
Now, by 7.1.(7) we see that ¢ is semifinite. Thus (4) is equivalent to

lid(@/p)Pall = | 4Pl (n € D(oF, ¥)).

Since each of the operators 4(p/y)12 and AV2 s equal to the closure of its restric-
tion to the intersection of D(¢, /) with its domain of definition, it follows that
A = Ao/Y).

7.15. The following Corollary characterizes the operators of the form 4(p/yy) with
@ €4, the assumptions being as in Theorem 7.14.

Corollary. For a positive self-adjoint operator A in X, the following statements
are cquivalent:

() there exists @ € M} such that A = A(o/);

(ii) A"y = o%,(¥) A* for all ye¥, teR, and there exists a SJamily {n,}
in D(o¥, ) such that

YRR =1 and ¥ [[AV,)2 < + oo
k

[
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(i) D(o#, ) = D(4'), AD(H, ) = AV2 and there exists a constant
0 <2<+ 0o such that for any ny, ¢y, ..., M $a € D(SF, ) we have -

. n |
§ miency| <l $ 1oy

.

Proof. (i) <> (iii). If 4 = A(p/Y) with ¢ e A4}, then (iii) is obviously satisfied
with 1 = [l¢]l. Conversely, if (iii) holds, then 7.14.(iii) holds also, and so there exists
a normal semifinite weight ¢ on 4 with 4 — 4A(p/Y). By the construction of @
and by (iii) it follows that le(a)! < Ajal| for every element 0 < a e #(7, ¥), hence
peAy and |lo|l = o(1) < A.

(i) & (iii) = (ii). This follows from 7.3.(7) and 7.1.(7).

(i) = (i). By Theorem 7.14 there is a normal semifinite weight ¢ on .#
such that A(p/y) = A and we have

e =3 o(R7(R7)*) = ¥ 422, < + oo.
k k

7.16. Let  be an n.s.f, weight on the von Neumann algebra/” = @(#). A closed
linear operator T in o, with polar decomposition T = u|T, is called homogeneous
of degree se R with respect to y, if ue A" and

ITi'y = a%) ITI*  (yes, teR).

Thus, the operators of form 4 = A(p/y) are characterized by Theorem 7.14
as the only positive self-adjoint operators homogeneous of degree s = — 1 with
respect to Y. For such an operator it is possible to define *‘the integral with respect
to Y by choosing any family {n,} = D(#, ) with YRR =1 (11.(7)

k

and putting
m SA dY = 3 4V, = g(1).
k

A is called *““J-integrable” if @(1) < 4+ oo, that is if A satisfies the equivalent condi-
tions of Corollary 7.15.

Exploiting these ideas, it is possible to develop a “non-commutative inte-
gration theory” by defining spaces L, Y), where LP(o#, ) is the set of closed
linear operators T on »# which are homogeneous of degree s = — 1 [/p with respect
to ¢ and such that |T)” is Y-integrable. As an example, we show that

) Te LXH#,y) = T* e LXF,Y) and Sm d¢=ST~Td.p.

Indeed, let T = ud = Bu be the polar decompositions of T with u*u = s(d),
uu* =s(B), A = |T|, B= |T*| = udu* (IL), 9.30). If {n,} is a family in D(or, )
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with 33 Ry (RE)*=5(d), then {{y=un,) is a family in D, §) with 3, R, (R,)*=
= s(B) and
\rreaw =(may = gusar= gianpe={ e ={rra.
We also record the followi’;g form of (l;:
3 Sd(wlw) d¥ = o(1).

7.17. Another important application of Theorem 7.14 is contained in the following

Proposition. Let ¢, {@,}iex be normal semifinite weights on the von Neumann algebra
M = B(H) with commutant N = M' = B(H) and Y an n.s.f. weight on A", If
ou(x) 4 o(x) for all xe M+, then

m ok (x) 5 of(x) for all x leJS(an) As(p,) and all 1e(R;
3] [De,: D1, L [De: D1), for all t€ W, (MA) and all teR;
3 A(¥) 1 d(olY).

Moreover, the convergence in (1) and (2) is uniform for 1| < t,.

Proof. Let 4, = A(@./¥), 4 = A(p/Y). Using 7.13.(1) and (A.5) we sce that
there exists a unique positive self-adjoint operator A in J such that 4,4 4 < 4,
hence (A.3)

A 5 A" uniformly for |t] < 1.

Since 4, are homogeneous of degree s = — 1 with respect to ¢, it follows that A
enjoys the same property and hence, by Theorem 7.14, there exists a unique normal
semifinite weight u on .4 such that A = A(u/yr). Since A < 4, it follows (7.13.(1))
that 4 < ¢ and since 4, < A we have @, < u. Hence u = ¢.

We have thus proved that (3) holds and that 4% =» 4" uniformly for [f] < f,.
Now (1) follows on applying Theorem 7.4, and (2) is obtained by applying (1) to
the balanced weights 08(g,, t) $ 0(@, t) on Mat,(.#) and to the clement ¢,, € Mat,(.4).

7.18. A similar result holds for norm convergence of normal positive forms:

Proposition. Let M4 < B(H) be a von Neumann algebra with commutant N =
=M< B(H), @, {Pu}nco Saithful normal positive forms on . and  an n.s.f.
weight on A, If {|@, — @l = 0, then

(1) af*(x) 5 6?(x) for all xe. and all teR;
@ (Dg.: D1), > [Do: D1), for all 1€ W,,{A) and all teR;
©) Al@u¥)" = Al@Ip)" for all 1eR.

Moreover, in each case convergence is uniform for lt| < t,.
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Proof. Tt is sufficient to prove (1). Indeed, 2) for 1 €A follows from (1)
by considering the balanced forms 16(,, 7) — B(p, 1)]|— 0 and then, for an arbitrary
T € W, (M), we can use the chain rule (3.5). Also, (3) follows from (2) using 7.4.(5):

A@al¥)" = [Do,: Dol Al 5 Apfu)t.

To prove (1) we may assume that ® = we, where £, €5 is a cyclic and sepa-
rating vector for .#. Then ([L}, Thm. 10.25) for each n <N there exists a unique
vector §, € Py, cyclic and separating for .#, such that ®» = we,. By ([L], Prop. 10.24)

we have
16s — &Il < ll@a — @2,

Let 4, = 4, 4, = 4., be the corresponding modular operators, and J = J;, = Je,
([L), Lemma 2/10.24) the canonical conjugation. For every x €.# we have

14:7x8, — AixEy || = ||J412xE, — JAxoll = (| X*E, — x%&,||
S Ixllies — ol*2,
hence [[(43* + 1) x¢, — (417 + 1) x¢,]| < 2l|x|l lipa — @*2 and
MR + 1) — (437 + 1)) (482 + 1) x&, ]
S IR + D (457 + 1) x&, — (422 + 1) %Gl + (x€, — xEQ)|
S 3ixllll@a — @lt2.
Since 43? = AYF|ME,, the linear subspace (4" + 1) ME, is dense in o ([L), E.9.1)

and since [|(41 4- 1)) < 1, it follows that 42+ 11 3 (4= 1)™* and hence
(A.3) 4if 5 4it uniformly for |t] < 1,. Consequently, for x €.# we have

o7(x) = Aix47" 5 Qiixdzit = o2(x),
uniformly for |t] < ¢,.
7.19. A related result is contained in the next Proposition.

Proposition. For each te R there exists a constant 0 < C; < + oo such that Jfor
cvery W*-algebra M and every pair @, ¥ of normal states on M with s(Y) < s(p)

we have
It — @([DY: Do) < CIy — ol
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Proof. If the statement is not true, then there exist I *-algebras 4, and normal
states @,, ¥, on ., with s(p,) = 1 such that

"q’n - '/’n” < 21“ - ¢n([D¢u: D¢n]l)l (" € N)‘
We have

O Y len—=¥ull < + 00

and, by repeating some pairs ¢,, ¥, if necessary, we may further assume that
@) Y. 1 — @ (IDY,: Dp,))| = + oo.

We may assume .#, realized as a von Neumann algebra 4, c 2(o¢,) with
cyclic and separating vector £, €, such that @, = wg,. By ([L], 10.24, 10.25) there

exists n, € #, such that y, = w,,, (1,/¢,) > 0 and
(3) ”"u - fn”’ < ”¢n - 'I’n“ (” € m)'

The infinite tensor product W*-algebra /4 = ®,(A,, ,) (sec A.17) can be
realized as an infinite tensor product von Neumann algebra acting on the Hilbert
space ) = ®,(5,, {»), and on this von Neumann algebra we have vector states

k -]
P=Q@,p,and &, = R V,® @ o,
Neal mek+l

defined, respectively, by the vectors
k -]
= ®,{y€¥ and 'l(k’=®'l.® e; l:nex‘
Ral mek 4

From (1) and (3) it follows that the sequence {n*'} is norm-convergent in ¥, so
that the sequence {#,} is norm-convergent in .#,. Taking into account the results
of Section 3.9 and Proposition 7.18, it follows that the sequence

[D®,: DP), = [Dy: D), ® ... @ [DY: Do), ® 1
is s-convergent in .#. In particular the sequence

II (D¥s: Dol &) = ((DF,: DI

is convergent, and hence

Z ” - ([Wu: D‘Pu]lf.‘fn)! < + oo,

contradicting (2).

7.20. Let @ be a normal positive form on the I¥*-algebra .#. Besides the notation
lixlle = lIX,lly = @(x*x)!* we shall also write [[x]lg = @(x*x + xx*)I%, (x€.4).
For a € .# we shall consider the commutator [q, ¢] = @(-a) — @(a-).
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Corollary. There exists an absolute constant 0 < C < o0 such that iffl isa
W*-algebra , ¢ a normal state on 4 and aedl, with |a|| < 1, we have

lo? (@)~ all* < CU+t])|[a, o] (reR).

Proof. We divide the proof into several steps.
(I) First, let a = ve.# be unitary. Then, using Proposition 7.19 for ¢ and
Y = @(v - v*), and the identity [Dy: Dg), = v*ap(v) (cf. 3.7), we obtain

lo2() — olif <2 CIE v, )2 (teR).
DO <a <172, then Ji(t ~ % gl < 2 i, .

Indeed, by induction over n it js easy to check that

a9l < nllal)|[a, o]l < n 2-7+1q, ¢l

and the desired inequality follows using the expansion

°° 272 -1 .. —nt 1)
l—a?)z = —I) an,
(I-a?) ”2_0{( ) il a

(IIN) If a = a* and |a|) < 1, then
log(@) — al} < 8 C}?|[a, ¢]|» (reR).

Indeed, et ||[a, @)l =c. We have 0 S(+a)/4<1/2. Putting v=
= (1 + a)/4 + i(1 — (1 + a)[4*)'2, it follows from (II) that llv, @) I <¢/2 and
lv*,0)ll<&/2; and, since v is unitary, we get from (I) that llop(v) — v} <2 C}re12,
llop(v*) — p* llg < 2C}?2, Thus, the desired conclusion follows, as (1 + a)/2 =
= p + p*,

(IV) Consider now ae .4, llall < 1. By applying (II1) for (a + a*)/2 and
(@ — a*)/2i we get

lle#(a) — aliy < 16 C}?| [a, o}|*? (re R).

For each 1 € R we define K(r) as the least upper bound of the numbers 1> 0
such that [jo,?(a) — ali; < 2 |la, @] I for every .#, @, a as in the statement of
the Corollary. Then the function R 3 ¢ 1 K(t) is lower semicontinuous, K(0) =0,
K(—1) = K(1) and K(t + 5) < K(1) + K(s), (1, s€ R). With these conditions it is
casy to show that C = sup {K(1)/(1 + Ith: teR} < + 0o and this proves the
Corollary.
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In particular, we obtain, as an immediate consequence, the implication (<=)
of 2.21.(2) for @ e}, Moreover, if {a;}, = 4 is a norm-bounded net, then

Q) lla;, @] | = 0 = (| a%(a)) — a,li§ O

uniformly for [t} < t,.

7.21. Notes. The results in this Section are due to Connes (35]), (45), [49]. An important part
of the motivation of [49] was the work of Haagerup [103], which included Corollary 7.12 and
several arguments used in the proof of Lemma 7.6. The proof of Proposition 7.18 is due to
Araki [7).

For our exposition we have used [7], [45], {49], and [103].

Non-commutative integration theory, initiated and developed in the semifinite case by Dixmier
[74] and Segal (214] has been extended to the general case by Haagerup [105). Introducing
the spaces £P(#, v) (7.16), Connes [49] proposed the problem of establishing the properties of
these spaces and their connection with the earlier theory of Haagerup [105]; this has been done
by Hilsum [119]. Another general approach is contained in the recent work of Connes [s1].

§8. Tensor products

In this Section we introduce the ten sor product of weights, starting with the tensor
product of left Hilbert algebras, and study its propertics.
8.1. Proposition. Let A, = o, be a left Hilbert algebra with associated operators
Sk’ S:, Jl) A‘, (k = 1,2). Thcn

A=A QU cH, N, =N,

equipped with the tensor product involutive algebra structure and with the scalar pro-
duct of X is a left Hilbert algebra with associated operators

()] S=850S, S$S*=5'@SHJ=4L0@J), 4=4,84;
we have

(3) Leoe, =L, ® Ly, (&€ D(S), &€ D(Sy)

o) Ruen = Ry B Ry (meD(S), nae D(S?)

@ £(9) = £91) ® £9,), &KQA) = KU} @ ALY

Proof. We begin by checking the axioms of a left Hilbert algebra ([L], 10.1.
(i)- (iv)) for U. In order to avoid notational complimuon_s, we shall write the sums
which define the clements of €U = A, @ A, without specilying summation indices.
Let &, my, {; €, and &2,z € U,
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(@) We have (3, & ® &) (N m @ ny) = ¥ SMm® &My = Y, Lety ®Le,n, =
=(% L ® L) (3,1, ® ), hence the mapping (Xm®m)» (L6 ®
® ¢2) (3;m ® n,) is continuous and

Lot = Ly ® Ly, (5%, &edl,).

(ii) We have
((Z 6H®E) (Z m®n)l (Z LG® {») = 2 & | &) oz | )
= Z (m l & D) (g é:ﬁ) = ((Z m ® ny)| (2 L® §2)’(ZC1 ® (o).

(iii) It is clear that 92 is dense in A and hence

£ = {Leoe,; &, €Ay, §eWy)e

= (L ® Lt &et,, G = 8 B £(3Ly).

(iv) We have (Z $ith @ Eama)* = Z Gim)* ® (Eam)* = Z S (&) ®
® Sy(Sem2) = (S, ® Sy) ( Y &m ® &ns). Since S, and S, are preclosed, it
follows that S, ® S; is preclosed ([L], 9.33)and S= S5, ® S

Thus, A is indeed a left Hilbert algebra, £(U) = £() ® £(A;) and S =
= $, ® S,. From ([L), 9.34) it follows that S* = S# ® S*. Then

TR =5 =58 8, = /41" B 14 = (), & J,) (41" B 417,
the last equality being an easy exercise. Since 47 Q 418 s a positive self-adjoint
operator ([L], 9.34), it follmis by the uniqueness of the polar decomposition that
J=J,®J, and 4'® < 417 Q 412; hence 4 = 4, ® 4,. The other assertions in

the statement are now easily verified.
Using Stone's theorem ([L}, 9.20) we obtain

) 4 = 4'® 4% (teR)
and then, by analytic continuation,
6) 4°=4; @ 42 (@e@).

We shall denote by 9, ® A, the maximal left Hilbert algebra A’ associated
with A,
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From (3) it follows that 2 ® ; < 2. On the other hand, we have

STIW,@A = SF @ SF W ® A = (SF[U) ® (579

=(SU) @ (571%) = $F @ S = 5°
and consequently ([L], Lemma 3/10.5)
™ AW A=A

i.e. A’ is the maximal right Hilbert algebra associated with the right Hilbert algebra
A @ A; = . Similarly, we get

) AW QU =, ® U,

By ([L], 10.4. (2)) we have &)’ = &(A'), so that from (4) we once again
obtain the result ([L], Thm. 10.7)

(20) ® L)) = £(U,) ® £L(Ay)"

8.2. Theorem. Let @, be a normal semifinite weight on the W*-algebra .4\, (k = 1, 2).
There exists a unique normal semifinite weight @ = ¢, ® @,on the W *.algebra
M =My @ M, such that

M x€BWMy, x,€My, =>x; @ x,€M, and @(x; ® x3) = y(x}) Palxy)
b)) s(¢) = s(@) ® s(g:) and af = o* ® oP* (1€ R).

Proof. Assume first that ¢, and @, are n.s.f. weights. To prove the existence
assertion we consider the standard representations m,:.#,— .‘?(J!’,‘) associated

with ¢, and the maximal left Hilbert algebras Uy, € Hy,, (k=1,2). Let A = U, @
®Y, c Hy, ® H,, =X be the tensor product left Hilbert algebra (8.1). Then
= 1mQ@ nyisa #-isomorphism of the W*-algebra .# onto the von Ncumann alggbra
£9m). 1f @y denotes the natural weight on £(20), then @ = @4 * 7 is an n.s.f. weight
on 4 and n:.4 — () can be identified with the standard representation asso-
ciated with ¢.

Let 0 < x;€ My, 0 < X3 My,. Then x}?e U, xi?e A, and

7 (0 @ x)' = Loy, ottt
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Hence _ _
o(x ® X3) = @u(n(x; ® Xp)) = ”(x}'z)w, ® (xﬁlez)v. 2

= 11 1%, 3,1l (x3%)o, 12, = @1(x)@s(xy).

On the other hand, using (8.1.(5)) we obtain
2(0f(x1 ® x3)) = A n(x; ® x,) 47
= (dom(x)457) ® (4¥,m, (x2)45)"
= m(oP'(x) ® (0P (x)) = 7 (67 ® o) (4, & Xg)).

Thus, ¢ satisfies conditions (1) and (2). If ¥ is another n.s.f. weight on
satisfying (1) and (2),  commutes with ¢ and coincides with ¢ on the ¢®-invariant

and w-dense »-subalgebra My, @ My, of A, so that ¥ = ¢ by the Pedersen-Take-
saki theorem (6.2).

If ¢, and g, are not necessarily faithful, we define ¢ = ¢, ® @, as an n.s.f,
‘weight on the W*-algebra efle, where e = s(p,) ® s(¢s), and then consider @ as
a weight on 4, i.c. ¢(x) = olexe) (x e M+).

If @, and ¢, are normal positive forms on the W*-algebras .#; and .4, res-

pectively, the normal positive form ?1 ® @; on A, ® M, is determined uniquely
by condition 8.2. (1) alone (see 3.9).

Let ¢ be an n.s.f. weight on the W*-algebra .4 and let tr be the canonical

trace on a factor &, of type /,. Then # ® #, can be identified with Mat,(4) such
that (see 5.2)

r® 1) (x) = ;?(xu) (x = [xy) € Mat, (#)*).

‘8.3. Recall (2.6) that for any normal semifinite weight ¢ on the W*.algebra .# there
exists an increasing net {¢,},¢, of normal positive forms on . such that ¢, t o,
ie. @i(x) t o(x) for all x e+,

Proposition. Let @,  be normal semifinite weights and {@},e,, {¥ Y€, increasing
.nets of normal positive forms on the W*-algebra M, N, respectivel_,v. If ot pand

Yty then o, @ ¥, 10 @ ¢

Proof. Indeed, {o ® gl/,},i 1.7€4 i8 an increasing net of normal positive forms
on 4 @4 and ¢, ® 'P;__S P ®Y for all iel, jeJ. Consequently, we define a
normal weight @ on # @ 4 by

0(2) = supy; (@ ® ¥)) @) =1lim;; (0, ® V) (z) (2 (M BA)).
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For aeM, n M+, beM, n #* we have
oa ® b) = sup,@@);(b) = sup,p,(a) supy,(b) = ¢(a) ¥ (b).

On the other, hand, it is easy to see that s(p,) t s(¢), s(¥,) 1 s(¥) and s(q:,@dz,) 1t s(w),
whence s(w) =s(p) @ s(¥). Moreover, by Proposition 7.17, for re[R,
XE€ ’Lg:s(o;:,) Ms(9)), ¥ GILE)JS(IPI)./V s(y,) we have

a7 (x) > of(x), 6¥I() > oY), oTI%U(x B y) S o(x BY),

hence oP(x®y) = of(x)®a!(»). Since s(p,) 1 s(p), s(¥)) 1 s(V), this equality holds
for every x es(p).#s(¢), ye:s(gl/)./V s(¥). Thus, the weight « satisfies 8.2.(1) and

8.2.(2), which determine ¢ ® Y; hence w =@ @ ¥, ic. 9, ® Y, 1 @ B ¥.

8.4. As a first application we obtain the distributive law for the tensor product with
respect to addition:

Corollary. Let @,, ¢, be normal semifinite weights on the W*-algebra .4 and  a
normal semifinite weight on the _W*-algebra . If @, + @, is semifinite, then
Pr1+0)®@ Y =0, Y + @2 @Y.

Proof. Let {ij,} be an increasing net of normal positive forms on 4" such that

[ . N
Assume that ¢,, ¢, are normal positive forms, Since the distributive law is

obvious for normal positive forms, we have by Prop_qsition 8.3,_(:;:l + ¢,)§ Y=

= sup, (P, ® @) ® ¥ = sup; @1 ® Yy +sup, @ =01 @V + 0,0 Y.
In the general case, let {,}, {¥/s;} be increasing nets of normal positive forms
on .# such that @y; t @y, ¥y, 1 ¥,. It is then obvious that @,; + @4, 1 @1 + @2 We

have, again by Proposition 8.3 and the first part of the proof, (¢; + ¢2) ® ¥ =
= Supy; (Pu + @) ® ¥ = supy(Py ® ¥ + @y; ® ¥)=5up; @, @Y +sup, ¢, Y =
=@V + .V

8.5. Another application concerns the relation between the tensor product and the
balanced weight:

Corollary. Let @,, @, be normal semifinite weights on the W*-algebra M and ¢ a
normal semifinite weight on the W*-algebra A'. Then 0(@,; ® ¥, 9: ® ¥) =
=0(p,,p35) @ Y as weights on the W*-algebra Maty(4 @ N ) =M @ N/ ® Mat,(C) =
~ Maty (M)QN.

X , increasing nets of normal positive forms such
that gff’?fq,f,‘;,{f?'l’,,{i:’}, .;Ew*i:gf the balanced weights ___i‘tmis obvious that
0(911,94y) 1 0(@4, @3); using Proposition 8.3, we get H(@y1, @;2) ® ¥ 1 0(91, @2) ® Y.

-7 3
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Also, we have 01, ® Y 1 91 ® ¥, 0@ Vi 1 9, ® ¥, hence (g, & Vis 9, ®
®¥) 100, ® Y, ¢, ® V). Since 0@11 ® 'ﬁg P2; ® Yy) = gﬁpm%j) ® ¥, for
all i, j, k (see 3.9), it follows that 6(¢, @ ¥, 0, ® ¥) = 0(¢1, 9)) @ Y.

8.6. If s(¢,) < s(p,), then, arguing as in Section 3.9, we infer from Corollary 8.5
that

[Dp: ® ¥): D, ® V)], = [Dgy: Dol ®s(¥) (e R).

Using the chain rule (3.5), we obtain the following general result:
Corollary. Let ¢,, ¢, be normal semifinite weights on M with s(92) < s(py) and yy, ¥,
normal semifinite weights on & with s(¥2) < s(,). Then
[D(g: @ ¥): Dy ® Y], = [Dgy: Dgyl, & [Dyy: DY), (1€ RR).
8.7. In particular, using Corollary 4.8, we obtain:

Corollary. Let ¢,  be normal semifinite weights on the W*-algebras M, N, respecti-
vel& and A, B positive self-adjoint operators affiliated to M®, N7, respectively. Then

A ® B is a positive self-adjoint operator affiliated to (A QN )*®¥ and

(¢ ® 'I')Ai'n =04 ® Y.

8.8. Let ¢, @), 0, {¢;} be normal semifinite weights on the W*-algebra 4 and
Vs Y1, Yy, {¥;} normal semifinite weights on the W*-algebra 4",
By Corollary 8.6 and Corollary 3.13,

(n ?1 < @y ¢1<¢z=¢x§¢1<¢z§'ﬁz-

Also, arguing as in the proof of Proposition 8.3,

¢3)] e teo, ¢1T¢=¢1§¢1T¢§¢,
and, by Corollary 8.4,
3 (¥¢l) 6 ( z, Y) = g P 5%

8.9. If o, { are n.s.f. weights on the I *-algebras.#, 4", respectively, and o € Aur ),
T € Aut (&), by the definition (8.2) of the tensor product weight and 2.22. (5), we get

@Y E®N=(p+0)B (Y * ).

More generally, arguing as in the proofs of Corollaries 8.4 and 8.5, we obtain the
following
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Corollary, Let ®:.l(; - .M, ¥: N, = N be normal completely positive linear map-
pings between W*-algebras and @, \y normal semifinite weights on .4, ., respectively.
If the weights @ @, \y = ¥ are semifinite, then

(P®Y)(PRY)=(p PO * ¥).

Recall ([204]; (236), 8.8) that the algebraic tensor product ¢ ® ¥ of two nor-
mal completely positive linear mappings extends to a normal completely positive

linear mapping @ @ ¥: M, @ N, = M QN .

8.10. While the equality of normal forms is equivalent to their equality on w-dense
subsets, the equality of normal weights is, as we have seen (6.2, 6.6), a more delicate
problem. The next result concerns the equality of certain tensor product weights.
Proposition. Let ¢ be an n.s.f. weight on the W*-algebra 4 and [ a normil positive
Jorm on the factor & of type I If \y is a normal semifinite weight on M ® F such

that  » (67 @ 15)=y(t € R), and there exists a o®-invariant w-dense »-subalgebra
2B of M, such that

Y(x*x ® y*y) = @(x*x) f(y*y) (xe B, yeF),

theny = ¢ @ f.

Proof. Let tr be the canonical trace on #. By ([L}, E.7.8) there ¢ exists a € F,
with @ > 0, such that f = tr,. Then ¢ @ tris an n.s.f. weight on # ® F, o7 *" =
=0 ®1,(tcR), p@f=(p ® tr),;,and Z @ M,, is a 0”*"-invariant w-dense
s-subalgebra of .ll.;" such that

¥(2*2) = (¢ ® tr)5, (2*2) (ze B2 Q@M,).

Since ¥ is c*®"- invariant, we conclude by Theorem 6.2 that ¢ = ® ). =
=9 ®f

8.11. Notes. Proposition 8.1 is duc to Tomita and Takesaki [24§]. The definition of the tensor
lé‘zod;m weight appears in [245] and [36]. The other results in this Section are from [70], [136],
9), [269).
For our exposition we have used [36), [229), [245]), and [269).



Chapter 1I

Conditional expectations
and operator valued weights

§9. Conditional expectations

In this Section we introduce a special kind of positive linear mapping, called a con-
ditional expectation, and give some applications to tensor products.

9.1, Let of be a C*-algebraand # < of 2 C*-subalgebra. ’

A linear mapping &:.of — & is called a projection if ¢(b) =b for every
be 2. In this case & - & = @ and ol >1.

A linear mapping &: of — @ is called @-linear if ®(ab) = P(a)b and P(ba) =
= bd(a) for everyac s/, b e A.

A J-linear projection @: of — @ which is also a positive mapping, i.e.
(A +) = B+, is called a conditional expectation.

Theorem (J. Tomiyama). Every projection of norm 1 of the C*-algebra sf onto the
C*-subalgebra & < o is a conditional expectation.

Proof. Consider ﬁrsi anorm 1 projection @: .# — A" of a W*-algebra .# onto
a W*-subalgebraA” < . Then ¥ isa W *.algebra and its unit element is a projec-
tion ey €. o ' : ‘

Let e be a projection in .4, put S=1— e, and assume that cither e or f is in
4. Forany x e, both ex and fx are then inA4" and for x, y €4 we have

lex 7 I = Iex + 5)® (ex + £5) Il = 1 x* ex + y*73 Il < llexli + 13-
So for 1eR, R : ' L
G+ 1 1O = If0ex + 1o ) IP < lex + Hoen)lt
< sl P @0 = llex]? + Blfoen.

As 1 is arbitrary, we have (1 — e) P(ex) = fb(ex) =0, i.e. P(ex) = ed(ex). Inter-
changing e and f, we have e (x — ex) = ed(fx) = 0, or eP(x) = ed(ex). Thus

o ed(x) = P(ex) (xe.l)
Putting x = 1, ey = @(ey)= exd(1)==(1). Let Y be any positive form on 4" and

I TR L LT
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¢ =y + . Since llgll < Y]l = ¥(es) = (1) < llp Il, by (L], 5.4.) it follows that
¢ is positive. Hence @ is positive and so sclf-adjoint. Taking adjoints in (1) we have

2 P(x)e = P(xe) (x e.4).

Since the W*-aigebra 4" is the closed linear span of its projections ([L], 2.23), by )
and (2) it follows that ®(yx) = y®(x) and #(xy) = (x)y for x €4, YEAX.

In the general case, when ¢: of — @ is a projection of norm I of the C*-al-
gebra &f onto its C*-subalgebra @, we consider the second transpose ¥ = ¢,
mapping of the second dual W*-algebra 4 = of** onto the second dual W*-al-
gebra A&7 = B** (A.15, A.16). Since o is w-densely imbedded in of** and @ is
w-densely imbedded in #**, we may identify 4" with a W *-subalgebra of .4 and then
¥Y:.#4 — A is obviously a projection of norm 1. By the first part of the proof, ¥
is a conditional expectation, which implies that its restriction @ = ¥ | is also
a conditional expectation. ,

9.2, Let of, # be C*-algebras. A linear mapping &: of — & is called a Schwarz
mapping if $(a)*P(a) < P(a*a) for all a e .
Note that if §:of — & is a Schwarz mapping and if a € of satisfies $(a)*®(a)=
= &(a*a), then for x € of we have
P(x*a) = &(x)*P(a), ®(a*x) = P(a)*¢(x).
Indeed, for x e sf, t € R we have
1(P(a)* P(x) + P(x)*P(a))
= ®(ta + x)*P(ta + x) — 1* P(a)*P(a) — P(x)*P(x)
< ¥((ta + x)*(ta + x)) — 1* d(a*a) — P(x)*P(x)
= P(a*x + x*a) -+ (P(x*x) — P(x)*P(x)).
Dividing this inequality by t20 and letting |¢] - + 00 we get
- P(a)*P(x) + P(x)*P(a) = P(a*x) + P(x%a).

Replacing a by —ia here and then multiplying by i we obtain
P(a)*P(x) — $(x)*P(a) = $(a*x) — P$(x*a);
our assertion follows from the last two equations.

In particular, it follows that a projection ®:.f — @ < o which is also a
Schwarz mapping, is a conditional expectation.
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Proposition. Every conditional expectation ®: 4 -~ B < of is a Schwarz mapping
and a projection of norm 1. If of is unital, then & is also unital and &(14) = 14.

Proof. Indeed, for any ae # we have 0 < ®((P(a) — a)*(H(a) — a)) =
= —&(a)*®(a) + $(a*a) and, since a*a < |la|® 1y, we obtain || P(a)|f =
= || P(a)*®(a) || < ||P(a*a) || < ||al?, hence ||P|| = 1. Also, by the preceding re-
mark, ¢(l4)P(a) = &(a) = P(a)P(1), so that &(l,) is the unit element of &.

A positive linear mapping &: & — # between C*-algebras is called faithful
ifforaceot, ® (a*a) =0=>a=0.

If &: .4 — A is a Schwarz mapping between W *-algebras, it is easy to check
that @ is w-continuous if and only if @ is s*-continuous; recall that in this case & is
called normal.

9.3. Recall (L], C.5.2; [11], [236]) that a linear mapping ®: &f — & between the
C*-algebras of and 4 is said to be completely positive if, for each n € IN, the natural
extension &,: Mat, (&) - Mat,(B) is a positive mapping.

If = B(¢), then Mat,(B) = B(#,) where #, is the Hilbert space direct
sum of n copies of #’. An element X € &(2#,) is positive if and only if (X¢ | & >0
for any ¢ = [§,,. . ., £,] €5#,. On the other hand, it is easy to check that every posi-
tive element of the C*-algebra Mat,(s¢) is a finite sum of matrices [a;;) € Mat, ()
with a,; = a*a;,(1 <, j < n), where a,, ...,a,€ . Consequently, a linear map-
ping ¢: &/ — B(#) is completely positive if and only if Y, (P(ata) &1 Ep>0

7]
for n-tuples ay, ...,a, e/, and &,, ..., E, € (n= 1,2, .. ..

It is easy to see that if # =@ ,¢,9,; and H(H)#, < H#, (i € I), then & is com-
pletely positive if and only if each of the mappings ®;: o 5 a > &(a) |, € B(H)

is completely positive.
Every i‘-algebra # may be regarded as a concrete C*-algebra 2 < @(o¢)

such that 2o == 5#; in this case there exist a direct sum decomposition # =

=@, e, and vectors £, € ¥, such that B¢, = X (i eI). Thus, in proving that a
linear mapping &: o/ — & is completely positive we may assume, without loss of

generality, that # < #(o¢) and #E = S for some Eesb.
Proposition. Every conditional expectation is completely positive.

Proof. Let ¢:of —» 2 < of be a conditional expectation and assume that
B B(F) with BE=o# for some Eei¥. Let g, e, x,€sf and E=P(x)E
(1< k < n). We have

IZI (‘p(al.aj) f}l $) = % (‘p(xt).‘p(“faj)‘p(xj‘f 1$)
= Y, (B(P(x)*aPa;® (x))E | &) = (8] P(x)*aa,P(x)) £ &) >0,
i7 T

as ®(x)*ara;b(x;) > 0 and @ is positive. Since BE = #, the above inequality

{
holds for arbitrary vectors &,, «..,&, €, hence & is completely positive.



CONDITIONAL EXPECTATIONS AND OPERATOR VALUED WEIGHTS 119

94. If @: of — B(F) is a completely positive linear mapping, the Stinespring the-
orem ([L], C.5.2; {11}, [236]) shows that there exist a Hilbert spacc X', a s-representa-
tion m: of — B(X') and a bounded linear mapping V:5¢ — o such that 1Vil=
= || P2, X is the closed linear space generated by n(.sf)Vo¥, and

&(a) = V*r(a)V (ae ).

The triple {=, ¥, X'} is uniquely determined by these conditions and is called the
Stinespring dilation of .
By means of the Stinespring dilation we obtain

M P(@)*P(a) < (|®]| P(a*a)  (ae);

soif | @]l = 1, & is a Schwarz mapping. If & is unital then ®(1) == V*V and ||®]| =
= | &)l

Again, using the Stinespring dilation, we see that if @,: o/, = @, and &,:
&y =+ 2, are (faithful) completely positive linear mappings, there exists a unique
(faithful) completely positive linear mapping @,@ce®P;: A, @cesy = H,@ce Hy
such that

(2 Bce?Py) (a; B ay) = Py(a;) ® Py(ay)
for a,esf,, a,esf,, and morcover
(2) (1P: ®ce Palf = [[Py] (Pl

It is easy to check that if ®, and ®, are conditional expectations, then $,® ce P,
is also a conditional expectation.

If : .4 — B(H) is a normal completely positive linear mapping of the IW*-al-
gebra ., then the Stinespring dilation x is also a normal s-representation.

It follows that if ,:.4, — 4, and &,: .4, — A", are (faithful) normal comple-
tely positive linear mappings between W*-algebras, then there exists a unique (faith-
ful) normal completely positive linear mapping @, ® Py: M, @ My = N, @ N s
which extends the algebraic tensor product mapping ¢, ® P, A, ® My~
-4 1® A ;. Note that 4, @ceH, is a w-dense C*-subalgebra of .4, @ .4, and the
restriction of &, @ P, to .4, @ce.H, is just D; @cs P,, s0 that

Q) 1) ® Pall = [|D,1]]| P,

If ®, and &, are normal conditional expectations, $, ® &, is also a normal
conditional expectation.
The extension of the algebraic tensor product mapping ¢, ® &, to the W*-al-

gebra 4, ® .4, is possible even if @,, P, are not normal:
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Proposition. (J. Tomiyama). Let D,: My — Ny, $g: My — N 2 be completely positive
linear mappings between W*-algebras. There exists a completely positive linear map-

ping &: M, @ My > Ny RNy, || D] = || By | B, I, suck that

P(x, 5 Xz) = Di(xy) 5 Dy(x2) (x1 ey, x, € 4,).

If &, and &, are conditional expectations, we can choose d to be a conditional expec-

tation,
Before we give the proof (in Section 9.7) some preparation is needed.

9.5. Lemma. Let &:. M — A be a completely positive linear mapping between the
W*-algebras M, N. There exists a completely positive linear mapping ¥: M - A
with ¥(1) = 1 such that

D(x) = P(I)2P(x)P(1)2 (xeA).
Proof. Let b = &(1) e '+, f = s(b) and let ¢ be any state of 4. The equation
Y,(¥) =@ +n ) 2o(x) (b +n )"+ o)1 —f) (xel)

defines completely positive linear mappings ¥,: # -+ 4 (ne IN).

Let ae, 0 < a < 1. Since 0 < P(a) < b, there exists ([L], E26) yes,
Iyl < 1, such that $(a)'® = yb'2, As b(b + n1y* 5 ; it follows that $(a)*(b--
+ 1)1 5 pf and the sequence {¥,(a)} is s*-convergent to the element ¥(a) =
=f*3f + ¢(a) (1 — f). We have b1 ¥(a)b'? = b y*yb'2 — P(a). If @ = 1, then
y =1 and ¢(a) = 1, hence ¥(1) = 1.

Since every element x € is a linear combination of elements 0 < a < 1,
it follows that the mappings Y, are pointwise convergent, with respect to the s*-to-
pology on 4, to a completely positive linear mapping ¥:.# — 4" with the required
properties.

9.6. Let I be a directed set. The space of all bounded nets {f(i)},e; of complex num-
bers is just the C*-algebra %() of bounded functions on I. For each i € I, the equa-

tion
A(f) = M) (fe B())
defines a positive form A; € #(I)* such that ||A,]| = 1. Since the closed unit ball
of A(I)* is o(B(I)*, B(I))-compact, it follows that the intersection
N {A,; Jj>ilecB()*
tel

is not empty. An arbitrary element A in this intersection will be called a Banach
limit with respect to I. For fe B(I) we shall write

A(f) = LIM, f{i).




CONDITIONAL EXPECTATIONS AND OPERATOR VALUED WEIGHTS 121

The properties of the Banach limits follow immediately from the fact that 4 is a
positive form of norm 1 on #(I). Moreover, we have LIM i) = lim, Ji) whenever
lim, f{i) exists.

Consider now a norm-bounded net {x;};e, = #(). The mapping
H X H >3, ) LIM; (x{|n)is a bounded sesquilinear form on 2, so there
exists a unique operator

x = LIM,x; € #(oF)

such that (x¢ | n) = LIM, (x;£ | n) for &, nesr.
It is easy to check the following properties:

¢)) LIM; (x, + y) = LIM; x, + LIM,y,,
2 LIM, (x) = (LIM x))*,

3) LIM (axb) = a(LIM,x )b,

@) x,'—'g’x=>LIM, X=X

Also, using the Hahn-Banach theorem we see that

©) [ if & < B(X) is a wo-closed convex set and x,€e X

whenever i > iy, then LIMx,e Z.
9.7. Proof of Proposition 9.4. We divide the proof into three steps.
(I) Let &:.4 — A4 be acompletely positive linear mapping between the W*-al-

gebras 4, 4 and 1:F — & the identity mapping on a factor & of type I. Let {e,}, e
be a family of minimal projections in & with ; e = 1, put I = {Jc K; J finite},

e, =kg ¢, for J € 1, and let LIM be any Banach limit with respect to /.
€
Since e,Fe, is finite dimensional, we have ([L], 3.17)

( 59)(./15?’) (I1Qe)=MBe;Fe,=M @e,Fe,
and so we can define a completely positive linear mapping
P M @F - N @F, |5, <&, by
)= 1)({(1Be)x(1®e)) (xe. ®F).

Now, using the results of Section 9.6, we obtain a completely positive lincar map-
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ping &: M @F - ¥ @ F, | B < ||, by putting
P(x) = LIM,B,(x) (rel ®F).

Since ¢, 11 in &, for ae M, be F we have

$(a ® b) = LIM, (6(a) ® e,be;) = w-lim, ($(a) ® e;be;) = & (a) ® b;
thus & extends the algebraic tensor product mapping & ® 1. . .

Ifd i_s_a conditioial expectation, then ||®|| = ||#|| = land,as1 ® et1I®l,
for ye /' @ F c M @ F we obtain

$(y) = wlim,; (® ® L)((1 ® ey (1 ® e))) = w-lim,(1 B e)) )1 B e)) = y;

it follows by Theorem 9.1, that & is a conditional expectation,

(IN) We assume that &,(1) = 1, ®,(1) = 1 and assume My < B(HY), My <

S B(# ), Ny € B(Ny), Ny < B(XH,) realized as von Neumann algebras. By (I)
there exist completely positive linear mappings

Gt My, ® B(H) >N, ® B and By BH) DMy » BH D BN,

which extend the algebraic tensor product mappings &, ® 1, and 1, @ &,, respec-
tively. Let us show that

X €My @My = B(x) €Ny @M.
Indeed, let x; €.#,. Since &,(1) = 1, we have
$i(1 ® x)* F,(1 ® x)= F,((1 B x)*(1 B x).
Using 9.4. (1) and the first remark in Section 9.2, we obtain
() (1 @ x) = B, ®x)= &,(x(1 B xP)=
= (1 ®x)x) = $,(1 ® xD) $,(x) = (1 B x)E,().

Tt follows that $,(x) €¥"; ® .#,, as asserted.
Similarly,

YN, ® My = Dy(y) €Ny BN .
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Thus, P = $,- 5,:/1, @Jl,.-» N ®@N, is a completely positive linear
mapping which extends the algebaic tensor product mapping ¢, ® ®,. If ®, and
9, are conditional expectations, @, and ®, are also conditional expectations, and so
@ is a conditional expectation.

(ITT) The general case of Proposition 9.4 now follows easily using Lemma 9.5.

9.8. _I:ct A and A" be W*-algebras and ¢ €./, Since & = (A",)*, for every x €
€4 @A there exists a unique element E(x) 4" such that

VEHD) =(@®¥W)(x) (et
It iseasy to check that E%:.# ® 4" — 4 is a w-continuous linear mapping,
HEZH = llell, and
) ENa®b)=o¢(@b (acH,bex).

Using the w-continuity of E% and the w-density of .# ®4 in A4 @A, from (1)
we infer that

e)) E(1®b)x(1®c)=bES (xX)c (XeM BN, b, ceN).

If ¢ €4, is positive, ES. is also positive. Identifying 4~ with 1 ® 4" by amplification,
it follows that if ¢ is a normal state on M, then E% is a normal conditional expec-
tation of M @ A" onto 4. The family of conditional expectations {£%; ¢ normal
state on ./} is separating in the following sense:

3) for every 0 # xe.Ml ® N there exists a normal
state ¢ on M4 such that ES (x) # 0.
From () it follows that
@ E},=¢ ®ir
in the sense defined in Section 9.4, where 1. denotes the identity mapping on A",
In view of their similarity to “partial integration™ procedures, the mappings ES

arc also called Fubini mappings.
If @ e}, then for every normal semifinite weight ¢ on. 4~ we have

4 VEH)) = @BY)(x) (x4 ®AN)*).

This can be easily verified from the definition of E%, using Corollary 5.8 and Pro-
position 8.3,
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The next result is equivalent to the commutation theorem for tensor products
([L], 10.7): o _
Proposition. Let M4 < B(H), N < R(X') be von Neumann algebras, and let & <
< B(H# ® KA') be a von Neumann algebra such that ## @ N < and EZ (P,
ES (&) < M for every ¢ EB(H )y, Y €B(H )y. Then F=MON.

Proof. Let xe& and o’ e ", For p e B(H)ys Y € B(H),, We have
(0 ® V) (@ B 1)x) = p(EG (@ B 1) x) = 9@ ES e ()
= ¢(E50e)(%)a") = ¢(Efe) (x(@ @ 1)) = (¢ B ¥)(x(@’ @ 1)),

hence x commutes with o’ @l. Similarly, for ' e#”’, x commutes with 195
Thus, xe (' QN'Y =M QN .

9.9. Corollary. Let 6: G — Aut (M), T:5F - Aut g:V ) be actions of the groups G, H
on the W*-algebras M, X, res;ie_ctively, am{let 6®t:G X H Aut (M QN ) be
the tensor product action, i.e. (¢ ® 1),,, = 0. ® 14(g € G, h € H). Then (M @ N) " =

=.M° QN

Proof. Clearly, #°@N < AN )7®r, Now let x'e AN Yoo, oM,
and /1€ H, and denote by ec G the neutral element of G. For ¢ €4, we have

VEEH) = (0 B Y+ ) () = (0 BY)((e. B (x)
= 0 BY @) = W(EH), |

hence 7,(E% (x)) = E% (x). Thus, EY (x) € #7. Similarly, E%(x) € .4° for % ,.1
By Proposition 9.8 it follows that x e.#° ® 4.

We obtain the next two results from Proposition 9.8, in a similar manner. L

9.10. Corollary. Let ¢, ®# be maximal abelian *-subalgebras of the W*-algebras
M, N, respectively. Then of @ & is a maximal abelian »-subalgebra of the W*-ql-
gebra M QN I
9.11. Corollary. Let M, < B(KH), My = BH), N = B(X), N = B(X) be von
Neumann algebras. Then M, QN 0 M,y QN s= (M1 N M) RNy N N)).

9.12. The next result is a characterization of tensor product ¥ *-algebras:

Theorem. Let R be a W*-algebra and M, ¥ = R W *-subalgebras with the properties:
(i) R is the W*-algebra gencrated by 4 and & ;

AR i Yrrrrm——
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(ii) ab = ba for everyac M, beN";

(iii) there exists a family {E,},e of w-continuous A -linear mappingsE;: R — 4,
such that;
a) E@eC:1 for aecd,icl,
(03] xeR, E(x*x)=0 forall iecl=x=0.

Then there exists a *-isomorphism &: M QN — R such that

P@a® b) =ab (aed,ben).

Proof. From the assumptions it follows that the family {Efa-); ac .4, ic !}
consists of w-continuous A"-linear mappings satisfying (1), and the condition

xeR, E(ax) =0 foraed,icl=x=0.
Thus, we may assume that the family {E,}, ¢, is separating, that is
xeR, E{x)=0 forall iel=x=0.

In this case the set {y < E;; iel, y €N ¢} is total in A,
From condition (1) it follows that for cach i € / there exists @, €.#, such that
E(a) = @[a)-1 (ae#). Since the family {E,},¢; is separating, the set {@; i€}
is total in ., and hence the set {p, ® ¥; i ], ¢ A"} } is total in (A @ N ).
Let & =.#, be the linear subspace generated by {@,; i € I}. For ¢ = Y ipeF

{
let E? = Y, J,E,. Then the sets {p @¥; 9 € F, Yy eN {} (M ®N), and {y-E7;
[]

PeF, yeN}}lcR, are dense linear subspaces and, for every pe¥, Y en¢,
we have .

G WeES W E)|Al=sup{|(¥oE*)(a)|; ack, (] <1}
= sup {IW(1)e(a) |; ac4, [lall < 1} = @[} =lp @V
moreover, if a, €4, byeN (1 < k < n), then
L W - E) (X ab) = @BV (L 0 ®b).
Using (ii) and (4) we sce that the equation
o ;; a,®b) = };, ab,
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defines a x-isomorphism of the *-algebra .# ® 4" onto the *-subalgebra of # gene-
rated by # y A Furthermor& using (3) and (4) we have ||®,|| < 1. Since D, is
bounded and (y* E?)- P, = ¢ @ Y(p € F, Y eA ), it follows that for any 0e &,
the linear form 6 - @ on . ® A" is w-continuous. It follows that @, is w-continuous
and so can be extended to a normal *-h_c_;_momorphism bof M QN onto the whole
of #, by assumption (i). If xe.#/ ® & and D(x) =0, then (p @Y)(x) =
= - E?)(P(x)) =0forall pe&, yeAN +» S0 that x = 0. We conclude that
P:M QN - R is the required #-isomorphism.

9.13. If, in Theorem 9.12, R is a factor, the conclusion remains valid assuming (i), (i)
and the weaker condition .
(iiig) there exists a non-zero w-continuous N -linear mapping E: R - A
Indeed, let I = .# X # and, for i = (a1, a;) € 1, define

E(x) = E(a,xa,) (x € R).

We thus get a family {E},¢, of w-continuous A -linear mappings E;: R - 4. If
ac, E(a) e/ commutes with the elements of .# and for any b e 4" we have E(a)b==
= E(ab) = E(ba) = bE(a), hence E(a) belongs to the centre of the factor #. It follows
that the family {E,},¢, satisfies condition 9.12.(1). On the other hand, it is easy to
check that the set # = {xe #; E(x) =0 forall i e I} is a w-closed two-sided ideal
of #. Since E # 0 we have #.% # and hence § = {0}, as @ is a factor. Thus, the
family {E},¢,also satisfies condition 9.12. (2). Hence , our assertion follows from
Theorem 9.12,

9.14. For a subset 4 of the W*-algebra .# we shall denote by
AN M= {xed;xy=yxforall yeN}

the relative commutant of A" in M. If N =A* ' 0 Misa W*-subalgebra of ./.
We record here an obvious consequence of Theorem 9.12:

Corollary. Let 4 be a W*-algebra and N =4 a W *-subfactor of M, 1 y = 1 4, such
that M is generated, as a W*-algebra, by ¥ and A n M » and such that there exists a
Jaithful normal conditional expectation E: M — N Then there exists a *-isomorphism

¢:.A"§(.A’" N ) - 4 such that

Pa@b)=ab (aeN,beN’ n.4)
9.15. Let .# be a W*-algebra and & < ./ a unital W*-subalgebra which is a factor
of ty}:;nlc.e F is »-isomorphic with some #(o¢), there exists a system of matrix units
{ei}1, jer in &, that s,

ey =% eyon = o6, G, j h kel,
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the e;; (i € I) are mutually orthogonal minimal projections in &, and

'g ey = 1.

Let 1 €7 be a fixed index. Every element a € & determines a scalar matrix
[a;)] satisfying

€1 aep = ayeyy G, jel),
and we have
a= ; €; ae;; = g: €110y AC; 0y = ; a;€44.

On the other hand, w-continuous linear mappings Ey: il - F 0 M are
defined by
Eu'(x)= ¥ L’“xcﬁ (x 6.//, l',jE l)

with the properties:

M E(xb) = Ei(x)b, E,(bx)=bE,(x) (xeM,beF’ n .4),
@ Efa)=a, 1 (ac¥),
(3) % euEU(x) =X (x GJ/).

It follows that .# is the W*-algebra generated by & and #' n .4. Morcover,
by Theorem 9.12 we have a canonical s-isomorphism

@ P:FQF 0 MM

such that &(a ® b) = ab for every ae #, be F' n M.

Note that the Fubini mappings  ® (#’ n .#) —» & give rise to a separating
family of normal conditional expectations of ./ onto F (sec 9.8. (3)). »

Also, the mappings E;;: # — ' 0 . (i € I) are normal conditional expec-
tations. 4

If & is of finite type I, (n € IN) then 7 = {1, ..., n}, and the mapping

(5) E=LlSE -5 nu
n jai

is a faithful normal conditional expectation. Identifi'ing M with F @ (F' n &)
via &, it is easy to check that E = u ® 1, where u = — tr is the normalized trace on
n
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F and 1 is the identity mapping on #’ n 4. Also, for every finite trace t on
we have

6) T E=n1

9.16. As an application, we obtain the following factorization result:

Corollary. Let 0: G — Aut (#) be an action of the group G on the W*-algebra 4
such that the centralizer #M° is properly infinite and let & be the countably decompo-
sable infinite factor of type I. Then there exists a *-isomorphism

M, 0) x (M BF, 6 ®15).

Proof. By assumption, we may consider & as a unital W*-subalgebra of #£° <
< .. By the preceding Section we may identify # with & & (F' n 4) via the
*-isomorphism @ (9.15.(4)). Since F < .#°, we have also o (F'nM)=F" nA
(g € G), and hence (A, 0) = (F @ (F' M), 15 ® (o | F' 0 M)). Since (F, 15) ~
% (F @ F, 15 @ 15), it follows that (A, 0) ~ (X B F, ¢ @ 15).

9.17. A related factorization result concerning weights on W*-algebras is the fol-
lowing

Proposition. Let ¢ be an n.s. f. weight on the W*-algebra # such that the centralizer #*
contains a unital W*-subfactor & of type I. Then there exists an n.s. f. weight  on
F' NM such that 6 = 6P} F' n le (t € R), and there exists a *-isomorphism

(A, )= (F @ (F' n M), 1r ).

Proof. By Section 9.15 we may identify .# with & ® (¥’ n ) via the -iso-
morphism ¢(9.15.(4)). Also, we shall use the notation {ey} = F and E;: M -
~ F' 0 M of Section 9.15. L o ~

The mapping y: (¥’ n .#)* 5b ~> (e,d) €[0, +00] is a normal weight on
F' nMIfbe(F' n.A)* and Y(b) =0, then e,;b = O because @ is faithful. It

follows that e;b = e,.e;,be;; = O for all ief and hence b = Y exb=0. Thus ¢
[]

is faithful. Since ¢ is semifinite, there exists a net {x,} = M, n .4+ such that x, = 1.
Then b, = Ey(x,) €(F’ n)*, b, 5 1 and Y(b,) = P(enEn(x)en) = @lenx,e) <
< +oo,ase, € F < .M* (2.21.(2)). Hence ¥ is an n.s.f. weight on F' n 4.

For each be(F' 0 #)*, the mapping 7,: F+* sar+g(ab)e[0, +co] is a
normal weight on &. Since # < .#°, by 2.21.(2) we see that 7, is actually a normal
trace on %, and hence 1, = A(b) - tr, with 0 < A(B) = 7,(ey)) = elepd) =y ®) <




CONDITIONAL EXPECTATIONS AND OPERATOR VALUED WEIGHTS 129

< +oo. Consequently, for ae F+, be(F' n #)* and 1€ R we have

@(ab) = Y(b) tr(@) = (tr @ ¥) (ab)
and
(tr ®Y) (o7(ab)) = (tr ® ¥) (ao?(5)) = tr(@)(o?(b))

= tr(@)p(ens? (b)) = tr (a)p(o7(e1,))
= tr(a)p(end) = tr (a) Y(b)

= (1r @ ¥) (ab).

Using the Peg_c_:rsen-’l‘akesaki theorem on the equality of weights (6.2) we conclude
that o = 1r @ . N
Since of = 0{’®¥ = 15 @ o (8.2), it follows that of = o?|F' n.A for 1€ R.

9.18. A normal semifinite weight @ on the W*-algebra 4 is called of infinite multi-
plicity if the centralizer #? is properly infinite.

Corollary . If ¢ is a normal semifinite weight of infinite multiplicity on the W *-algcbra ./,
then there exists a s-isomorphism:

(M, )= (MRF, pB1r)

where F is the countably decomposable infinite type I factor.

Proof. Since #? is properly infinite, wehave #/® > of @ B withs! = B ~ F.
By Proposition 9.17 there exists inormal semifinite weight  on &’ n .4 such that
(A, ¢) (A (L' M), tr@Y) and (&' n M) > B. Thus, there exists a
W*-algebra 4" and a normal semifinite weight ¥ of infinite multiplicity on 4" such

that (/, @) =~ (F ®@.4), tr @ ¥). With the same argument we find a IW*-algebra 2
and a normal semifinite weight 0 on 2 such that (¥, ¥) = (F @2, @0). Since
(F®F, r@tr) ~ (F, tr), it follows that (A, o) 2FRF R r®dren~
= (F @2, tr®0) and therefore (A, ¢) = (F ®.4, tr ® ).

9.19. Notes. Conditional expectations in a non-commutative setting were introg!uoed by Dixmier
[72], (73}, [74) and Umegaki [259]. The main results (9.1, 9.4, 9.6) concerning projections of
norm one are due to Tomiyama [252~-257]). Theorem 9.12 and its consequences 9.13, 9.149)
appeared in [168), [242], [255]. The simple proof of Theorem 9.1 appeared also in a course
by E.C. Lance. Thanks are due to Simon Wassermann for mentioning this fact and for
further simplifications of our proof.

For our exposition we have used {61), [181], [225), {236], and [255].

Theorem 9.1 allows an easy proof of Sakai’s characterization of von Neumann algebras
as W*-algebras (A.16). Further properties of conditional expectations arc contained in (255),

P-c. 707
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§10. Existence and uniqueness
of conditional expectations

In this Section we give several criteria for the existence and uniqueness of condi-
tional expectations, and some applications to the type theory of W*-algebras.

10.1. Theorem. (M. Takesaki). Let A&~ be a unital W*-subalgebra of the W*-algebra
# and ¢ an n.s.f. weight on #. The following conditions are equivalent:

(i) the faithful normal weight @\ A"+ is semifinite and oP(N) =N for every
teR;
(i) there exists a faithful normal conditional expectation E: 4 — N such that

o () = ¢(E(x))  (xeH*).

Condition (1) determines uniquely the faithful normal conditional expectation
E.H L.

The proof is given in Sections 10.2—10.3.

10.2. Assume that the weight @|A"* is semifinite. Thus, we have an n.s.f. weight ¢
on ./ and an n.s.f. weight y = ¢ | A"+ on . In this Section we study the relation-
ship between the standard representations associated with ¢ and .

It is obvious that 9, = M, n A and that the scalar products (-|-),, (-|-),
coincide on R, hence #’, can be identified with a closed linear subspace of 5,
such that

) by=b, (beMR,).

Let P be the orthogonal projection of #, onto Hy.
For ye#', beMN, we have n,(»)b, = n,(y)b, = (¥b), = (3b)y = ()b, »
hence 5, is n,(A#)-invariant, i.e. Pen, (A7), and

@ T | #y =m()  (yedH).
Also, U, = A, nA, so that
3) A, < A, NH#,

and U, is a »-subalgebra of U, with the same scalar product. It follows that
@ D(S,) = D(S,) no#, and S,& = S,¢ for & € D(S,).

Assume moreover that 6f(A") = A" (1€ R). Using the KM S-condition (2.12.(1 1)
we see that af(y) = a¥(y) for yet, teR. ,

For beWN, we have (2.12.(9)) 4¥b, = 4i'b, = (a?(b)), = (o¥(B))y = 43b,
(r € R), hence 57, is 4i-invariant, i.c. A‘,’P‘ = PA‘,’,’ a:ld e ‘

) a1, = 4% (teR).
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Thus, 4, commutes with P and, using ([L}, 9.21), we infer from (5) that for any
xe@

6) D(45) = D(d%) n#, and 455 = 45¢ for & € D(4X).
For a = 1/2, we get from (6) that
0] D(Sy) = D(S,) noHy;

and, using also (4), we obtain Ju AP = S, =S, = J AL = 7,41 for
§ € D(4)7). It follows that ¢, is J,-invariant, i.c. J,P = PJ,, and

) Jl=LE (e,
Also, by (6) for @ = —1/2 and (8), we get
) D(Sy) = D(S3) not,, and San = Sgn for n € D(S?).

If n e, no¥,, then ne D(S$) nH#, = D(S?) and for b €U, = A, we have

[

ny(b)n = n(b)n = R3b, = R?b,. Consequently,
(10) A nH, A,

and, for ne U, nH#, we have RY = R|#, and also R%e, = R3s 1, = (R3)*|H,.
L 4 (4
Since ', is invariant with respect to R? and (R?)*, it follows that

(1) PR;=RJP=RIP (ned,nx,).

Applying J, to (10) and using (8), (3) and Tomita’s fundamental theorem
(2.12), we get
(12) A, = A, NI, .
Then, applying J, to (12), we obtain
(13) A, = A, N,

If aed,, then a,€D(S,) = D(4,*), and hence Pa,e D(4}*) = D(S,);
for n € A, = AL N, we have LE, n = RYPa, = PR3a, = Pr,(a), so that
(14) A, = PU, and LY, = Pr,(a)P for ac,.

. Thus, n(#) = £(%,) = Pr(4)P and so there exists a w-continuous positive
linear mapping E: .4 — ¥, uniquely determined, such that

(15) n4(E(x)) = Pr (x)P (x e.4).
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Using (2), for xe A, yeA and &y, we get m(E(xy))E = Pry(xy)P{ =
= Pr (x)n,(Y)E=Pry(x)Pr,(y),=ny(E(x))m ()l =m,(E(x)y){, hence E(xy)=E(x)y.

If xe# and E(x*x) =0, for be N, we have o((xb)*(xb)) = ||m,(x)b,|Z =
= (P (x)Pb, | by)y = (my(E(x))by | by)y = 0, so that xb = 0. Since RN, is w-dense
in A, it follows that x = 0.

Thus, E:.# — A& is a faithful normal conditional expectation. Moreover,
we have

(16) Eog? =0YoE (t.e R).

Indeed, using (5), for xe# and § e, we get m,(E(af(x)))é = Pry(of(x))P =
= PA¥n(x)4;VPE = ALPr (x)PA,"E = Aymy(E(x))4, "¢ = my(o¥ (E(x)))E.

It follows that ¥ o E is a o®-invariant n.s.f. weight on .#, that is, o E com-
mutes with @. On the other hand, & = REAN, = NIN, = M, is a g®-invariant
and w-dense *-subalgebra of . and for every x €.#, b € R, we have (Y-E)(b*xb)=
= Y(B*E(x)B) = (my(EC)b, | by)y = (Pr(x)Pb, | by)y = ((x)b, | By), = @(5*xD).
By the Pedersen-Takesaki theorem on the equality of weights (6.2) it follows that
Yo E = ¢, that is ¢(E(x)) = ¢(x) for xe#*, \

Thus, we have proved the implication (i) = (ii) of Theorem 10.1.

Let us note that by analogy with (14) we have

an A, = P, and RY, = PRSP for neA,.

Using (2.12. (15) or [L}, 10.21) we obtain

Also, since the inclusion 4" — . is an isometric normal *-homomorphism, it
follows that the mapping p: &(21,) — &(U;) defined by p(Jyn, (1)) = Jm, (),
(¥ €4') is an isometric normal *-homomorphism. In particular, for n € A, we have
IRYII=||R7ll and RY 51 <> RZ = 1.

10.3. Assume now that there exists a normal conditional expectation E: M — N
such that ¢ ° E = ¢; then it follows that E is also faithful.

Lety =@ |#*+. If x; € M, nA* and x; = 1, then Y(E(x))) = @(x;) < +oo,
hence E(x)eM,nA4* and E(x) > 1. Consequently, ¥ is an n.s.f. weight

on N
For xe# and b e N, we have (n,(E(x))b,1b,), = Y(b* E(x)b)=@(E(b*xb)) =
= @(b*xb). Thus, the normal conditional expectation E: M — N is uniquely

determined by the condition ¢ E = ¢.
In what follows we shall use the notation introduced in the first part of Sec-

tion 10.2. For a € R, we have Y(E(a)*E(a)) < ¥(E(a*a)) = p(a*a), hence E(a) € N,.
Since for every be N, we have (a,|b,), = @(b*a) = Y(E(b*a)) = Y(b*E(a)) =
== ((E(a))y| b,), it follows that

1) aeN, = E(a) e N, and (E(a)), = Pa,.
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Since E: # — A is a self-adjoint mapping, we further obtain

¢3)] PU, =AU, = A, and S,Pa, = PS,a, for ae,.

As S, = S,|U,, it follows that PS, c S,P, i.c. (I — 2P)S(1 — 2P) = S,, where
I — 2P is a unitary operator. Then (1 —2P)S3(1-2P)=S83, (1—2P)4,(1-2P)=4,,
so that P commutes with 4,, that is

©) 4P =P4"  (teR).
From (2) and (3) we infer that
“) 43, = 4LPU, = PARA, = PA, = U, .

Let b € ¥, and 1 € R. By (4) there exists an element y € 9, such that akby =y,.
Then (a7(b)), = 435, = 4ib, = y, = y,, hence of(b) = y. Thus, for every re R
we have of(2,) < ¥, and so of(¥) = H, as U, is w-dense in A",

We have proved the implication (ii) = (i) in Theorem 10.1.

10.4. Let 4" be a unital W*-subalgebra of the W*-algebra 4. For every n.s.f,
weight ¢ on .4 such that @ [ A+ is semifinitc and o?(#) =4 (f € R), we shall
denote by

EX:dl =¥

the unique faithful normal conditional expectation such that @+ EY = o.
Corollary. In the above situation, for o € Aut(.#) we have

Egel =01« Ef+q.

10.5. Corollary. Let E: M —» A" be a faithful normal conditional expectation of the
W*-algebra.# onto its W*-subalgebra A" If  is any n.s. f. weight on ¥, then @ = YoF
is an n.s.f. weight on .# and
O] oy(E(x)) = o7 (E(x)) = E(of(x)) (xe.4, teR).
If Y1, ¥, are n.s.f. weights on A and @, = ), E, @2 = Yoo E, then
0] [Dey: Doy}, = [DYy: DY) e/ (teR).

Proof. Indeed, @ is an n.s.f. weight on .4, ¢ = @ | A * is semifinite, and from

Theorem 10.1 it follows that 4" is ¢*-invariantand E = EJ. Now (1) follows using
the KM S condition and Corollary 10.4.
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Then E® 1 is a faithful normal conditional expectation of Mat,(A#) =
= .# ® Mat,(C) onto Mat,(N) =N ® Mat,(C) (see 9.4) and for the balanced

weights (see 3.1) we have 0(p,, @,) = 001, ¥2)° (E ® 1), so that (2) follows from
the first equation in (1) applied to the balanced weights and to the element

((1) g) e Mat(N).
(1) and (2) can also be expressed in the form:

3) o¥vYy(E(x)) = P 9(E(x)) = E(a?+91(x)) (xed, teR).

Let  and ¢ be as in the statement of the Corollary and @ an arbitrary n.s.f.
weight on /. An easy application of the Corollary and Theorem 5.1 shows that

@ if [Dw: Do), e N for all te R, then w | A"+ is semifinite.

Indeed, since of = of|#", there exists an n.s.f. weight 7 on 4 such that
[D(z° E): Dg], = [Dt: Dy], = [Dw: Dg], (t€ R), hence w = t° E, and w|#*+ =1
is semifinite.

10.6. From Theorem 10.1 it follows that if 7 is an n.s.f. trace on the W*-algebra .4
and & < 4 is a unital W*-subalgebra such that = | #"* is semifinite, there exists a
unique faithful normal conditional expectation E¥': # — 4 such that 1o E¥ =1,
In particular:

Corollary. Let © be a faithful normal finite trace on the W*-algebra 4. For every
unital W*-subalgebra & < A there exists a unique faithful normal conditional expec-
tation EY: M — N such that t E¥ = 1.

If # is a countably decomposable finite W*-algebra and A4 = 2'(.#)

is its centre, then all the conditional expectations EZ® coincide with the canonical
central trace : 4 — 2(4) ([L], 7.11). Also, if F < . is a finite type I factor and
N = F' nM, then all the E¥ coincide with the conditional expectation defined in
9.15.(5).
10.7. Corollary. Let # be a W*-algebra, ¢ a faithful normal state on M and N < M
a o®-invariant unital W*-subfactor such that generated as a W*-algebra by A
and N’ 0 M. There exists a s-isomorphism @: N4 @ (N N#)— M such that
Pa@b)=ab (aeH, beN' nM), and ¢ ® = (¢ |N) (¢ | N nNA), that
is,

o(ab) = p(a)p(b) (ach', beN' nA).

Proof. By Theorem 10.1 there exists a unique faithful normal conditional expec-
tation E: . — A& with ¢° E = ¢. Thus, the existence of @ follows from Corollary
9.14. For b e #” n.#, the element E(b) belongs to the centre of the factor A4, and
hence @(b) = @(E(b)) = E(b); if aen, then ¢(ab) = ¢(E(ab)) = @(aE(b)) =
= @(a)E() = o(a)p(b).

g e
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10.8. Let 0: G — Aut(.#) be an action of the group G on the W*-algebra 4. We
shall say that ./ is a-finite if for every x € .#, x # 0, there exists a g-invariant nor-
mal state ¢ on .« such that ¢(x) # 0.

Corollary (I. Kovics, J. Sziics). Let a: G — Aut(.#) be an action of the group G
on the W*-algebra M. The following statements are equivalent:

(i) A is o-finite;

(ii) there exists a o-invariant faithful normal conditional expectation E: N — 4°.

Proof. The implication (ii) = (i) is obvious. Conversely, if .4 is o-finite, there
exists a family {¢,},e; of o-invariant normal states on .# with Y. s(p) =1, and

{
@ = Y, @, is a o-invariant n.s.f. weight on .#. Then cach o? (r ¢ R) commutes with
[

cach o, (g €G), in particular .#° is o®-invariant. Since s(@,) €.#4° and @(s(p))) =
= @(s(@,)) < +o00, it follows that ¢ | (#°)* is semifinite.

By Theorem 10.1 there exists a unique faithful normal conditional expecta-
tion E: .M — .#° with ¢+ E = ¢. For g € G we have ¢+ 0, = ¢ and o, '(./°) = 4",
hence E+ 6, = 6, E = E, by Corollary 10.4.

10.9. Corollary. (F. Combes). Let ¢ be an n.s.f. weight on the W*-algebra A. The
Jollowing statements are cquivalent:

() @ (| (A°* is an n.s.f. trace on M®;

(it) there exists a faithful normal conditional expectation E: .M -s M® such
that ¢ = @+ E;

(iii) there exists a o-invariant faithful normal conditional expectation E: .l -s.4®
such that ¢ = @+ E;

(iv) there exists a family {@}eq < ME with ¥5(¢,) =1lad =Y 0,;

]

(V) & is o®-finite.

Proof. (i) = (ii), by Theorem 10.1,

(ii) = (iii), by Corollary 10.4.

(iii) = (i). By Theorem 10.1, it follows, assuming (iii), that @ | (.#°)* is an
n.s.f. weight on ./ and the trace property follows from 2.21. (2).

(i) = (iv). Since ¢ = @ | (#/°)* is an n.s.f. trace on .#°, by ([L], E.7.11) we
know that there exists a family {y;},e, of normal positive forms on .#° with mutu-
ally orthogonal supports such that ¢ = Y; y,. If E is the conditional expectation

given by (iii) (cf. (i) = (iii)), then @, = Y0 E€.3 (ie 1), T slp) = ¥ s = 1,
and @ =Y+ E = 'EQ‘.

(iv) = (v). Since @(-s(@))) = @(s(@))-) = @,, it follows from 2.21.(2) that
s(p) €.4° and from 2.22.(3) that @, is o®-invariant (i€ I); hence # is o-finite.
(v) = (iii), by Corollary 10.8.

If the equivalent conditions of Corollary 10.9 are satisfied, then the n.s.f.
weight @ is called strictly semifinite and we shall abbreviate this by saying that @
is an n.ss.f. weight.
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With obvious modifications, Corollary 10.9 can be extended to weights which
are not necessarily faithful and we get the notion of normal strictly semifinite weight,

Note that any normal semifinite trace and any normal positive form are strictly
semifinite.

If there exists 1, € R, #,> 0, such that ¢ = 14, the identity mapping on ..
then the weight ¢ is strictly semifinite, as the mapping

!
E:J/axn—»—l—ga;’(x) dtes’
1,
]

0

is then a faithful normal conditional expectation with @° E=¢.
Finally, we note that the tensor product of two normal strictly semifinite
weights is again strictly semifinite (8.8.(3)).

10.10. On every W*-algebra M there exists an n.ss. f. weight. Indeed, there exists a
family {¢;},e; of normal states on .# with supports e; = s(¢;) mutually orthogonal
and Y ¢;= 1. Then ¢ = ¥ @, is an n.ss.f. weight on .

[}

Let &; = (e)), €3,. Then the set {£};e; © #, is cyclic and separating for
no(w¥) and, for i # j, we have (¢ | Ee = ((e)y | (€)g)p = @(ese)) = 0. ]

Since every *-isomorphism between two standard von Neumann algebras is
spatial ([L], 10.15), it follows that if avon Neumann algebra 4 cB(#) is standard, then
there exists a family {¢;},e; < o of mutually orthogonal vectors, cyclic and separat-
ing for #. The converse of this assertion is also true ([198)).

10.11. Proposition. Let ¢ be an n.ss.f. weight on the W*-algebra #. If o R — Aut(A)
is an action of R on M such that o (M) =M, (tcR), and ¢ satisfies the KM S
condition with respect to {6,},ex in any two elements of M,, then ¢ is o-invariant
and hence 6, = of (teR).

Proof. Since Y = ¢ [ (#®)* is an n.s.f. trace on 4®, the w-dense two-sided
ideal M, of A* has an increasing approximate unit u, 1 1. Let x € M, n.#* and Jet
Ji be a complex function, defined, continuous and bounded on the strip {xe C;
0 < Re« < 1}, analytic in the interior of this strip, such that fi(if) = @(o (x)u)
and fi(1 + it) = @(u0,(x)) (t€ R). Since u, € M°, using 2.21.(2) it follows that
Liit) = fi(1 +ir) (¢eR), and hence f, is constant, that is o(e (X)) = @(xu,)
(teR). Let E: .4 - .#® be the faithful normal conditional expectation with
@ =Y+ E. We have

V(E(o (x)V*u,E(0 (x))2) = Y(u}*E(o (x))u}"®)
= Y(E@ 0 (x)ui) = ol (x)i}) = @(0 (x)uy) = o(xu;)
= @i xill) = Y(E@Pxul) = Y(Ex)ul?) = Y(E(x)2u,E(x)V2).

Since u, 11 we get @(0(x))=Y(E(c (x)))=y¥(E(x))=@(x), for every y e M, n.4*,
and because of the assumption a(D,) = M, it follows that @+a, = ¢.
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The above result holds, in particular, for normal positive forms. In this case
the proof is simpler because we can take u, = I and the assumption o (,) = N,
(t € R) is automatically satisfied.

10.12. Let G be a locally compact group. For a function f defined on G and an
clement g€ G we define the function ,f on G by (,fN)h) =fig*h) (heG).

A left invariant mean on £*(G) is a positive linear form mt on the C*-algebra
F°(G) with m(1) =1 and

m(,f) = m(f) (fe £%(G), g €G).

The locally compact group G is called amenable if there cxists a left invariant
mean on £%°(G). There are many other equivalent definitions of amenability for
which we refer to ([68], [98]).

Clearly, every compact group is amcnable, the invariant mean being given
by the normalized Haar measure of G. Also, every commutative discrete group
is amenable ([68], [98]).

If the group G is discrete, then every left invariant mean m on [%(G) is
also right invariant ({98]), that is

m(f)=m(f) (feI=(G), g G),

where f,(h) =flhg) (heG).
We record the following criterion concerning the existence of (not necessarily
normal) conditional expectations:

Proposition. Let o: G — Aut(4) be an action of the discrete group G on the
W*-algebra . If G is amenable, then there exists a g-invariant conditional expec-
tation E: M — M°,

Proof. Let m be an invariant mean on /*(G). For each x €.#, the mapping
M ¢ 3 @ > m(g -+ ¢(0,(x))) € € is a bounded lincar form on .#,, with norm < {ix|l,
hence there exists a unique element E(x) € .4, || E(x)]| < {Ix]}, such that ¢(£E(x)) =
= m(g — @(0,(x))) for every @ €.#,. Since m is invariant, it follows that E(x) €.4°
and E(g,(x)) = E(x) for all xe.#, g€G. If xe, then clearly E(x) = x. Thus,
E: M — #°is a g-invariant projection of norm 1, and hence a conditional expec-
tation, by the Tomiyama theorem (9.1).

10.13. Even if the group G is not necessarily amenable, the following result is known:

Theorem (J. T. Schwartz). Let o: G — Aut(#) be an action of the discrete group G
on the W*-algebra .# with the property

m co"({o,(x); geGYn M’ ¢ O (xeM).
For every xq€ M and every a, € co*({o,(xo); g € G}) NM° there exists a conditional
expectation E: M — M° such that E(x,) = a,.

Proof. Let & be the set of all bounded lincar mappings E:.# -+ .4 with the
following properties: a) E(xo) = a,; b) E(x)eco"({o,(x); g€G}) for xec.4;
c) E(y)=y for yel".
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Let A be the set of all finitely supported functions A: G — [0, 1] such that
Y. i(g) = 1. For 2€ A and x e we shall write A[x] = Y Ag)o,(x).
8€G €G

g w
Since a, € co*({o,(x); g € G}), there exists « riet {1;}, ;= such that 1,[x,] > a,.
If LIM is a Banach limit with respect to I and E,(x) = LIM A[x] (x €.#), then
i

E,y € $, and hence 8§ is not empty.
We define a preorder relation “<” on § by writing E, < E, for E,, E; €6
if and only if

c0"({o4(Ey(x)); g € G}) =2 c0"({6,(Ex(x)); g€ G})

for every x e/, If {E,},ex is an increasing net in & and LIM is a Banach limit
with respect to K, then the equation E(x) = LIM E(x), (x €.), defines an upper
k

bound E€ 6 of {E,};ckx. Thus, 8 is inductively ordered. '

Let E be a maximal element of 8. We show that E(#) = #°. If this is not
the case there exists x; e# such that E(x,) ¢ .#°. By assumption (1) there exists
a, € co*({a,(x;); g€ G} nA°. Let {A}jes = A4 be a net such that Alx] 5 a
and consider a Banach limit LIM with respect to J. Then the equation Ey(x) =
= LIM J[E(x)] (x €.#) defines an element E,e8, E,>E such that E,#E, as
E(xy) € co"({o,(E(xy)); g € G}) but co*({o,(Es(xy); g € G}) = {a,} $ E(x,), and this
contradicts the maximality of E.

It follows that the maximal element E of & is a projection of norm 1 of .#
onto .#7, and hence a conditional expectation, by the Tomiyama theorem (9.1).

If there exists a o-invariant normal conditional expectation E: M — M°, then
Srom (1) it follows that

2 co"({o,(x); geGPnM° = {E(x)}  (xeH),
so that E is uniquely determined and faithful.

To see that E is faithful, choose a family {y,}; of normal states on .# with
Y. s(¥)) = 1. Then each ¥, Eis a -invariant normal state on ., hence s(Y;° E)ed”,

i
It follows that s(y, E) = s(i,), (i € I), hence # is o-finite and E is faithful (10.8).
Note that if the #*-algebra .# is o-finite, then using the Ryll-Nardzewski
fixed point theorem ([L], A.3) one can show that (1), and hence (2) hold ({2}, [140)).

10.14. Proposition. Let A" be a unital W*-subalgebra of the W*-algebra 4 and t
a faithful normal trace on M. If x€N,, then

Q)] co({vxv*; ve UAN)}) = N,
) co"({vxv*; ve UM n (V' n A) £ O.

Proof. If a = vxv*, then 1t(a*a) = 1(x*x) < 4 co. Since the function
-# 3 ar>t(a*a)"? is a lower w-semicontinuous seminorm (5.9), statement (1) follows.
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The set X~ = co*({vxv*; ve U(A)}) is norm bounded (by ||x[f) and w-closed,
thus o is w-compact and the lower w-semicontinuous function a - 1(a*a) attains
its greatest lower bound on X', in some a, € X'; let A = t(aga,). Clearly, vag* € X
and t((va,v*)*(ra,w*)) = t(afa,) = A for every v € U(4"). To prove (2) it is thercfore
sufficient to show that the set X ,={a € X"; 1(a*a)=4} reduces to the singleton {a,}.

If a,becty, then (a-+ b)/2eXx and hence A < t((a+ b)*(a+ b))/4 =
= 1(a*a)/2 + ©(b*b)/2 — t((a — b)*(a — b))/4 = A — 1((a — b)*(a — b))/4, so that
7((a — b)*(a — b)) = 0 and a = b, as 7 is faithful.

Statement (2) is a fixed point theorem. If A" is abelian, then (2) follows by
the Markov-Kakutani theorem ([L], A.1) without any restriction on x €.#. Also,
if A =.#, then /' N M = Z(A) and (2) holds for all xe.# by a theorem of
Dixmier ([L], C.4.4).

Note that A" n.# = 4%, where G = {Ad(v); ve U(¥)} < Aut(A). Thus,
by Theorem 10.13 we obtain existence criteria for conditional expectations
E:ll - N M.

10.15. We shall say that a von Neumann algebra 2 = #(¢") has the property P
of J. T. Schwartz if, for every x e #(X), -

Q) co"({vxv*; ve U(P)HnP # O.

In this case, there exists by Theorem 10.13 a conditional expectation E: #(X') — 2.

In particular, by the Markov-Kakutani fixed point theorem it follows that
every von Neumann algebra 2 = #4(5¢) with an abclian commutant P < B(X)
has property P. Consequently,

Q@) for every von Neumann algebra P < B(K) with abelian commutant
there exists a conditional expectation E: B(H) — 2.

If o is a maximal abelian s-subalgebra of the W*-algebra .#, then
&' N =g/, and again using the Markov-Kakutani theorem we sec that
co"({vxv*; ve U(H))) N # O (x €). Thus, by Theorem 10.13 it follows that

3 for every maximal abelian -subalgebra sf of the W*-algebra M there
exists a conditional expectation E: M — 5.

Also, by the remark made in Section 10.13, we see that

@) if there exists a normal conditional expectation E: .M — s, then E is
uniquely determined and faithful.

10.16. Note that for every C*-subaglebra sf of an abelian W*-algebra M there
exists a s-homomorphism n: M — o such that =(a) = a for aesf ([94); {114);
{236], 9.27). Combined with 10.15.(3), this result shows that for every abelian
C*-subalgebra s/ of an arbitrary W*-algebra M there exists a conditional
expectation E: M — A
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We record the following result concerning the existence of normal conditional
expectations:

Proposition. Let 4 be a W*-algebra and € any unital W*-subalgebra of the
centre Z(AM) of M. For every xocM, Xo # 0, there exists a normal conditional
expectation E: 4l — € such that E(x,) # 0.

Proof. Let ¢ be a normal state on .# with @(xo) # 0.

Let x e+, For every ze €+ we have @(x2) < ||x|l @(z) so, by the Radon-
Nikodym theorem ([L], 5.21), there exists a unique E(x)e¥, 0 < E(x) < |Ix|l,
such that ¢(xz) = ¢(E(x)z) (z €%), and E(x) = E(x)s(p | b).

Itis easy to check that the mapping .4+ 5 x> E(x) € € can be uniquely complet-
ed to a normal conditional expectation E:.# — ¢ such that o(x2) = @(E(x)z)
for all xe.#, z€%. In particular, ©(E(xo)) = ¢(xp) # 0.

10.17. The uniqueness of the normal conditional expectation onto a maximal
commutative *-subalgebra follows also from the next result:

Proposition. Let & be a unital W*-subalgebra of the W*-algebra 4 such that
N'NAM N, If there exists a normal conditional expectation E: M — N, then
this is uniquely determined and Jaithful. Moreover, for ue U(A) we have

()] uNu* = N < E(uxu*) = uE(x)u* Jor all xe 4.

Proof. As for weights (2.1), we can define the support S(E) of E as the comple-
ment of the greatest projection p e with E(p) = 0. For cvery ve U(A) we have
E(vpv*) = vE(p)v* = 0, so that vpv* = p and hence peN' NM < &. Conse-
quently, p = E(p) =0, s(E) =1 and E is faithful.

Let E\: . # - & be another faithful normal conditional expectation, ¥ an
n.s.f&z\\rcighton N0 =y E @ = E ns.f. weights on .# and u, = [Dg,: De],
(te R).

For any ye# we have (10.5.(1)) 6?(») = o¥(y) = o7(y) = u,07(y)u?, hence
WeN'NM K (te [R). Then, for xe.#* and reR we obtain ¢,(a?(x)) =
= Y(Ey(utaP(x)u,)) = Y(urEy(0f (x))u,) = Y(E\(o7'(x))) = @y(x), so that g, com-
mutes with @, i.e. (4.10) there exists a positive self-adjoint operator A affiliated
to A7 such that ¢, = @,. We have A" =u, el it = ZA) and ¥y =y,
hence 4 =1 and ¢, = ¢.

We have proved that Y E=y-E, for every n.s.f. weight ¢ on 4. It
follows that E = E,.

If ue U() and utu*=4", then it is easy to check that the mapping E,: #/~.4"
defined by E(x)= w*E(uxut)u(x e ), is a faithful normal conditional
expectation. By the first part of the proof we infer that E, = E and statement )
follows.

For any conditional expectation E: # —» 4" = # define the normalizer 1(E)
of E by

SY(E) = {ue U(A); E(uxu*) = uE(x)u* for x €4},
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If Eis normal and A" n# < &, the above Proposition shows that
SYE) =-{ue U(L); uNu* = A}

10.18. Corollary. Let ¥ be a factor and s an abelian W*-algebra. If M is a
subfactor of /" @ of and M > ¥ @ |, then M = ¥ @ 1.

Proof. Consider 4" realized as a von Neumann algebra #° < #(¥) and of
realized as a maximal abelian von Neumann algebra & = #(X'). Then /" @ 1<

cll cHN R®A c BN ®X) and, by Corollary 9.11,
NV OINNNRA)=N"NA)RBX)NH) =10,

since A" is a factor. Consequently,

WVINna=13Hn=C-1c¥®l,

as. is also a factor and 1 ® & is the centre of /* ® .
Thus, by Proposition 10.17 it follows that all the Fubini mappings (9.8)

Es|\M:M >N (e, o(l) =1), are the same faithful normal *‘conditional

expectation” E: M - N
Let xe.#. For y eN, and w e ¢, w(l) =1, we have

¥ ® W)(E(X) ®1) = Y(EEX) = Y(EHx) = (¥ ® v)(x),

sothat x=E(x)®@letV @I

10.19. If & < () is a maximal abelian von Neumann algebra such that every
non-zero projection of & dominates a minimal projection of &/, then there exists
a system of matrix units (9.15) {e;}1,jer in 2(5F) such that & is the von Necumann
algebra generated by {e,;; i € I} and it is easy to sec that the mapping

B e = aen€d
( )3‘1"";’ 1aey IE 1l

is a faithful normal conditional expectation.
On the other hand, let o = £*((0, 1}) with respect to Lebesgue measure and

let of = @(#) be von Neumann algebra £ ([0, 1]) of muitiplication operators.
Since 1 e # is a cyclic vector for &, it follows that &/ is maximal abelian in 2(>¢)
(see [L], E.3.9, E.3.10; [236], Cor. 3/8.13, Prop. 3/9.37), but it is obvious that &/

has no minimal projections.
Consider now a general maximal abelian von Neumann algebra' of < A(HKF)

without minimal projections and let E: #(¥) — & be a conditional expectation.
Let 7 be a character of the abelian C*-algebra . Then 7 is a singular form
([A.16]) on the W*-algebra of. Indeed, let 0 # pesf be a projection. Since &
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has no minimal projections, there exists a projection 0 # g < p in A4 with r —= p—
—¢q # 0. Ify(p) # 0 and y(g) # O, then y(p) = y(g) = 1, hence y(r) = 0. Thus,
every non-zero projection of ./ dominates a non-zero projection of & annihilated
by y, i.e. v is singular.

Then y+ E is an extension to #(s#) of the singular form v on & and hence
([255), Lemma 4.3; [236], 8.5) y° E is a singular form on B(37). It follows that
7(E(e)) = 0 for every minimal projection ee B(s#).

Since y was an arbitrary character of &/, we have E(¢) = 0 for every minimal
projection e € B(5). Hence, E is not normal, for the normality of E would imply
that E(x) = 0 for all x € B(o#), a contradiction.

In conclusion, there exists a maximal abelian von Neumann algebra of < B(¥)
without minimal projections; for any such an algebra sf there is no normal conditional
expectation of B(¥) onto of.

10.20. As an application of the above remarks we establish a characterization of
finiteness for W*-algebras:

Proposition. A W*-algebra A is finite if and only if for every maximal abelian
»-subalgebra sf of .M there exists a normal conditional expectation of M onto .

Proof. If # is finite, the desired conclusion follows from Corollary 10.6.

Assume that ./ is properly infinite. Then /# ~ 4 ® B(F) with 5 a sepa-
rable infinite dimensional Hilbert space. Let € be a maximal abelian =-subalgebra
of .4 and &f = B(#) a maximal abelian von Neumann algebra. By Corollary 9.10,

€ ® «f is a maximal abelian *-subalgebra of # ® 20%). _
Suppose that there exists a normal conditional expectation E of .4 ® B(¥)
onto ¢ ® & and let ¢ be a normal state on .#. Then the mapping

B(H)s x> (p ® NE( @ x)) e
is a normal conditional expectation of #(#) onto 7, contradicting the conclusion

of Section 10.19.

10.21. The existence of a normal conditional expectation E:.# — 4 transfers
certain properties of # to A,

Recall ([L], E.6.11; [236], 9.40) that the supremum of all the minimal projec-
tions (or atoms) of a }¥*-algebra ./ is a central projection of . and that the
W*-algebra  is called atomic if this central projection is equal to 1.

Proposition. Let E:.# — A" be a normal conditional expectation of the W*-algebra M
onto its unital W*-subalgebra A". Then

{)) JM is semifinite = A is semifinite
) M is discrete = N is discrete

(3) M is atomic = N is atomic
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Proof. (1) Assume that ./ is semifinitc and 4" is of type IIl. Let t be an
n.s.f. trace on .#. Since E # 0 is normal, there exists a projection e e.# with
1(e) < + oo and E(e) # 0. Since E(e)eA"+ there exists a projection 0 # fe4"
and A €(0, + oo) such that Af < E(e).

We shall obtain a contradiction by showing that f47f is finite with the help
of Sakai’s topological criterion of finiteness ([L], 7.23). So, let {y,}; = f#f be anet
such that {ly;ll <1 and y, 5 0. Since e ./ is a finite projection and y.e = 0, we
have ey?® = 0 ([L], 7.23). By the last remark of Section 9.2 we infer that E(e)y? 40
and therefore

¥t =(E@f + (1 — ) YEE) fyt = 0.

Hence ([L], 7.23) £/ f is finite, a contradiction.
(2) If # is discrete, then by (1), A is semifinite and hence ([L], E.4.14)
there exists a family {#";},e of finite W*-algebras and a family {5 }1es of Hilbert

spaces such that /"= @ A", ® (o). Taking into account the existence of Fubini
iel

€
mappings (9.8), we see that in order to prove (2) we may assume ¥ is finite.

Moreover, if A" is not discrete, we may assume that 4" is of type II;. Let ©
be an n.s.f. trace on . and g a non-zero normal finite trace on 4.

Then @ = u ° E is a non-zero normal positive form on .# and, by Theorem
4.10, there exists a non-zero positive self-adjoint operator A affiliated to .# such
that ¢ = 1. For ye4#" and x e # we have @(xy) = p(E(x)y) = p(yE(x)) = @(yx),
and hence (by 2.21.(2) and 4.7) y = of(y) = A"'y4" (1teR). Thus, 4 is
affiliated to A" n.#. There exists a non-zero spectral projection ¢ of A and an
element 0 < a € e.e such that Ae is bounded and Aea = e¢. Then ee V' n. A
and 1(e) = 1(4ea) = @(a) < + oo, hence e is finite in 4. The We®-algebra ele
is finite and discrete so that every W*-subalgebra of e.#e is discrete (see [L], 7.16,
7.17). However, the induced algebra #'e = eAt"e < ee is of type II ([L], E.6.10),
a contradiction.

(3) If .« is atomic and .4 contains no minimal projections, then the desired
contradiction can be obtained arguing as in Section 10.19, and replacing the characters
by pure states of A", =

Since there exist conditional expectations # @A ~ .4 ® 1 (9.8), from the
above Proposition we get the conclusions listed in ([L], C.7.4) concerning the type
of the tensor product. Recall in particular that

@ if M is of type I, then M @N is of type III;
6)) if M is continuous, then M ‘® A is continuous.

10.22. A W*-algebra .« is called injective if, whenever 4 is imbedded as a
C*-subalgebra of a C*-algebra &, there exists a conditional expectation E: of —» 4.
Of course, we could similarly define the notions of an injective C*-algebra, but it
appears that the injective C*-algebras so defined are almost W*-algebras (more
precisely, they are monotone complete A *-algebras, sce [236], §9).
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It is easy to check that injectivity is stable under *-isomorphisms.

‘Theorem. Let # = AB(H#) be a von Neumann algebra. The following statements
are equivalent:
(i) A is injective;
(ii) there exists a conditional expectation R()— A
(iii) there exists a conditional expectation B(t) — M';
(iv) ' is injective. '

Proof. Taking into account the structure of *-isomorphisms between von
Neumann algebras ([L], E.8.8), the existence of Fubini mappings (9.8) and using
Proposition 9.4, it is easy to check that properties (ii) and (iii) are stable under
*-isomorphisms. We shall therefore assume that # = #(5¢) is a standard von Neu-
mann algebra ([L], 10.15). Let J: ¥ — 5# be a conjugation such that JA#J = 4",

(ii) < (iii). If E: #(5#) — A is a conditional expectation, then the mapping
E': B(H)—> M defined by E'(x)=JE(JxJ) (xe B(K)) is a conditional
-eXxpectation.

(i) <> (ii). It is clear that (i) = (ii). Conversely, let & be any C*-algebra
-containing 4 as a C*-subalgebra. Then #** is a W*-subalgebra of &/** and
there exist a central projection p € #** and a #-isomorphism n: #**p — .# (A.16).
Since .# has property (ii), which is stable to *-isomorphisms, there exists a condi-
tional expectation Ey:s/**p — #**p. The mapping E: & — A defined by
E(x) = n(Ey(xp)) (x e/ ' of**), is then a conditional expectation.

(iii) < (iv) follows from (i) <= (ii).

There are many other important characterizations of injective W*-algebras
(see 10.31).
In what follows we give some examples of injective W*-algebras.

'10.23. Proposition. Every discrete W*-algebra is injective.

Proof. By ([L), 6.5) we can realize 4 as a von Neumann algebra # < 2(o¢)
'with an abelian commutant, so that there exists a conditional expectation
E: B(o¢) —» # (10.15.(2)) and # is injective by Theorem 10.22,

10.24. Proposition. Let .#, A/ be W*-algebras. Then

(1) M QN is injective <> M and N are injective;
(2) M RN is injective <> M and N are injective.

Proof. Use Theorem 10.22, Proposition 9.4 and the Fubini mappings.

10.25. Proposition. Let .# be a W*-algebra and {# },e, an upward directed family
-of W*-subalgebras of M suchthat # isgeneratedby \_)#;.1f each M, is injective,
1€1

then M is also injective,

Proof. Let M < B(XX) be realized as a von Neumann algebra and choose
-a Banach limit LIM with respect to I (9.6) Since the .4; are injective (10.22),
there exist conditional expectations Ej: #(#) — .#; (iel). The mapping
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E: B> M = nﬁ} defined by E'(x)=LIME/(x) (xe &(X)) is a
€ i
conditional expectation, so that .’ is injective (10.22),

10.26. A W*-algebra  is called approximately finite dimensional if it is generated
by an upward directed family of finite dimensional W*-subalgebras.

By Proposition 10.23 and 10.25 it follows that every approximately finite dimen-
sional W*-algebra is injective. Conversely, A. Connes ([43]) has proved that every
injective factor with separable predual is approximately finite dimensional.

A W*-algebra A is called semidiscrete if the identity mapping on .4 can
be approximated, with respect to the p-topology (2.23), by normal, finite rank,
completely positive linear contractions ([82]). It is known that .# is semidiscrete
if and only if it is injective ([27), [43], [262]).

On the other hand, it is easy to check directly that every approximately finite
dimensional von Neumann algebra .# < #(#) has property P of J.T. Schwartz,
so that ./ is injective (10.15.(1)).

If A is a W*-algebra with separable predual, then the assertions: M is injec-
tive, A is semidiscrete, M < B(H) has property P, are all equivalent to saying
that #M is generated by an increasing sequence of finite dimensional -subalgebras.

Another property equivalent to injectivity (in the case of separable predual)
is amenability, which we shall consider in the next sections.

10.27. We first prove another existence criterion for conditional expectations.

Theorem.'Let sf be a unital C*-algebra and M a countably decomposable
Jinite W*-algebra contained as a unital C*-subalgebra in <f. The following statements
are equivalent:

(i) there exists a conditional expectation E: sl ~ M

(i) there exists an M-linear projection P:sf — M ;

(iii) there exists a bounded linear form @ on &f such that ¢|.# is positive
and faithful and @(x-) = @(-x) for every x € M

(iv) there exists a positive linear form @ on s such that o| ./ is faithful
and ¢(x.) = @(-x) for every x e M.

Proof. (i) = (ii) is obvious.

(ii)=>(iii). If zis any faithful finite trace on ./, then @=1 o P is as required in (iii).

(iii)=(iv). Replacing the bounded linear form ¢ given in (iii) by ¢ + ¢@*, we may
assume that ¢ is self-adjoint. Then let ¢ = @*—¢~ be the Jordan decomposition of
@ ([L], 5.17). For every ue U(4) we have ¢ = @(u.u*) = @*(u.u*) — @ (u-u®),
so that @+ = @*(u.u*), by the uniqueness of the Jordan decomposition. Since
@* .M > ¢|#, it follows that @*| . is faithful. Hence ¢* is the required form.

(iv) = (i). Recallfirst that for every bounded linear form ¢ on a W *-algcbra.y”
there exist unique normal and singular linear forms y,,, and Vuiag Such that
Y = Ypr + V,ia,; if ¥ is positive and faithful, then y,,, is also positive and
faithful (A.16; (236], 8.4).

We define a linear mapping F: & - .#, by F(a) = (¢(a.)| ), (acsf).
Then t = F(1) = (p|.#),,, is a faithful normal finite trace on .4.

Let a € & with a»0. For x €.# we have p(ax*x) = p(alx|?) = @(Ix]alx]) >0,
hence F(a) >0. Since 0 < a < [a}f-1, we obtain 0 < F(a) < lajir. By the

10 - 207
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Radon-Nikodym type theorem ([L}, 5.21) there exists a unique element E(a) € .4+,
IE@} < llall, such that F(a) = t(E(@)2- E(@)!'2) = 1(E(a).).

We thus get a positive linear mapping E: o/ — ., uniquely determined,
such that F(a) = ©(E(a).) (a e sf). It iseasy to check that E is a projection of &
onto . and that || Ell = ||E(1)|| = ||1|| = 1, as E is positive. By Theorem 9.1 it
follows that E is a conditional expectation.

10.28. Corollary. A von Neumann algebra M < B(#) is injective if and only if
there exists an #-linear projection P: B(H) — .

Proof. If # is finite and countably decomposable, then the Corollary follows
obviously from Theorem 10.27.

Assume that .4/ is semifinite and there exists an .#-linear projection
P: B(H) — . There exists an increasing net {e;};c; of countably decomposable
finite projections in .# with e, 1 1 (see [L], 4.20, 7.2). For each i€, P defines by
restriction an e.#/elinear projection P;: B(e ) = e, B(H)e; — e Me,. Hence
each ¢.f/e, is injective so that . is also injective, by Proposition 10.25.

Assume that .# is properly infinite and that there exists an ./-linear pro-
jection P: () — . In this case we need the Connes-Takesaki continuous decom-

position theorem, which will be proved later (23.6). According to this theorem,

we may assume that there exists a semifinite von Neumann subalgebra 4" <
together with an so-continuous unitary representation [R ¢ > u(t) € 4 such that
u)yANu)y* = (teR), and A = (AN U u(R))’. Moreover, ¢:[R >t~
> Ad(u(1))| A" € Aut(A) is a continuous action of IR on 4 which defines a dual

action 6 of R on 4 such that 4 = .4°.
Since the discrete abelian group R is amenable, by Proposition 10.12 there

exists a conditional expectation Q:.# —.#° =" Then Qo P: B(H) >N is
an A’-linear projection. Since A4 is semifinite, by the first part of the proof it
follows that 4" is injective and so there exists a conditional expectation (10.22)
F': () - 4.

Since M = (¥ U u(R))"”, we have M’ = A" nu(R), ie. ' = (H") where
o’: R >t~ Ad(u(t)) |4 € Aut(A') is an action of the discrete abelian group R
on 4", We obtain again by Proposition 10.12 a conditional expectation
E":AN" > (V'Y =M'. Then E' F': B(H#)—> M’ is a conditional expectation
and so .# is injective (10.22).

In the general case, there exists a central projection p e.# such that 4p is
semifinite and .#(1 — p) is of type III, hence properly infinite. If there exists an
-#-linear projection P: () — ./, then the von Neumann algebras .#p < B(px),
A(l — p) = A((1 — p)#) enjoy the same property so that they are injective as
well as their direct sum ./# (10.24.(2)).

10.29. Let .# be a W*-algebra. A normal dual Banach .#-bimodule is a Banach
-#-bimodule & * such that the Banach space & is the dual of a certain Banach

*) that s, there are bounded bilinear mappings
AXE3(a,x)>axec and & x A>3(x,0) > xacq

called the left and right actions of & on &, such that, for every a,be.d, xcq&, we have:
Ioxmx:1=x, a(b:x) = (ab)-x, (x-a)-b = x+(ab), a-(x*b) = (a-x)*b.
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space &', and, for fe Z,, a, €./, xo€Z, the mappings
Moarfa-x)eC, M 3ar f(xg-a)e C

are w-continuous and the mappings
Zox > fla,-x) e C, Tox-fixa)eC

are o(Z, 4 ,)-continuous.

A derivation of .# into 2 is a bounded lincar mapping 6:.# = & such
that 8(ab) = d(a)-b + a-8(b) (a,be.f). Every element x€Z determines an
inner derivation 6,: ./ 5a+ x.a—a-xeXZ.

The W*-algebra .# is called amenable if every derivation of .# into some
normal dual Banach .#-bimodule & is inner.

Proposition. If .# is an amenable unital W*-subalgebra of the W*-algebra 2,
then there exists an (' n B)-linear projection P: B — .M’ 0 B.

Proof. Starting from the inclusion .# = # we shall construct a normal dual
Banach #-bimodule Z.

A
Let #, = # ® #, be the Banach space completion of the algebraic tensor
product # ® 2, with respect to the greatest cross-norm ([209]) and let & = (Z,)*.
It is known ([209]) that & can be identified isometrically with the Banach space B(B)
of all bounded linear mappings # — %, in such a way that

SbY)=y(SW) (ScB(A),be B, YeR,).
If we define the left and right actions of .# on ¥ = A(#) by
(a- S)(b) = aS(b), (S-a)(b) = S(b)a (ael, S B(B),be D)

then % becomes a normal dual Banach .#-bimodule.
Now let & be the set of those Se% with the property that for every
ael'nB be B, ye B, we have

¢)) S@ ®¢) =0 that is S|(/#'n #B)=0;
¢3)] S@@b @y — b ® Y(a'-)) =0 that is S(a'b) = a'S(b);
3) S(ba’ ® ¢ — b ® Y(-a’)) =0 that is S(ba') = S(b)a’.

Then Z is a o(¥, #,)<losed sub-.-bimodule of & and Z becomes a normal
dual Banach .#-bimodule with the induced structure.

Let 15 € B(B) = ¥ be the identity mapping on 2. It is casy to check that
the inner derivation of .# into @ determined by 1€ % takes values in &, thus
defining a derivation : .4 —» 2.

Since .# is amenable, there cxists an clement S € 2 such that § is the inner
derivation determined by S.

Let P=1,— S€® = B(A). Then P.a—a-P =0 for all ae.#, hence
P: B~ /'n A is a bounded lincar mapping. Since S€ Z, it follows from (1)
that P is a projection of # onto.#’' n #, while from (2) and (3) we deduce that P
is (' n B)-linear.
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10.30. Taking & = %(o#) in Proposition 10.29 and using Corollary 10.28 and
Theorem 10.22, we obtain the following

Corollary. Every amenable W*-algebra is injective.

Conversely, if .# is an injective W*-algebra with separable predual, then
isjgenerated by an increasing sequence of finite dimensional #-subalgebras (as mention-
ed in 10.26) and by [123] it follows that .# is amenable.

The equivalence of the notions of amenability, semidiscreteness and injectivity
in the case of separable predual, to the structural property of approximate finite
dimensionality is one of the deepest and most important results in the theory of
operator algebras to date.

10.31. Notes. Theorem 10.1 and Corollary 10.7 are due to Takesaki [247). The particular case
of Theorem 10.1 contained in Corollary 10.6 is due to Dixmier [74] and Umegaki [259]. Corol-
lary 10.8 is duc to Kovics and Sziics {140]; actually, they proved a better result, namely that
€0"({0,(x); € G}) n A&° = {E(x)} whenever 4 is o-finite (this result can be obtained using
the Ryll-Nardzewski fixed point theorem, see [2]). The strictly semifinite weights were introduced
by Combes [31], {32] who proved Corollary 109 and Proposition 10.11. Theorem 10.13 is due
to Schwartz [211]; in the same article, Schwartz introduced property P (see also [24], [25]).
Proposition 10.14 is due to Dixmier [76], Proposition 10.16 appears in [112] and [234], Propo-
sition 10.17 is due to Connes [36] and Corollary 10.18 is due to Connes and Takesaki [61).
Proposition 10.20 is the answer to a problem posed by Kadison, given by Takesaki [247] and
Tomiyama [256]. Proposition 10.21 is due to Sakai [201] and Tomiyama [252], [255]. For the
injectivity property for W*-algebras or properties equivalent to injectivity, as well as for the
results contained in Sections 10.22—-10.26, we refer to [11], [24], [26], [27], [28], [43), [81],
{82], [111], {151), [211), and [262]). Theorem 10.27 and Corollary 10.28 are due to Connes
{43), [48) and Bunce and Paschke [18]. For the definition of an amenable W *-algebra (10.29)
we refer to [122), [123]. Corollary 10.30 is due to Connes [48] and its proof, based on Pro-
position 10.29, is due to Bunce and Paschke [18].

For our exposition we have used {18], [26], [31], [32], [76], [247], and [255].

Further results related to the Kovacs-Sziics theorem are contained in [100], [218), [219],
[221), 12223, 12231, [226).

The property of a W*-algebra of being approximately finite dimensional was considered
for the first time by Murray and von Neumann {164, 1V] in the case of finite factors. They
obtained several characterizations of this property and showed that all approximately finite dimen-
sional factors of type II, are s-isomorphic * (see {76]). The approximately finite dimensional
factor of type II,, usually called the hyperfinite I, factor, will be denoted by %.

For properly infinite }#*-algebras, several characterizations of this property are given
in [84) and interesting stability results appeared in [95}, [58].

Connes [43] proved the fundamental result that all injective factors of type II, arc e-iso-
morphic to ®. In particular, it follows that any subfactor of @ is either finite dimensional, or
s-isomorphi_g to &. Also, it follows that all injective factors of type Il are s-isomorphic to
oo = R @ Foo, Wwhere Foo is the only factor of type Jo (see [95], [130]). Recently,
Connes, Feldman and Weiss [57] proved that for any two maximal abelian »subalgebras &f;, 7,
of & whose normalizers generate @ there exists ¢ € Aut(@) such that o( ;) = ,.

Among the most important examples of injective *-algebras we have the crossed products
of abelian }*-algebras by continuous actions of amenable locally compact groups, the von Neu-
mann algebras gencrated by so-continuous unitary representations of connected locally compact
groups and the von Neumann algebras generated by any s-representation of a nuclear C*-algebra
(27), [28], [43), [55D.

*) We consider only i¥*-algebras with scparable preduals.
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Note thatif G isa discrete ICC-group (22.6), then the factor £(G) is injective, i.e. £(G) =~ &,
if and only if G is amenable (see [43), {204), {211]), [255])). Since the free group Fy on k
gcncratg)xs, (k > 2), is not amenable, it follows that £(F) is not s-isomorphic to @ (& £(S (),
see 22.6).

§11. Operator valued weights

In this Section we introduce the extended positive part of a W *.algebra and operator
valued weights, together with their main properties.

11.1. Let .« be a W*-algebra. The extended positive part M+ of 4 is the set of all
functions we: 4§ — [0, + 0] such that:

M @+ V) =m(e)+ m(y) (o, ¥ eli);
(6)] m(Ap) = dm(p)  (peMi, 2 50);
A) e is lower semicontinuous.

If m,mell*, xel and A >0, then onc defines the clements we + o, Aws
and x*wx of #* by

“) (4 #) (@) = m(@) + (@) (pe});
%) (An) (@) = An(9)  (ped);
(©) (x*mx) (@) = m(p(x*.X)) (pel}).

If zis a positive element in the centre 2(.#) of .#, then we write zm or amz instead
of zlﬂmzlﬂ.

__ Formy, my el +, write m; < oy if iy(9) < mns() forall g e 2. 1f {mi}ierc
< .+ is an increasing net, then one defines an clemcn't m = SUpie; wy €M * by
m(p) = sup,e; ml@) (@ €ME);in 1 this case we also write w; t ». In particular,
for an arbitrary family {m},e; c 4+, an element wm = gm,e.ll * is defined by

3

w(@) = Y, m(p) (pet}).
I3

11.2. Let .# < @(o¢) be a von Neumann algebra, e €.# a projection and A a posi-
tive self-adjoint operator in the Hilbert space e, affiliated to the von Neumann
algebra ee c B(eX). Let

€ = Ill—l.ﬂ)(A) se (n=1,2,. )
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For each n, Ae, is a bounded positive operator in e./e and s(4e,) < e,. Define
an element s, €.//* by

wig) =3, o(de) + co-pl — ) (9 €M),

n=l

Ife=1 and A=aed?, then #,(¢) = ¢(a), (p €.#}). The mapping
M+ 3a > m, e+ is injective and preserves the operations introduced in Section

11.1, so that we can identify 2, with a and write /#/* < M.
If e=1—fand A4 =0, then the element », will be denoted by co- f; for
@ €M% we have (co- f) (p) = co- ¢(f), i.e. this value is 0 if ¢(f) =0 and +oo

if o(f) > 0.
Thus, in the general case considered above we have

0 my=Y Aeg+ oo (1—e),

so that sz, is a sum of elements in .# * with mutually orthogonal supports and
a symbol oo on a projection which is orthogonal on all these supports.
If £ es#, then w, e A} and, by ([L], 9.9), we obtain

| AY2E|12 if & € D(A'?) < et
- o0, in the contrary case.

(2) " A(wg) = {

In particular, it follows that the element oz, determines the projection e and the
operator A uniquely: if fe.# is another projection and B is a positive self-adjoint
operator in fo° affiliated to f4f, then

(3) iy = ontg <> € =f and 4 = B.
It is easy to check that
) s(A)=e<> my(p) >0 forall 0 £ pel];

in this case we say that w = w1, € A+ is faithful or non-singular. Also,

() e=1< {pe}; m(p) <+ oo} is dense in A F;

in this case we say that we= m, €A+ is semifinite. Moreover,

(6) =1 and A4 is bounded <> s, (p) < 4 oo for all pe.#.

If {e,} 1€, + ) is the spectral scale of 4 (see [L], E.9.10), thene, t efor 2 t +co
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and
) (@) = Szdgo(eo too-gl—e)  (pel}).

Indeed, this identity is easily verified for ¢ = w,, (¢ € #), using (2) and ([L], E.9.10),
and then extended for any ¢ e.#{, since ¢ = Y, W, with ¥} 6,12 < + oo (see

(L}, E.7.9, 8.17). "

11.3. The example considered in the preceding Section is gencral, as is shown by
the following

Proposition, Let # < B() be a von Neumann algebra and 1 € M +. There exists
a projection e € A and a positive self-adjoint operator A in eX affiliated 1o ede,
uniquely determined, such that ot = m,.

Proof. The uniqueness follows from 11.2.(3).

Since sme+, the function g:5¢ 5¢& > (&) = m(wy) €[0, + o0) is lower
semicontinuous and has the following properties:

q&) = |A%q() (EeXH, LeC);
qC+m+9@€—n) =29+ 29(m) (& neax);
q’§) =q(§) ({eiH¥, u' e’ unitary).

It follows that the set D(q) = {¢ € #'; g(¢) < + oo} is a linear subspace of J,
stable under /', so that there exists a unique projection e € . such that D(q) = eX.

By (A.10) there exists a unique positive self-adjoint operator A in e such that
[1A'2E 112 = q(&) = m(w,) forall & € D(A'?) = D(g). Using 11.2.(2) it follows that
m(w;) = my(w;) (§ €X), and since any @ €4} is a sum of veclor forms we
conciude that v = s,

By this Proposition and the results in Section 11.2 it follows that for cach
clement s« in the extended positive part of a W*-algebra . there exists a sequence
{a,} of positive elements in .# with mutually orthogonal supports and a projection
eef, e > Y, s(a,), such that

n

(1)) m=Za,+oo-(I-—e).

Also, by 11.2.(7), each element €. 4+ has a unique *spectral decomposition”:

(2) m=Si.de‘+oo-(l—-e).

/]
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Finally, by 11.2.(6), for » € .#+ we have
3 (@) <+ oo for all pe M} <> m=aecH*.

Let 2 be an abelian W*-algebra. In ([L], 7.20) we defined an extension &
of Z. It is easy to check that &+ consists of those elements »: of the extended
positive part 2+ such that the set {o € Z&; m(p) < + oo} is dense in Z{. Also,
each element s € Z+ is of the form

“) m=z+oo-pwithze.“i‘*,peﬂ‘,pz=0.

Let.# < 2(5¢) bea von Neumann algebra. We say that an element a € RBF)*
is affiliated to M if u*mu = m for all unitaries ue.#'. Let ec 2(¢) and 4
be the projection and the positive self-adjoint operator in e, respectively, such
that ¢n = m4. Then

() m = my is dffiliated to M <> ec M and A is affiliated to ede.

Thus, there is a natural bijective correspondence between £+ and the elements
in B()* affiliated to .

11.4. Proposition. Let # be a W*-algebra. Every normal weight @ on M has a
unique extension to A+, still denoted by @, such that

0y} Plon + #) = o) + @)  (om, € M*)
) @(Am) = dp(m) (medl*, 2> 0)
3) i, m €Mty iyt o = @lon) 1 Qo).
If pe}, then

O] @lm) = m(p)  (medl*).

Proof. If @ e M, define the extension of @ to 4+ by (4); (1), (2), (3) then
follow.
By Corollary 5.8, every normal weight ¢ on . can be written =Y o
{

with ¢, € .4}, so that we can define @(m) = Y, @u(m) (o €.#*), and 1), (2,3
1

again follow easily. _

For any me.#* there exists an increasing sequence {a,} ¢ #* such that
a, 1 m (see 11.3.(1)); condition (3) implies that ¢(a,) t (). This proves the unique-
ness of the extension of ¢.
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11.5. Let 4 be a W*-algebra and & < .# a W*-subalgebra. An operator valued
weight on .4 with values in 4", or an ./ -valued weight on .4, is a mapping

E: M4+ — ¥+ with the properties:

m E(a+b) = E@) + E®) (a,be.t*)
[0)) E(’a) = AE(@) (aed+, 2 >0)
A . E(y*ay) = y*E(@)y (aedl*, yek).

Any weight ¢ on .4 can be regarded as an operator valued weight ¢: . #*— (-1 .4)".
Every conditional expectation (9.1) E: .# — 4" is an operator valued weight

such that E(14) = l,. Conversely, every operator valued weight E: 4+ 4 +
such that E(14) = 1, can be extended by linearity to a conditional expectation
E: M - 4.

For an operator valued weight E:.#+ — 4+ consider the scts
Fe={acut; E@eN*}, Ng={xel; E(x*x)eN*}, Mg = NN,

e is a face of A+, Ny is a left ideal of 4 and Vi is a facial subalgebra of .#:
Mg = lin Fg, Mg 0 M4+ = Fg. Consequently, E can be extended uniquely up to
a linear mapping E: D ~ A", Also, it is easy to see that 9 and D are A -bimodu-
les, i.e.

(4) .4"-915-.4" (= ms, ./‘r'mtg‘./‘, « 93?3
and
® E(yixys) = nE(X) y: (x € Mg, y1, y2 €X).

In particular, it follows from (5) that

(6) E@M;) is a two sided ideal in .

The face & contains an increasing right approximate unit {u;},¢, for the left
ideal N, which is s*-convergent to the unique projection e€.# such that NE = e

and Mz = ee. If A contains the unit element of .#, then from (4) it follows that
ee N’ N M. We say that E is semifinite if e = 1. On the other hand, we say that £

is faithful if for xe M, E(x*x) =0=>x=0.
Note that

) if E is semifinite and faithful, then E(MRg)* =N,

Indeed, by (6) there exists a unique central projection ¢ in .# such that E@)” =
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=q. Assume that ¢ # 1. Since E is semifinite, there exists x € Ny with x(1 —
—q) # 0, hence 0 # (1 — g) x*x(1 — q) e M. Since E is faithful, it follows that
O£ E((l—qg)x*x(1 —g)=(1—¢q)E(x*x)(1 —q)e#/'(1 —gq), contradicting
EMp) c Ng.

We say that E is normal if E(a;) 1 E(a) whenever a;,a €#* and a; 1 a. In this
case there exists a unique projection s(E) € A~ n #, called the support of E, such
that for x €.# we have E(x*x) = 0 if and only if xs(E) = 0. Moreover, E is faithful
if and only if s(E) = 1.

If E is normal, then, by Proposition 11.4, for every ¥ e 4" we get a normal
weight ¥ < E on /. Again by Proposition 11.4, for each » €.#* we can define

an element E(») €A+ such that E(en) () = (f © E) (o), (Y eA"}). We thus get
a unique extension of E to a normal, additive and positively homogeneous mapping

E:dl* > N+,
Note that
8) if E is normal semifinite and faithful, then E(M*) = N/ +.

Indeed, consider first b e+ n E(M). Then b is the image of a hermitian
clement of M, and thereexista, a’ € Mg n A+ such that b = E(a) — E(a’) < E(a).
By ([L], E.2.6) there exists y € 4" such that b = y*E(a) y = E(y*ay), hence b € E(/*).

Consider now b €A™+ and let {v;} be an increasing approximate unit for the
w-dense two sided ideal E(M;) of A~ (see (6), (7)). Since b>bY2p,b12 1 b, it follows
that there exists a family {b;} = E(Mg) nA"* such that b= Y, ;. For each j

7

there exists a; €.#* with E(a)) = b,. Hence a = Y] a; e+ and E(a) = b.
7

Finally, any element be 4+ is a sum of elements in 4"+ (11.3.(1)), and the
same argument as above shows that b € E(.#+).

The set of all normal semifinite faithful .4 -valued weights on .# will be denoted
by P(AH,AN).

An A -valued weight E on 4 such that E(x*x) = E(xx*) for all xe.#

will be called an operator valued trace. In this case 9Nz and M are two sided ideals
of .#, E(ab) = E(ba) for a, b€ N; and E(xa) = E(ax) for ae Mg, x € .A.

11.6. Proposition. Let ./ be a W*-algebra, Q< N W*-subalgebras of .# and
Ee P(M,N), Fe P(AN, Q). Then F+ Ee P(MH, Q).

Proof. Clearly, F - E is a normal and faithful operator valued weight. Let
x€Ngandlet {v};e, = Np = A be such that 0 < v t 1. Then (F E) (vfx*xv)) =
= F(r?E(x*x) ;) < || E(x*x)]| F(t/'v)) < + oo, so that xv;€ N and xv 3 x.
Thus, Ny, is w-dense in N which is w-dense in .#. Consequently, F « E 1s also
semifinite.

It is easy to check that

'e)) (F + E)(x) = F(E(x)) for all-xelin (Mg 0 Mpg N ).
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In particular, if E e P(#,.#") and ¢ is an n.s.f. weight on /", then Y E is an
n.s.f. weight on .# and

[0)] (Y ° E) (x) = Y(E(x)) for all xelii (Mg n My.p 0 M),
11.7. Conversely,

Proposition. Let E: ./ + — A"+ be a normal operator valued weight. If there exists
a faithful normal weight y on A" such that the normal weight ¢ =+ E on M is faithful
and semifinite, then E is faithful and semifinite. ‘

Proof. Indeed, for xe/ we have E(x*x)=0=¢(x*x) =0=x=0;
hence E is faithful. Let ae M, n A+ and let {b,} be a family of elements in A"~
with mutually orthogonal supports f, = s,(b,) and /> Y, £, such that E(a) = Y b+

+ o0-(1 —f) (see 11.3. (1)). Then Y(E(a)) = ¢(a) <"+oo, hence f= 1. Putting

g=1— Y f.€A", we have ¢ t 1, hence ¢;xe; 2 x;also e,xe, e Ny, as E(e,xe,)=
n=-k+lk
=6E(x)e, =Y, baeAt. Consequently R, is w-dense in N, which is w-dense in

LY}

A, i.e. E is semifinite,

11.8. Let E: A+ — A+ be an n.s.f. operator valued weight, #, = Maty(C) a factor
of type I, and 1: &, — F, the identity mapping on F,. Consider the tensor product
linear mapping

E=EQUM RF, N ®F,.
Using the polarization relation it is easy to check that M, @ F, =

=N QF,)* (N B®F,) is a s-subalgebra of .# ®F, lincarly spanned by its positive
elements. Also, My ® F.is an (N# @ F,)-bimodule and we have

M Enxys) = nEx)y: (€M @ Fyy i y1€4 @ Fo).
Note that
¥)] ‘ xeMy ® Fi, x > 0= E(x) >0.

Indeed, let Yy e¥s, 0=y @tre(N @ F)& and § = (¢« E) ® Ir be a normal
semifinite weight on .# ® #,. We have Mz ® F, < Vi and O(x) = 0(1;;(.7:)) for
allxe M, ® F,. ForeveryyeV @ F, we have (n,(E(x))yf.! ¥&o)e = 0(y*E(x)y) ==
= 0(E(y*xy))= 0(y* xy) > 0, hence m(E(x))>0. Since ¢ A"y was arbitrary, it
follows that £(x) > 0.
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Lemma. Let E: #* — ¥+ be an n.s. 1. operator valued weight, let @ and Y be n.s.f.
weights on A and let § = ¢ - E, =y o E. Then

X € (N NNY* (B 0 RNy) = E(x) € NI,

Proof. We may assume that x = a*b with g ¢ Nz n Ne, be Ny n Ny, Then

- a b\*fa b a*a x
0<x= = €M:® F, and hence, b 2),
,(o o) (o o) (x“ b*b) 58 % v @

s~y [E(a*a) E(x)
5= (s somy) >°

Let 0 = 0(p, ) be the balanced weight on 4/ ® Z5. Then O(E"(i)) = @(E(a*a))
+ Y(E(b*D)) = $(a*a) + Y(b*b) < 400, hence E(X)e M, and consequently (see
31.(3))Ex)e NIN,.

11.9. Theorem. (U, Haagerup). Let E: M+ — ¥+ be an n.s.f. operator valued weight
and ¢, Y n.s.f. weights on A". Then

n o"ETEG) =o' ®(y)  (yed, te R)

that is

05 a?*f ) =0?0) (ved,teR)

© [DW « E): Dlg » E)l, = [DY: Dgl, (e RR).

In particular, it follows from this statement that 4 is ¢**E-invariant and
[D - E): D(p * E)), e (1€ R).

The proof of the Theorem will be given in Section 11.12. In Sections 11.10
and 1111 we consider properties of s*-continuous one-parameter groups of iso-
metries on W*-algebras which are necessary for the proof.

Note that if £(1 4) = 1, then the Theorem follows from Corollary 10.5.

11.10. Let {o,};er be an s*-continuous one-parameter group of isometries on the
IW*.algebra #. Define the analytic extensions o,,(x € C)as in Sections 3.12 and 2.14.

We say that an element ae./# is of exponential type with respect to {a,} if
a€ D(q,) for all x e € and there exist two constants y, & > 0 such that llo(a)]| <
S 7exp(—d|Ima])(xe ). The set of all elements in .# of exponential type
will be denoted by .#%,,. Note that for a € .# we have

mn a€Mep<>acD((c_y)) for all neZ and there exist
7 6> 0 such that ||(c_,)"(a) <y exp (—éin}) (neZZ).
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Indeed, the implication (=) is obvious. Note that (o_,)"=o0_; (n€Z), and
lo i@ | = llo(@)]| = suprer |lo e+ 1) (s, t € R), since all the o, (1 € R) are iso-
metries. Thus the converse implication (<) follows using the “lhree lines theorem"

(79}, VI.10.3).
Lemma. #7,, is w-dense in /.

Proof. For each 1 > 0 consider the entire analytic function F,(2) = (1 —
— cos Aa)/nlad, (x € €C). It is well known that

+ oo

) S Fy()ydt =1

-0

and that for any bounded continuous function f: R - [R we have

+ oo

) Alim SFA(t)f(t) dt = f(0).
We shall show that
@ S |Fy(t+ is)| dr < exp (A1s]); selR.

To this end we consider the functions f; defined by

AU if | r| < A2
o = { it 1rl > 2

and their Fourier-Laplace transforms

fi@ = @r)=17 \ fy(r)e=i=" dr = (2/riz)"'7" sin (Ar/2).

Since
4 00

f?\(z)! = F;(x) and ﬁ(l + is) = (2m) 12 S fir) e e dr,
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we get using the Plancherel formula

+ 0o —00 +co

S |Fy(t + is)idt = S lf}'(t + is) 12dr = S | fi(r)esriz dr
) +00 —o0
+A/2
= A1\ e?*"dr < eV,
—i2
+00

Consider now ae.# and a,= S Fy(r)o(a)dr, (A > 0). We shall show that

—oo
a,e.l, and a; = a when 1 — -} o0,
Indeed, it is easy to check that a, is an entire analytic element and c(a;) =
+00

= S Fyr — «)o,(a)dr (x € T). Moreover, using (4) we obtain lola)ll <

S—llall exp (4 |Im «|), hence a, €.Z,. On the other hand, using (2) and (3), we
get, for every ¢ e./.,

4 oo

o(a; — a)= S F{r)o(o,@) — a)dr — 0

—00
hence a; = a when 21— +oo.

11.11. Proposition. Let.# be a W*-algebra, &' = i a W*-subalgebra and {¢,},cp,
{t.}ter s*-continuous one-parameter groups of isometries on ./, A" respectively. If

beD(r) eV =be Do) and o_i(b) = ©_,(b)
then

a,(3) = 1(y) (yet, teR).

Proof. By assumption and by 11.10, (1) it follows that Nixp © M2y, For
be.x:,, we have o_,(b) = ta(b) (n€Z), and therc exist y, > 0 such that
l6.(b) — 1,(b)il < yexp (6 | Im aj) (xe €). By a theorem of F. Carlson ([189],
part 3, chapter 6, problem 328) it follows that 0.(b) = t(b)(2x € C). Thus,
a(b)y=1,(b) for all b €N %xp 1 € R, Since the isometries o, and T, are automatically
w-continuous and since, by Lemma 11.10, 4" txp is w-dense in 4", we conclude that
e ()=t foryes, teR.
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11.12. Proof of Theorem 11.9. Let = ¢ ° E, § = « E be n.s.f. weights on /.
By Proposition 11.11, we have to show that, if

) ac D(¥?) c N and b = o¥P(a) e A,
then
() aeD(@"?) and b = o¥(a).

By Theorem 3.15, this amounts to showing that
3) aNs c N3, Nzb = Nz
@ ¥(ax) = @(xb) for all x e N3 N;.

From (1) it follows that a € D(¢*{,,) and b* € D(6%¥,) (sce 3.12. (4)). Using
Proposition 3.12 we infer that therc exists 2 > 0 such that Y(aya*) < 2%@()) and
o(b*yb) < A%(y) for all y e 4 +. These inequalities remain valid for any yeA'*

and hence we get J(axa*) < A2p(x) and G(b*xb)< 22y(x) for all xe#*. By Pro-
position 3.12 again, we obtain the required inclusions (3) as well as the inequalitics

©) (va%)sls < Alxgl  (xe9N)
©) (xb)zllz < Alxplly (e 93,
We now prove (4) in the particular case
x=y*z with ye; n Ng, 2N 0 N,
Using the first inclusion in (3) and the fact that 9, is a right .#-module, we obtain
ax = (ya*)*ze(MN; n NY* N; n N < lin (Mg n Vs n.#*) and, similarly,
xbelin (Mg n M3 n A*). We have x € M and, by Lcmma~ll.7, E(x) e NIN,.
Using 11.6.(2), assumption (1) and Theorem 3.15, we get y(ax) = yY(£E(ax)) =

= Y(aE(x)) = @(E(x)b) = @(E(xb)) = ¢(xb).
Finally , we consider the general casc:

x = y*z withyeN;, 2eN;.
Since @(E(y*y)) < +oo and ¢ is faithful, from 11.3 and 11.2.(7) we infer that

E(y*y) has a spectral decomposition of the form E(y*y) = \ tde,. For any 1 > 0

S g



160 MODULAR THEORY IN OPERATOR ALGEBRAS

we have
) ye, € NG n Ng
and for t - 400 we get
e, — »31l5 = o(E((ve, — »)* (ve, — y)) =
®)

—o((1— ) EG*) (1 — e)) = o ( Ss de,) ~0

so that, using (5), we further deduce

9) (ye,a*); ~ (ya*); in x5,

o

Similarly, we have a spectral decomposition E(z*2) = Stdf, such that, for any
o

t>0

(10) 2, eN; n N
and, for t = +-co0,

(i (zf); = z3in #5,
(12) (2fb); - (zb); in H5.

Using (7)—(12) and the particular case of statement (4) proved above, we
conclude that

V(@) = @3] 0a%5) = lim ()5 | Gea®));
= lim Y(a(ye)* ) =lim § (Ge)*A)b)
=lim (fb)3 1 0ed3)s = ()5 | 335 = G(xb),

and this completes the proof of Theorem 11.9.

11.13. Corollary. Let E,, Ey: M* =+ ¥+ be n.s.f. operator valued weights. If there
exists an n.s.f. weight @ on N such that ¢ « E, = ¢ « E,, then E; = E,.

Proof. Let ¢ be another n.s.f. weight on 4. By Theorem 11.9 we have
(D  E): D(p * E)), = [Dy: D), = [D(y « E): D(p + Ep),(tcR), so that,




CONDITIONAL EXPECTATIONS AND OPERATOR VALUED WEIGHTS 161

using Corollary 3.6, it follows from the assumption ¢ * E, = ¢ + E, that

YyE =y E,. . .
Now let w e A% and e = s (). There exists an n.s.f. weight  on 4 such that

o(y) = Y(eye) for all ye A+ and this identity extends to all yeA+. Thus, for
xeM+ we have E(x) (0) = w(Ey(x)) = Y(Ey(exe)) = Y(E(exe)) = w(Eyx)) =
= E,(x) (0). Since @ €4} was arbitrary, it follows that E(x) = Ey(x) (x€.#*).

Note that if ¢,, ¢, are n.s.f. weights on 4", then
) [D(@, ° Ep): D(py * Er)); = [Doy: Do), (t€R) = E; = E;.

Indeed, using 11.9. (3), we have by assumption [D(p, * E)): D(g, * Ey)], = [D(@, *
o E): D(@, » E)], (t€[R), so that ¢, * E, = ¢, * E; by Corollary 3.6 and hence

1 = Eg.
Arguing as in the second part of the proof of the above Corollary we also
see that

¥4 E, < Ey<> ¢ *E; < ¢ * E, for all p € W,,(AN).

11.14. Every normal positive linear mapping between We.algebras @:.4 — N
can be extended to a normal, additive and positively homogencous mapping

(D:.I{“" —»,A_"‘* by
D) () = (P < ®) (Y ENE, med*).

In particular, every s-automorphism ¢ of . can be extended to .4 *. Note
that

1 (%) = {m eM*; o(m) = m).

Indeed, it is clear that (#°)* < {m €M*; o(m) = m}. Conversely, let medt,
with o(m) = s, have spectral decomposition

m= Sl de; +00 - (1 — e); then o(m) = S).da(q) + co-a(l — o).
] ]

Since o(m) = an, it follows that ¢,, e€.#°, hence m € a%)*.

Corollary. Let E: M+ — ¥+ be an n.s.f. operator valued weight and ¢ an n.s.f.
weight on &". Then

@) E(@P(x) = of(E(x)) (xed*, 1eR).
In particular,
(3) 0’,"5(9335) = 9335 (l € IR).

11 ~707
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Proof. For each t € IR consider the mapping
E,=0% cE-c?E: H{+ - ¥+,

It is easy to check that E, is an n.s.f, operator valued weight; condition 11.5.(3)
follows using Theorem 11.9. Since 9E; =@ E-ofF =¢ - E, using Corollary
11.13 we infer that E, = E, the desired conclusion.

11.15. Let E:./* —» A+ be an n.s.f, operator valued weight and ¢, Y n.s.f. weights
on A,

By 11.9.(2) we have of"E(4") = o (AN) =, so that
) WEN' N MY=H" 0 (teR).

Since [D(y¥ °E): D(¢ ° E)], = [Dy:Dgl, e, for any zeA”" N # we have
o E(z) eV’ n M, hence

@) = (DY < E): DY  E)), 02" (2) [D(y * E): D(g * E)I¥ = ofE(z).

Thus, 6| 4" n 4 does not depend on the n.s.f, weight ¢ on ., so that we can
define

() ow=olElN" Nk (teR),

by choosing an arbitrary n.s.f. weight oonA,
The one-parameter group {o7'},er = Aut(N"’ n#) is called the modular auto-
morphism group associated with the operator valued weight E: #+ —» 4+,

Consider now two n.s.f, operator valued weights E, F: .#* — _#+ and two
n.s.f. weights @, ¥ on 4.
We define an n.s.f. operator valued weight @ = O(E, F),

O: Maty(A)* - (¥ ® 1)+
by (compare with 3.1)

X1 Xie _ [ E(xn) + F(xyy) 0 .
9(("" Xas ) ) (3 Ft+ Fergy) 1€ M)

Consider also the weight p=90®lonN ® I and the balanced weight 0 = O(pE,

@ * F)on Mat, (/). It is easy to check that ¢ » © = 0 and ¥ ®1) n Mat () =
= Maty(A" n ). By applying (1) in this case we get

((D((p . 1:);00(,,, . )], g) = gy ® ((? 3))eMar,(.A" n .«),
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hence
3) [D(p * F): D(p *E),eN”" n.#t (teR).
Using (3), 3.4, 3.5 and 11.9.(3), we obtain

[D(y « F):D(y * E)); =
= [D(Y+ F): D(¢* F)},[D(p* F): D(¢-E)},[D(pE): D(Y * E)),

= ([Dy: D), [D(p * F): D(p « E)},[Do: D Y],
= [D(@ * F):(p * E)),.

Thus, {D(¢ * F):D(@ * E)}, does not depend on the n.s.f. weight ¢ on 4/, so that
we can define

@) (DF: DE), = [D(p * F): D(¢ *E)),e¥" n A  (teR),

with an arbitrary n.s.f. weight ¢ on A",
The function ¢ — [DF: DE], is called the gE-cocycle associated with F. Indeed,
using the results in Sections 3.1—3.5 , it is easy to check that

(5) of = Ad([DF: DE],) * of,
(6) [DF: DE),,, = [DF: DE), o([DF: DE},),
Q) [DE: DF), = |[DF: DEJ?.

Also, the *‘chain rule” holds.
Using 11.13.(2) and Corollary 3.13, we obtain:

there exists a w-continuous function
f:{ae C; 0 < Rea € 1} = .4, analytic in
{xe €;0 < Rea < 1} such that flit) =
[DF: DE),, (te R), and |f(1/2)} < 1.

(8) F < Ee>

Note that all the above results apply in particular for normal faithful conditi-
onal expectations.

11.16. Notes. Operator valued weights appeared in the works of Connes and Takesaki [61]
and Landstad [152], but their systematic study is due to Haagerup [103]. The modular auto-
morphism group associated with an operator valued weight was first considered in the case of
conditional expectations by Combes and Delaroche [31].

For our exposition we have used [103].
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§12. Existence and uniqueness
of operator valued weights

In this Section we give several criteria for the existence and uniqueness of operator
valued weights, together with some applications. .

12.1. The main existence criterion for n.s.f. operator valued weights is the following

Theorem (U. Haagerup). Let ¢ be an n.s.f. weight on the W*-algebra 4 and Y an
n.s.f. weight on the W*-algebra A" of M. If

() =d¥(y) (ved, telR),

then there exists a unique n.s.f. operator valued weight E: M+ — ¥+ such that
¢=yY-L :

The proof of this Theorem is contained in Sections 12.2—12.5. After some
preparation (12.2), we prove the Theorem in the particular case when ¢ and ¥ are
n.s.f. traces in Section 12.3. In Section 12.4 we present a brief review of some results
concerning the crossed product of a W*-algebra by the modular automorphism
group associated with an n.s.f. weight; the exposition here is essentially self-contained
although these results will be considered later in greater generality. Finally, using
these results, we complete the proof of the Theorem in Section 12.5.

12,2, Let 7 be an n.s.f. trace on the semifinite W*-algebra .#. Each semifinite ele-

ment 4 €A+ (see 11.2.(5)) defines a normal semifinite weight 7, on 4 asin Sec-
tions 4.1, 4.4. By Theorem 4.10, the mapping A — 7, establishes a bijective corres-

pondence between the semifinite elements 4 €4+ and the normal semifinite weights

on .
Note that for a, b e.#*+ we have

) 1,(0) = 1,(a).

Indeed, 17,(0) = (a%baV’?) = t((bYV2aV2)*(BV2aV2)) = 1((bV2aV2)(BV2VY)*) —
= 7(bV2abV?) = 1,(a). .
Consider now 4 e+, Using 4.3. (1), 4.3.(3) and Proposition 11.4, we see

that the equation
(b)) =1(4) (ben?)

defines a normal weight t, on ., which extends to .4+, By the definition of 1, and
by Proposition 11.4 it follows that

¥} Targ=Ta+ Tp Tu=214 (4, Bel*, 1>0).
Also, it is easy to check that
3) M*sa,t Ael*t, M*3b,1Bed* =1,(b)1 1,(B).

Using (1) and (3) we infer that
) T4(B) = 15(4) (A, BeA*),
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and from (4) and 11.4. (3) it follows that

5) At A BtBin A= t4(B) 1 t4(B);

indeed, 1,(B) = sup 1,(8) = s;xp t,J(A) = sup m:p t,J(A,) = sxlllp t4,(B)). Note
J J

also that

©) Teax(B) = 14(x*Bx) (4, BeM*, xe.M);

indeed, if A =aeMl*, B=>be.l*, then 1,,.(b) = 1,(xax*) = 1(b12xax*b"?) =
= 7(a'/2x*bxa'/?) = t,(x*bx), and the general casc is obtained using (3).
It is easy to check that the normal weight t,, is semifinite if and only if the ele-

ment A €4+ is semifinite and that in this case the above definition of 1,4 agrees with
the definition given in Section 4.4.

Also, the normal weight 7, is faithful if and only if the element A e.#* is
faithful (11.2.(4)).

Since any element of .#% is of the form 1, with A e.#* (by Theorem 4.10)
and since every normal weight on ./ is a sum of elements in .#¢ (by Corollary 5.8),

it follows that every normal weight on .# is of the form t, with A .4 *.

If A, Be A+, then again by Theorem 4.10 we get: 7, = 1 < 7,(X) = 15(X)
for all X € 4+ <> 15(A) = t5(B) for all X .4+ <> @(A) = @(B) for all @ .M}
<> A = B, Consequently,

) the mapping A v 1, cstablis_/_:_cs a bijective correspondence
between the sets M+ and W (H).

Similarly, for A, A;, B e A+, we obtain
(8) A<Be1, <1,
) Ajtdet,11,.

12.3. We now prove Theorem 12.1 in the case when @ and  are n.s.f. traces on .4
and 47, respectively.

For each ae 4+, @, |/ * isa ng_rmal weight on A" and hence, by 12.2.(7),
there exists a unique element E(a) e+ such that

1)) Pl A = V-

We thus define a mapping E: .#* — 4 *. Using the results of Section 12.2 it is easy
to check that E is a normal operator valued weight and that @ = ¥+ E. Morcover,
using Proposition 11.7 it follows that E is faithful and semifinite.

If F:.4* - ¥+ is another operator valued weight such that @ =y F,
then forany ae.4*, b e * we get 9,(b) = @,(a) = @(bV2abV'?) = Y(bV2F(a)bV?) =
= ¥,(F(a)) = ¥ p.\(b), hence F(a) = E(a). Actually, the uniqueness of E follows also
from Corollary 11.13.
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12.4. Let ¢ be an n.s.f. weight on the von Neumann algebra # < 2(5¢). The mo-
dular automorphism group {6¥},cr determines a continuous action ¢ = ¢® of the

group R on . Consider the Hilbert space L¥R, #) =# ® L¥(R).
The crossed product of .# by the action ¢ of R is the von Neumann algebra
R(M, 0) = B(LYIR, 5#)) generated by the operators I(x) = I(x) (xe.#),
X)) = 0 (Er) (e LAR, ), reR),
and by the unitary operators A(?) (€ R),
MO =¢Er—1  ((eLX(R,#), reR).

The mapping I: # — &(A, 6)is an injective normal *-homomorphism. We shall
identify # with I(#) < %(#, ) With this identification we have

0} o (x) = MOXM*)  (xed, teR).
The unitary operators m(s) (s € R),

(m(5)5(r) = e~¥(r) ¢ e Z¥R, ), reR),
define a dual action 0 = 6° = 6° of R on 2(4, 0):

0,(X) = m(s)Xm(s)* (XeR(A, 0), seR),

which is characterized by the equalities
) 0(x)=x (xedl,seR),
&) 0A) =e"0t) (s, 2eR).

Moreover, we shall see later (Proposition 19.3) that the centralizer of the dual action
coincides with .#:
(C)] R, 0)’ =M.

We shall show that

+ 00
E=E, = S 0,ds: R(M, 0)* - M*
—00

is an n.s.f. #-valued weight on #(.#, ¢) and
&) E@0(X)) = E(X) (XeR(H, o)*, scR),
©6)  EMNOXMN® = MOEXOM()* = o (E(X)) (XeR(H, o), 1eR).
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More precisely, E is defined by
+ 0o
E(0) (@) = S COX)ds (X eR(A,0)*, w R, a)i)
-—Q0
as a mapping E: R(H, 6)* — R(MA, 0)*. Let X e R(M, o)*. Using the translation
invariance of the Lebesgue measure we obtain J,(E(X))=E(X) (se R), and hence
(see (4) and 11.14.(1)) E(X) € (H#(A, 0))* = M*. 1t is now easy to check that E
is a normal faithful .#-valued weight on #(.#, @) which satisfies (5) and (6).
To show that E is semifinite, we consider a continuous function SfR~C
with compact support and the operator

+00
M) = S J(N\(r) dr e R( 4, o).
-—00
We have M(/)*M(f) = M(f* * f), wherc f*=* [ is the convolution of the function
S*(r) = f(—r) with the function f. Also, we consider the functions g.(s)=exp (s*/2n?)
+00
(seR, neN), and their Fourier transforms hy = g, ht) = S ga(s)e—itde =

-

= anEcxp(n’t’/Z) (reR, neIN). Note that g(s) 11 uniformly on compact
4+

.

sets, as n 1 oo, /1,(1) > 0 and S h(t)dt = 2n,

Since |M(f* * NAII < ITG" * e NI < NS fllelihdlh < 27) f15, it follows
by Fatou’s lemma and Fubini’s theorem that

400

£ = s | 004« s e
= sup S £(5) S (f* * N)Oe-r) dr ds
= sup S (f* & FYXOhSOM) dr

=sup M(f** Nh)eu*,
that iS, m € 9?; .
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Since RN is a right .#-module, it follows that le )x € N for any x e and
any continuous function f with compact support. Since #(.#, o) is generated by .#
and {A(t); 1 € R}, it follows that 9. is dense in B(A#, o), i.e. E is semifinite.

Thus, we can define an n.s.f. weight ¢ = ¢ o E on %(A#, o) called the dual
weight of ¢. By (5) it follows that the dual weight is invariant with respect to the dual
action:

Q) 9:0,=¢ (seR),
By Theorem 11.9 we have

®) of(x) = 0?(x) = MOXM)*  (xeh, teR).

On the other hand, by (6), for X € #(#, ¢)* and t € [R we have

PA()XMS)*) = p(of(E(X)) = p(EX)) = $(X),

so that, using Corollary 3.7 we deduce that

©) © M) = Ms) = MOMSR(D* (s, e R).

Since #(4, o) is generated by 4 and {\(s); s € R}, from (8) and (9) it follows that

of = Ad(A(?)) (teR).
There exists a unique positive self-adjoint operator A affiliated to #(.#, o) such
that .

(10) M)=4" (teR).
Then the n.s.f. weight 1 =1, = @4, constructed as in Section 4.4, has a trivial

modular automorphism group (see Corollary 4.8) and hence is an n.s.f. trace on
R(M. o) (see, for instance, 2.18. (1)). Note that

11 [Dp: D1, =A(t) (teR).
From (3) and (10) it follows that

(12) 0(d)=e¢4 (seR),

and using (7) and (12) it is easy to check that

(13) te0,=¢’t (selR).

12.5. Proof of Theorem 12.1. We may consider # < 4 < B(H) realized as
von Neumann algebras. Since of = o?| A" (¢ € R), it follows that R(A4", a®) is the
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von Neumann subalgebra of #(4, o%) generated by 4" and {A(1); 1€ R}, and

M 0y =07 | RN, 0%) (seR).
Consequently,
) E, = E,| AN, o).

Consider the n.s.f. traces 7, and t, defined on R(A, o) and 9(A4, o¥) as in
Section 12.4. By the result of Section 12.3 there exists a unique n.s.f, operator valued
weight

F:R(M, a®)t = (N, 0”)*
such that
(3) ) ‘ t* ° F S t’ .

By (1) it follows that for each se R
F,= 0%, Fe07: R(H, 0®)* = RN, a*)*

is an n.s.f. operator valued weight. Since 7,° 07 = ¢'t, and 1, 07 = ¢'r, using
equality (3) we obtain 1, F, = 1,, hence F, = F,that is Fo0? = 07oF(seR). It
follows that

4) FeE,=E,*F.
From 11.5.(8) we infer that
F(U*) « F(E(R(M,0%)*)) = E(FR(H,0°)*) c H*

hence E = F|.4*: .M+ — ¥ * is a normal #-valued weight on .4. .

Recall (12.4.(11)) that for the dual weights ¢=9¢*E, and ¢y =y+E,
we have [Dg: D:,l, = M1) = [Dz,l;: Df*]' (teR). Using (32 and Theorem 11.9
we obtain [D(y  F): Dr,], = [DW « F): Dty » ), = [D¥: Dt} = [Dg: Drl,
(te R). By Corollary 3.6 we deduce that ¢ = Yo Fythatis @ e E, = o E, o F =
= y o E o E,. Since E(R(M, 0°)*) = M* (see 11.5.(8)), we conclude that @ = Vo E.
According to Proposition 11.7 it follows that the normal operator valued weight
E is semifinite and faithful.

The uniqueness of E follows from Corollary 11.13.
12.6. Corollary. Let &/ < .4 = B(XK) be von Neumann algebras. Then P(M,N) # O

if and only if there exist n.s.f. weights @ and Y on .4 and A, respectively, such that
of = o?|N (teR).
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Proof. Follows from Theorems 11.9 and 12.1.
12.7. Corollary. Let /" < H < B(H) be von Neumann algebras and let

’Vnsj(‘/V) 3 (P L “Z € Wnsf("”)
be a mapping with the Jollowing properties

F=0l |4 (teR, g W, (4)
[DJ: D3], =[Dy: Dgl, (1R, o, ye Wi (H).

Then there exists a unique n.s.f. operator valued weight E: M+ - N+ such that
¢=¢@oEforalpe Wasf(AN).

Proof. Let ¢ Waes(A') be fixed. By Theorem 12.1 there exists a unique n.s.f,
operator valued weight E: .#/* - /+ such that = ¢ o E. By our assumption
and Theorem 11.9, for any Y € W,,(4) we have [Dy: Dg), = [Dy: Dg), =
= [D(y < E): D(o °E)], = [D(y -E): D@, (t € R); hence $=¢° E by Corollary 3.6.
12.8. Corollary. Let 4~ 1SN B(HY), N oMy B(Hy) be von Neumann algebras
and E, € P(tl}, A7), E.€ P(Mo, N,). There exists a unique element E = E, ® E; e
€ P(.//;@.//g, Ny @ N3) such that

(D) W1 @) E= (Y4 E)® W Ep) for all Vi€ Wi l(V), Ya€ Wy (Vo)

Proof. Let ¢, € WiV, @g € Woss(A2) be fixed. According to the definition
of the tensor product of n.s.f. weights (8.2) and to Theorem 11.9, we have

ago.ok‘.)i(v.ol-‘.) Ay 5.4": = a-:n?v: (teR).

By Theorem 12.1 there exists a unique element E¢ P(H, @ My N L QN ) such

that (¢; ® ¢2) e £ = (9, o E;) ® (9, 0 Ey). ‘

For other n.s.f. weights y,, Y1, (1) now follows again using Theorem 11.9,
Corollary 8.6 and Corollary 3.6.

The operator valued weight E; ® E, is called the tensor product of E; and E,.
Itis casy to check that if @ € Mg, @ € M, thenag, @ a, € Mg, ok, and

(E, § E)a, 5‘1:) = Ey(ay) 55:(02),

but the uniquencss of E,®E, requires (1) for some y,, Vs
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From Section 11.15, it is clear that
0)) oE®E = ghigelr  (teRR).

If E, and E, are normal @thful conditional expectations, then, by Corollary
8.7, the present definition of E, ® E: agrees with that considered in Section 9.4.

12.9. Let &y = My = B(F) be von Neumann algebras, & a type 1 factor and
N =Ng®F c.Moy®F =.%. Consider an n.s.f. operator valued weight
E: M+ >+,

Letx €.#. Foru € # unitary, we have 1®ueA and (l-éu)E(xé (1 ®u)*=
=E(1 ® u)(x ® (1 @ 1)*) = E(x ® 1), hence E(x ® 1) & (N ® 1)*. Thus, there

exists Ey(x)eA"¢ such that

)] Ex®1) = Efx) ® 1.

It is easy to scc that Ey:.#¢ — ¢ is a normal faithful operator valued weight.
Let ¢ be an n.s.f. weight on 47y and #r the canonical trace on F.Forue¥
we have 1 ® ueA and hence (11.9.(2)) a**"° (1 @ u) = o7*"(1 Qu)= 1 @u.
Thus, 1 ® F is contained in the centralizer of the n.s.f. weight (¥ ® tr)o E on
/4 =./l_°§.‘7. By Proposition 9.17 there exists an n.s.f. weight ¢ on Ay such
that ( @ tr) » E = ¢ @ tr. Then, for any x € ./ and any minimal projection ¢ € F
we have @(x)=(p ® ) (x ®)=(V ® Ir)(E(x @ c)) = (¥ ® Ir)(E&(x) @ ¢) =
= Y(Ey(x)), hence ¢ = Y o £,
Conscquently,

(¢3)] WRIr)oE=(YoE)®1r.

From (2) and Proposition 11.7 it follows that E, is semifinite. Then, by (2)
and Corollary 12.8 we get

3 E=E, 5',“

where 1, is the identity mapping on #.
Thus, every E € P(My ® F, N ® F) is of the form (3), with E, ¢ P(Mq, N ).

12.10. Corollary. Let ¢ be an n.s.f. weight on the W*-algcbra /. The centralizer #°
of @ is semifinite if and only if there exists a a®-invariant n.s.f. M ?.valued weight on A

Proof. Assume that .#° is semifinitc and let 7 be an n.s.f. trace on /. Since
6?| .M =1=20f (tcR), it follows by Theorem 12.1 that there exists a

unique n.s.f. operator valued weight E:.4* ~ (4®)* such that @ = to E. Since
To(Eoc?) = @oo? = ¢ = 10 L, itfollows that Evof = E,i.c. £ is ¢®-invanant.
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Conversely, let E: 4+ — (7/"’)* be a o®-invariant n.s.f. operator valued Weightf
and let ¥ be an n.s.f. weight on .4/°. Then the n.s.f, weights ¢ and Y o E on &

commute and so, by Theorem 4.10, there exists a semifinite element A € (Z%)* such
that Y - E=¢,. Using Theorem 11.9 and Corollary 4.8 we obtain of = o!°F = gPa=
= Ad(4") (¢ € R). Consequently, 7=y ,-: is an n.s.f. trace on the W*-algebra .

12.11. Another consequence of Theorem 12.1, as well as Theorems 7.4, 7.14 and
119, is the following

Corollary. Let /" < M < B(H#) be von Neumann algebras. There is a bijection
P(M, V)2 Er> E'€e PN, A",

uniquely determined, with the property

)] AW[9" < E) = AW > El¢") (Y € Wil H), ¢ e W, (),

where A(-/.) stands for the spatial derivative (7.3).
For any E, E\, E; € P(M, A") and any t € R we have

v)] of = of,,
) [DE{: DE}), = [DE,: DE,} ,
@ Ey < Ey,«> E; < E;.

Proof. Let Y € W, (A) and @' € W, (A’) be fixed.

Let EcP(#, ¥). Then ¢ =y - E€ Wesg (). Writing u, = A(p/p")*, by
Theorem 7.4 we have 67 = Ad(u,) | # and ¢% = Ad(u?)| 4’ (1 € R). By Theorem
11.9 we getof = o? | A& = Ad(u) | ¥ (te [R). Using 7.4.(1) and Theorem 7.14
we infer the existence of a unique weight ¥’ e Wl A") such that u, = AY/Y')*
(teR). Then of = Adu®)] A", and hence of =o' |4 (teR). By
Theorem 12.1, there exists a unique operator valued weight E’e (A, .#’) such that
¥’ = ¢’ o E’ and we have

&) AWle" = E') = AW ° E/¢").

Equation (5) determines the weight @' * E’ and hence the operator valued weight
E’, uniquely (see 7.13.(1) and 11.13).

Similarly, one can construct a mapping PV, M) E' v~ E€ P(M,N)
satisfying (5). It follows that the mappings Ew» E' and E’ +» E are reciprocal
bijections.

If eW,(HN), o€ Wa(#') are other weights, then, using Theorem 7.4.
(5) and Theorem 11.9.(3), we deduce from (5) that A(J/@’ « E) = Ay - Ef),

proving (1).
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For z € N nM=(M)Y 0 A we have by definition (11.15.(2))
oF(2) = o7 °F(2) = 0¥’ (2) = uPzu, = u_gzu*, = 6°,(2) = 0*5(2) = o (z). This
proves (2).

Consider now E;, E, € P(#, /) and let ¢,, u}, Y|, E{ and ¢,, 1, i, E; be
associated, as in the first part of the proof, with E, and E,, respectively. By
‘Theorem 7.4.(5) we have [Dy1:Dy;]l, = ut i = [Dep,: Do,)., (t€lR). Since
Y,=¢ o Ej, ¢; =y ° E; (j=1,2), using Definition 11.15.(4) we obtain (3).

Finally, (4) is an immediate consequence of (3) and 11.15.(8).

12.12. In particular, we have the following

Corollary. Let #/ = B(H’) be a von Neumann algebra. There is a uniquely determined
bijection

W (M) 3y > E, € P(B(X), H)

such that

4)) . @ ° Ey = trygy) for any ¢ € W, (M),
Moreover, we have

1) Ey,(n ® 1) = RY(RY)* for all neD(KH, ).

Proof. The notation is as in Sections 4.23 and 7.1.

We apply Corollary 12.11, replacing #, 4, E, ¥, A', #~, E', ¢’ in 12.1]1 by
M, C.le, ¥, t, M, B(K), E,, @, respectively, where A < B(X), ¥ € W, (M),
E, € (#B(5#), A) are as in the statement of 12.12, @ is an n.s.f. weight on .4, and the
positive real number ¢ > 0 is regarded as the weight € -1, 3 4+ t1 € €. We thus
deduce the existence of the required bijection ¥ +~ E,, uniquely determined by the
condition

A(tjp » E,) = A(t}]) for all ¢ € W,,{(.#) and all 1 > 0.

According to 7.4.(1), 7.13.(2) and 7.3.(6), the above condition is equivalent to the
condition

A(p * E,J1) = A(p[Y) = A(trapinl1) for all @ € W, (A).
Using 7.13.(1) we get
@ E,=tryqp forallpe Wogf(A).

Thus, for any ne D(#,y¥) and any @€ W, () we have (see 4.23.9)
and 7.3.(2))

P(Ey(1 ® M) = traem(n ® M) = | A(@/¥)*n]i* = ¢(RY(RY)*)

and hence E,(n ® 77) = RY(RY)* (n€ D(#, ¥)).
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12.13. Another consequence of Theorem 12.1 is an extension of Theorem 5.1 for
operator valued weights:

Corollary. Let /" = M = B(H) be von Neumann algebras and E e P(A#, N) # O,

Then the mapping
F > {[DF: DE];},er

establishes a bijection between P(M, V') and the set of all unitary a®-cocycles
{whier © N NA.

Proof. Let {w,},er = A" N be a unitary a-cocyle and y e W (AN'). Since

oE=a! 5\ ¥t (1L.15.(2)), {w,},er is a unitary o¥°E.cocycle so that, by
Theorem 5.1, there exists ¢ € Wosg(A) such that

0y [Dp: D(Y < E)), = w, (reR).

Since w,.e ¥ n M, for yeA” we have (11.9.(2)) o%( y)=w,af"E(y)w,"=w,a}’(y)w,‘=a}'(y)
(te R). By Theorem 12.1, there exists an operator valued weight Fe P(#, 4)
such that ¢ = < F. Then, from (1) and 11.15.(4) it follows that [DF: DE], = w,
(t € R). Thus, the mapping considered in the statement is surjective.

The injectivity of this mapping follows immediately from 3.6 and 11.13.

12,14, Let ./ be a semifinite von Neumann algebra and 2 a von Neumann sub-
algebra of the centre Z'(#) of 4.

Let us fix an n.s.f. trace T on # and an n.s.f. weight v on 2. By Theorem 12.1
(actually, by the particular case considered in Section 12.3) there exists a unique
n.s.f. operator valued weight

h=KZ, v, v): llts5x > xhe T+

such that t=v < 4, i..
) () = vxt)  (xe?).

Since 2 is contained in Z(.#), we have
) (ax)s =axh (xel*, ae 2*).

For every x €.# and every a € 2* we have v(a(x*x)h)= v((ax*x)b)=1(ax*x)=
= 1(axx*) = v((axx*)4) = v(a(xx*)4). Since v is faithful and a € 2* was arbitrary,
it follows that

(&) (x*x)h = (xx*)  (xeM)
i.c. b is actually an operator valued trace. Thus, By and Ny, are w-dense two sided

ideals of .# and, consequently, any non-zero element of .#* dominates a non-zero
element of My, n 4+,
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In what follows we assume that 2 = ().
Then, for two projections e, fe.# we have

“) e < [ e < fh;

this follows easily, using (3), the faithfulness of Iqand the comparison theorem
(IL}], 4.6).

Consider now an arbitrary normal operator valued trace E: . #* — o+
Then v - Eis a normal trace on .# and hence (see 12.2.(7) and [L), E.7.14, C.10.4)

there exists 4 € 2+ such that v « E = 74. Thus, for x€ .#* and ae 2+ we have
V(aE(x)) = v(E(ax)) = t1(dax) = v((dax)t) = v(aAx4). Consequently,

(5) E(x)=Axh  (ve.+).

If 4 is finite and countably decomposable and if ()= 1, vw(I) =1, then
b:# — Z(4) is just the canonical central trace (L}, 7.11).
If 4 is properly infinite, then v(z) = o0 forall0 s z ¢ Z'*, hence

©) zh = 00.5(2) (ze Z*).

Proposition. Let 4 be a type I, von Neumann algebra with centre Z, t an n.s.f.
trace on X, v an n.s. f. weight on 2 and t; = lq( Z,1,v): M* — Z*, Then

{e4; e e, projection} = Z+.

Proof. Let 0 # A€ Z* and let fe.# be a projection such that A < f% We
first show that there exists a projection e€.#, 0 # ¢ < f, such that et < A.

If A = oco.p with p a central projection, then, according to (6), we can take
e = fp. Otherwise we may assume that A is bounded (11.3.(1)). Since 4 is semifinite,
there exists x .4+, 0 # x < f, with [lx4]l < 1. Then ([L], 2.21) there exists a spec-
tral projection g % 0 of x4 and a positive integer n > 1 such that g < nx4; note
that ¢ < s(x4) <. Since .4 is a continuous von Neumann algebra, it follows' by
({L}, 4.11, E.4.10) that there exist mutually orthogonal and equivalent projections
€ ..., €4 such that g=¢, +... + ¢,. Then, for e = ¢,, we have 0 % ¢ <f
and et = nif < ni(nxA)4 = xhd < A,

Consider now an arbitrary element 0 % A € Z*. There exists a projection
€ €.4, which is maximal with the property et < A.

If A = co.s(4), then we have e = s(4) and hence ¥ = A. L

Assume that 4 # 0o0-5(4) and et % A. Then there is a central projection
P < s(A) such that Ap and elip be bounded. Also, there is a central projection 9%p
such that Ag — eg < (I — e)ig and (1 — e)*(p — ) < A(p — q) — e*(p — g).
We have g # 0 since g = 0 would imply co.p = pt = ¢efp + (I — e)tp < ¢lip +
+ Ap — ebp = Ap, contradicting the fact that Ap is bounded. By the first part of
the proof, there exists a projection / €.4, 0 #£h<(l — e)q, such that A4 < Ag — e4q.
Then e + he.# is a projection, e + h > e, ¢ + h % e and (e+ h)i=eh + bt =
= e4(1 — q) + elig + k4 < A(1 — g) + Ag = A, contradicting the maximality of e.
Hence o4 = 4,
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Corollary. Let # be a type Il von Neumann algebra with centre %, t an n.s.f. trace
on # and ® a normal weight on Z. There exists a projection e € # such that

wz) =1(e2) (ze Z*).

Proof. Let v be an n.s.f. weight on 2 and b =§(Z, z, v). By 12.2.(7) there
exists 4 € 2+ such that w = v, and by the preceding Proposition there exists a
projection e € A such that et = A. Then, for any z € Z+, we have w(z) = v(4z) =
= v(ez) = v((ez)h) = t(ez).

12.15. Let /" = A = %(#) be von Neumann algebras and E: A+ — A+ a normal
operator valued weight. For x eA#” n.# and unitary vef", we have v*E(x)v =
= E(v*xv) = E(x), hence E(x)e Z(A)*. Consequently, putting 4 =" N,
we obtain a normal operator valued weight

Ec=E|(AN)*: (N - Z(AN)*.
Clearly, if E is faithful, then E* is also faithful.

Theorem (U. Haagerup), Let A = N < B(#) be von Neumann- algebras.

The following statements are equivalent:
(i) there exists E € P(M, N) such that Ec € P(N°, Z(A));

(iiy P(AM, N) # O and E€ P(M, N) = Ec € P(N°, Z(N));

(iii) there exists a separating family of bounded normal A -valued wetghts on.H;

(iv) there exists a separating family of normal conditional expectations of
M onto N,

If these conditions are satisfied, then the mapping

P(M, N)> Er> E°€ P(N*, Z(N))
dis a bijection and, for any E, Fe P(M, &) and any t € R, we have

M) of° =df,
@ [DFe: DE¢], = [DF: DE],.

Proof. (I) We first assume that 4" is countably decomposable. Consider a

fixed faithful normal state ¢ on A" and put w = @ | Z(A4).
(i) <> (ii). Let E, Fe P(#, A). Assume that E° is semifinite, i.e.

Ec e P(A'e, Z(A)). It is clear that

(3) (P E)|(N)r = Eis scmiﬁniuz.

Since (11.15.(4)) [D(¢ * F): D(p * E)), = [DF: DEl,e #° (teR), it follows
also that

(4) @ ¢ FF=(p o F)| (#*)* is semifinite

.and hence, by Proposition 11.7, F* is semifinite, i.e. F* € P(N ¢, Z(A4)).
(i) = (iii). Let Ee P(#, #) and assume that E* is semifinite. Then there
exists a net {v;},e; = AN WM such that v, 1 1. It follows that the mappings

Fp#tt s x> E(tPxv)eN* (iel
<onstitute a separating family of bounded normal operator valued weights.
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(iii) = (iv). Let xo € 4+, x, % 0. Assuming (iii), there exists a bounded normal
operator valued weight Fy : .+ — 4"+ such that Fy(x,) # 0. Since 1 e#c, we have
Fy(1) € Z(4') and we may assume that Fo(1)<1. Let {F;};¢, be a maximal family of
bounded normal .#"-valued weights on # which contains F,, such that F(i) <1
and the supports s(F(1)) € Z (") are mutually orthogonal. In view of (iii) we get
‘2; s(F(1)) = 1. Consequently, F=:Z F, is a bounded normal ./ -valued weight

€

€1 i
on #, F(xo)#0 and a= F(1)e Z(A#)*, 0 < a < 1, s(a) = 1. Then g™t e 2(N)*
is a semifinite element and the equation

E(x) =a?F(x); xeM*

defines a normal conditional expectation E of 4 onto A4 such that E(x,) # 0.
(iv) = (i). Let {E;},c; be a maximal family of bounded normal .4#-valued
weights on  with mutually orthogonal supports 0 # s(E) e 4 and let

e=1— Y s(E)eN*. If e # 0, then by (iv) there exists a normal conditional
ierl
expectation Fo: # — N with Fe(e) # 0. Since e €47¢ it follows that the mapping

Ey: M > x> Fyexe)e A is a bounded normal operator valued weight with
0 # s(E,) < e, contradicting the maximality of the family {E;},e¢;. Hence ¢ =0,
i.e. IZ s(E)) == 1. Thus, the equation

€1

E(x) = E,’ E(x) (xed?)

defines a normal faithful operator valued weight E:. 4+ — ¥+, Since s(E) €N,
E(s(E,)) = E(1) is bounded, and g s(E;) = 1, it follows that E¢ and E are
i€

semifinite.
Now consider E, Fe P(#,./) and assume that E°, F* are semifinite. Using
(3), 11.15. (2), 10.1 and 10.5, it follows that

o = o7E | ¢ = o?E | N = of (t e R).

Consider also the operator valued weight @ = O(E, F)e P(Mat(4), /" @ 1)
defined in Section 11.15. It is easy to check that

6°c = O | (N ® 1)’ n Mat(M) = O(E", F*) € P(Mato(¥*), Z(H/) ® 1),

i.e. 6 is semifinite. It follows that ¢¥ = ¢P(t€ R), and hence [DF': DEY}, =
= [DF: DE],(t € [R). We have thus proved statements (1) and (2). .

The injectivity of the mapping E ++ E° follows from (2); its surjectivity can
be easily proved using (2) and Corollary 12.13. .

(II) Assume now that .4 is uniform of type ¥ ([L), 8.5). Then there exists a
countably decomposable von Neumann algebra 47 and a type I factor & such
that /" =¥y ® F. Let M = .4, @ F be the corresponding factorization of .#
with My o A (see 9.15). By 12.9, every Ec P(M, A) is of theformE = E, & 1,

12 - 707
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with Eg € P(AM o, N ). It is easy to check that E¢ is semifinite if and only if E§ is semi-
finite and, in this case,

of=0p®1,, of =aBi®1, (1eR).

Using these facts it is easy to see that the proof of the Theorem in this case reduces
to the case considered in the first part of the proof.

(IT) In the general case there exist a family I' of distinct infinite cardinals and
a family {g,},c of projections in Z(A4") such that Y 9,=1 and each A7q, is

uniform of type y ([L), 8.5). If E€ P(#,4) and E, ='E| g,.#g,, ES = E | g, 4",

(v €T), then E¢ is semifinite if and only if each Ej is semifinite and, in this case,
o = of (1€ R) « oF = ofr(te R, yer).

Thus, the general case reduces to the case {aIn.

12.16. Let /" < M < B(#) be von Neumann algebras. The equivalent conditions
in Theorem 12.15 are satisfied in each of the Jollowing particular cases:

) N is a direct sum of type I factors;
Q) M =N @R, where N is identified with ¥ ® 1 = M;
3 N = X(M).

Indeed, in all these cases there are separating families of normal conditional
expectations of 4 onto A~ (see 10.23, 9.8.(3), 10.16).

In particular, in all these cases we have P(M, N ) # O. According to Corol-
lary 12.11, we have P(M, ") # O also in the case when

@ A is a direct sum of type I factors.
Finally, by Theorem 12.1 it follows that P(4, A" ) = O whenever
() M and N are semifinite.

12.17. In this Section we consider some results which show that the equivalent
conditions in Theorem 12.15 are not always satisfied.

We begin with two general remarks. Let A < # < 2(>¢) be von Neumann
algebras.

If M and & are semifinite, then, for every Ee P(AM,A"), the modular
(1) automorphism group {6f},er = Aut(N" 0 .M) is implemented by a unitary
representation R — U(N¥" n.4).

Indeed, let @ and ¢ be n.s.f. traces on .# and 4, respectively, and let
Ee P(.#,4") be uniquely determined such that @=y ¢ E (see 12.3). Then, by 11.15.(2),
of =0y E| A" M =0f =1(tcR), and hence, for any FeP(MH, N), we
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have w, = [DF: DE), € 4" n.# and of = Ad(w,)(r € R) (sec 11.15.(4), 11.15.(5)).

o)) If # and X satisfy the equivalent conditions in 12.15, then for every
E € P(M, N)there exists @ € W (N’ 0. M) such that of = af (1€ R).

Indeed, let v be an n.s.f. weight on 2°(A") and ¢ = v * EX. Then for every
xeN' nM we have (12.15.(1)): oF(x) = oF(x) = o7"F'(x) = o?(x) (1€ R).

Haagerup ([106]) showed that there exists an approximately finite dimensional
type W, factor # = A(X), with K a scparable Hilbert space, and an abelian von
Neumann algebra &f < R such that the relative commutant €= o' N R is of
type 111

Then ® and &/ are semifinite, hence P(R, ) # ©, but they do not satisfy
the equivalent conditions in Theorem 12.15, as is casily sccn using (1),(2) and
({L], 10.29).

From the example of Haagerup it also follows that there exists an n.s.f. weight @
on the von Neumann algebra 4 = R such that the centralizer M? is of type 11
Indeed, since of = B(I#) is abelian and X is separable, there exists a positive
operator a€ &, 0 < a <1, s(a) = 1, such that & is the von Neumann algebra
generated by a, i.e. of = {a}” ({236, Prop. 8.14). Let 7 be an n.s.f. trace on R
and ¢ =1, an n.s.f. weight on # = @. Since of = Ad(a") (1€ R), it follows
that ./® =R n{a} = ' nR is of type Ill. By Corollary 12.10 we sec that
in this case there is no o®-invariant n.s.f. M°-valued weight on M.

Another instance when P(#.A) # © but ./ and & do not satisfy the
cquivalent conditions in Thcorem 12.15 is the case of the continuous decomposi-
tion .# = R(N, 0) of a properly infinitc W*-algebra .# (scc 23.7). In this case there
are no non-zero normal conditional expectations of .# onto 4" ([(103]).

12.18. Let .#, 4" be W*-algebrasand @ a normal weight on 4. We shall identify &
with |a@N < 4 B.V. As in Section 9.8, we definc 2 normal operator valued

weight E%: (M &N)* =N * by
() Ex)W) = (@ BY)x) (xe( M BH), YeH]);

E?. is called the Fubini mapping associated with @. It is easy to check that ES is
semifinite (resp. faithful) if and only if @ is semifinite (resp. faithful). Using Combes’
theorem (2.6), (1) has the extension

) vV E,=0®Y,

valid for any normal weight ¢ on 4"
If @ is an n.s.f. weight on .#, then cquation (2) means that

(3) ES’ = @ Ty
where the tensor product is defined as in Corollary 12.8.
12.19. Notes. The results contained in this Section are due 1o Haagerup [103]. Proposition 12.12

contains an improvement due to Connes {49] and Proposition 12.14 is a classical result.
For our exposition we have used [(49] and [103).



Chapter III _
Groups of automorphisms

§ 13. Groups of isometries on Banach spaces
In this Section we describe the general framework for the spectral analysis of groups
of isometries on Banach spaces.

13.1. Let & be a Banach space and & » © Z* a closed linear subspace. Besides
the norm topologies, we shall also consider the weak topologies w = o(Z, Z,)
on Z and w, = o(Z,, %) on %, .

Consider the following conditions on the pair (7, 2 «)?
(12) |xl=sup {lp(x)l; ped,, llpll <1} for every xe&;
(Re) if X <« & is w-compact, then co"(X) = & is also w-compact;
Br) fX <&, is wo-compact, then o (X) = X, is also wy-compact.

Lemma 1. Let (%, %,) be a pair satisfying conditions (1x), (2x) and p a bounded
regular Borel measure on a separable locally compact Hausdorff space S. For every
w-continuous norm-bounded function x(.): S — & there exists a unique element
x€X such that

) p(x) = Sp(x(s» dus)  (pedy).
S

Proof. The equation

o) = Sp(x(s» dus)  (ped.),

S
defines a linear form f on &,. To prove the Lemma it is sufficient to show that f
is o(%,, )-continuous or, equivalently, that f is continuous with respect to the

Mackey topology ©(%,, Z). Thus, we have to show that there exist an absolutely
convex w-compact set £ < & and ¢ > 0 such that

) If@)] < csup {lp(x)l; xe 2L} (pex,).
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We first assume that C = supp p is compact. Then we have
3) I/ < lipll sup {lp(x(s)); seC}  (pex,).

Since C is compact and x(-) is w-continuous, the set x(C) € X is w-compact.
Then the set X" = {2.x(s); s€ C, [A| = 1} is w-compact, and hence &£ = co™(A)
isabsolutely convex and w-compact by condition (2¢). Since x(C)<= &, incquality (2)
follows from (3).

In the general case there exists an increasing sequence {C.}a»1 Of compact
subsets of S such that [u](S\C,) - 0. By the first part of the proof, there exist
X, € Z such that

plx) = Sp(x(s» ds) ey, n> 1)

Ca

Then, for every pe 2, , we have

@ lo(x,) — S < llpll sup {Ilx(s)1I; s € S} 1ul(SN\C,) = 0

and using condition (1¢) it follows that {x,},», is a Cauchy sequence in 2. If xe &
is the limit of this sequence, it then follows from (4) that p(x) = flp)forallpe q,.
The uniqueness of the element x satisfying (1) follows obviously using (lg).

The unique element x € 2 satisfying (1) will be denoted by

X = Sx(s) du(s).
K

Consider now two pairs (2, Z,) and (¥, #,) satisfying conditions (I¢), 2s)
and (lg), (29). Let 2(Z,¥) be the Banach space of all bounded linear operators
2 -+ % and #.(Z, ) the linear space of all w-continuous Jincar operators & — &,
Using the Banach-Steinhauss theorem, it is easy to check that 2.(Z,9) HT,¥)
is @ norm-closed linear subspace. In particular, #.(Z,®) is a Banach space. For
p €%, and x € 4 define a bounded linear form p(-x) on @.(Z,¥) by

p(-x)(T)=p(Tx) (Te R (Z,9))
and define the norm-closed linear subspace @,.(Z,9), by
AL, ¥),=lin{p(.x); pe¥,, xeZ} c B,(,9)".

Lemma 2. In the above situation, if the pair (¥, 2,) also satisfies condition (3y),
then the pair (R (L, ¥), BAL,¥),) satisfies conditions (la ,00), (2a AL.9)-
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Proof. Let Te #.(%,%). By (1) we have || Tx||=sup {|p(Tx)|; p<e%,,
lpll <1} for all xeZ and hence ||T|j==sup {|p(Tx)|; p€¥4, xeZ, lpll <1,
Ixll < 1} < sup {|o(T)|; 0 € BAZF, %)y, ll@ll < 1} < ||TIl. This proves that condi-
tion (la (r.4)) is satisfied. . '

Note that each separately (w, w,)-continuous bilinear form & X%, > (x, p)
> {x, p) € € defines a unique element Fe B,.(Z,%) such that p(Tx) = {x, p)
for xeZ and pe%,.

Now let A < B.(Z,%) be a w-compact set and denote by € the convex
set of all regular Borel probability measures on . For each y € 2 we can define
a bilinear form (.,.), on ¥ X%, by

(5 Py = Sp(Tx) QT (e, pedy).
> .
We show that (., .), is separately (w, wy)-continuous. Let p €%, be fixed. The
mapping 2,(Z,¥)>T — p-TeXZ, is continuous with respect to the w-topology
on #.(Z,%) and the w,-topology on &, so that the set {p°T; TeAX} = Xy is
we-compact. According to condition (3z) it follows that the wy-closed absolutely
convex envelope £ <« & of {p°T; TeA'} is wy-compact. We have

1K, )] < Slp(Tx)I dIl(T) < |l sup {l9(0)l; ¢ € 2.
X
Thus, the mapping 2 > x — {x, p), is continuous with respect to the Mackey
topology (%, &,) and hence also with respect to the weak topology w == o(Z, L ).

Similarly, for each fixed x € 2, the mapping ¥, > p + (X, p), is w,-continuous.
Consequently, for every measure pe€ € there exists a unique element

T,e B,(Z,%) such that

() p(T,x)= Sp(Tx) du(T) (peW,, x€X).

. K

Since these equalities are valid in particular for the Dirac measures on X, it follows
that {T,; p €9} is a convex set containing X". Thus, in order to check condition
(a r. ) it is sufficient to show that the set {T},; p € 2} = @,(Z, ¥) is w-compact.

By the Alaoglu theorem, € isa o(A(X), €(X'))-compact subsetof A (X) = E(A)*,
hence it is enough to show that the mapping €35yt~ T, € #,(Z,¥) is continuous
with respect to the corresponding topologies. Thus, we have to show that for each
Fe #.(%,%), the mapping €3t —» F(T,) is o(#(X'), €(X))-continuous. Indeed,
the function o 5T w F(T) belongs to %(A) and therefore the mapping

Eouw S FT)du(T) is oM (X), €(X))-continuous, while from (5) it follows
x
that F(T,) = SF(T) du(T).

x
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Note that

6) x =Sx(s) du(s)e®, Te B(T,¥) = Tx = S Tx(s)du(s)ed.
3 !

13.2. Let (Z, ) be a pair satisfying conditions (1), (2¢) and lct G be a scparable
locally compact group with neutral clement e € G. A continuous representation of G
on & is a mapping U: G — #,(%) such that U, = 1,, U,, = U,U, and ||U,{| =1
for s5,t€ G and the functions

GoatpUx)e€C (xed,ped,)

are continuous.
Sometimcs it is necessary to impose stronger continuity conditions, such as
the norm-continuity of the functions

(Cy) GoatUxed (xe2)
or the norm-continuity of the functions
(o) Gat—pelUel, (ped,).

Let .#(G) be the convolution Banach algebra of bounded regular Borel mea-
sures on G; the #-subalgebra of those measures which are absolutely continuous
with respect to the Haar measure can be identified with £(G).

Let u € .#(G). For ecach x € &, the function G231+ Ux € Z is norm-bounded
and w-continuous, so that Lemma 1/13.1 assures us that there is a well-defined

clement U,x such that U,x = S Ux du(r). We thus obtain an clement U, e #(2)

G
with [|U]| < [iull.
The mapping .#(G) 3> yu+> U, € #(Z) is a Banach algebra homomorphism,
in particular we have U,,, = U,U,, (3, v € .4(G)). Indeed, for any x € 2 we have

ey

UUx = S UU xdul(s) = S U, (S Ux d\’(l)) du(s) =

= SS U,.x du(s)dv(r) = SU,.xd(u sv)(r) = U,, x.

For the Dirac measures §, we obviously have U, = U,, (t€G).

On the other hand, the set {U,x; fe £XG), xe€ X} is w-dense in X. More
precisely, we have the following result:

Lemma. Let [V}, be a fundamental system of neighbourhoods of the neutral cle-
ment of G. For eachiel, let f, be a positive continuous function on G with compact

support supp fy < V; and Sf,(t) dt =1, Then U,,x,-'-;o,xfor al xe .



184 MODULAR THEORY IN OPERATOR ALGEBRAS

Proof. let xeZ, peZ, and & > 0. Since U is a continuous representation,
there exists i€l such that |p(Ux — x)] < ¢ for teV,. Then lP(U;,x— x)| =

Sp(U,x — x)fi()dt| <.
Vi

Note that the strong continuity condition (Cy) implies that || U 7% — x|l =0
for all xeZ.

If the pair (%, %) also satisfies condition (3x), then U, € BAX) for pc.4(G).
Indeed, for any p € Z,, the function Got+p U, €&, is norm-bounded
and wy-continuous. Condition (3x) shows that we can apply Lemma 1/13.1 to the

pair (Zy, Z) and obtain an element p’ € %, such that p'(x) = p(Ux) du(t) =

=p(U,x)forx € Z. It follows thatp - U,=p’ € &, foreachp e &, i.e. U,e 2.(%).

13.3. Lemma. Consider two pairs (¥, %,) and (¥, ¥,) satisfying conditions
(1), (22), (32) and (lg), (24). Consider also two continuous representations
U:G— B,(X) and V: G - B,(¥) of the separable locally compact group Gon &
and %, respectively, and assume that at least one of the strong continuity conditions
(Cy) or (C¥) holds. Then the equation

ST =V,TU;' (TeB(L,Y), scC)

defines a continuous representation S: G —» B,(B.(%,%)) and for every peM(G)
we have S, € B,(2.(%,9)).

Proof. By Lemma 2/13.1, the pair (#,(%, %), #,(%,%),) satisfies conditions
(l’w(_r'”), (2@ (r,@). It is clear that &, is the identity mapping, S,, =6,S,,
IS0l < IVIUS =1 and S, € B,(B(X,¥)) for s,teG. To check the conti-
nuity of &, we must show that for each Te #,.(%, %) and each Fe 2 (Z, Y)
the function G s+ F(S,T) is continuous. Clearly, we may assume that F = p(-Xx)
with pe¥, and xeZ. Then F(S,T)= p(V,TU;x) = (p » V)(TU,-1x). Using,
for instance, condition (C}), for s — 5, we obtain

IF@,T) — FS.,DIl <
<lp = Vo= p * Vo lITI XNl + I(p * Vi )(TU,-x—TU,;1)] - 0.

Consider now p €.#(G). In order to check that S, € #,(42,.(%, ¥)), we have
to show that F -GS, € 2,(%, %), for any Fe #,(Z,%),, but it is sufficient to
consider only F = p(.x) with pe%, and xe 2. Then

(F +&,)(T) = S(p  VTU%) dins).

Assume first that supp 4 = C is compact and let ¢ > 0. Using, for instance,
the strong continuity condition (C}), it follows that the set {po ¥,;s€C} =¥,
is norm-compact, so that there exists a finite set {p,,..., p,} €, such that the
union of the sets E,={seG; [lpV,—pli<el(k=1,...,n), contains
{p+V, s€C). Then S, =E, and S, = EN(5U ... UE_,) (k=2,...,n),

I
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are mutually disjoint Borel scts and |JS,=JE, > {p+V,; seC). With
k k

x,=SU:‘xdu(s)e.‘l' (k=1,...,n), it is easy to sece that
5 :

FoGQ, — kzl JACA)

Since £ > 0 was arbitrary, it follows that F - &, € 2.(Z, ), .
In the general case there exists an increasing sequence {C,},», of compact
sets in G with [u|(G\C,) =+ 0. By the preceding paragraph, there exist F, € #.(Z, e

such that F(T)= SF(E,T) du(s) (n > 1). It follows that the sequence {F,},,,

Cn

is norm-convergent to F+S,, and so F+G, € #2,(Z,%9),.

13.4. Let & be a Banach space and Z'y = 2'*. Then the pair (2, 2*) satisfics condi-
tion (1) by the Hahn-Banach theorem, and condition (25) by a thcorem of Krein
and Smulian ([79), V.6.4); condition (3¢) is an obvious conscquence of the Alaoglu
theorem.

In this case, any continuous representation U: G — @.(2) also satisfies the
strong continuity condition (Cy). More precisely, we have the following result:

< ellx{l {lull.

Lemma. Let U: G -+ #(X) be a homomorphism of the locally compact group G
into the group of all bounded linear bijections on the Banach space I. The following
Statements are equivalent:
(i) the mappings G 3t p(Uxx)e € are continuous for all xe X, peX*;
(ii) the mappings G >t v Ux€ X are norm-continuous for all xe I;
(iii) the mapping GXZ 3 (1, x) = Ux € X is norm-continuous,

Proof. 1t is clear that (iii) = (ii) = (i).

(i) = (ii). Using the Banach-Steinhauss theorem, from (i) we infer that
Ag = sup {[|U,ll; 1€ K} < + oo, for every compact set KcG. The set & of those
clements x € & such that the mapping Ga ¢+ U,x €2 is norm-continuous is a
norm-dense linear subspace of 4 and so also a(Z, Z*)<closed. On the other hand,
for xe Z, fe £YG) with support contained in a compact neighbourhood X of O
in G and re€G, ¢ — e, we have (sec [118], 20.4):
1

100~ Uyl = 0, Sﬂs)v,x ds — S,RS)U.xd:H -

- } Sﬂs)U,,xds - Sﬂs)U,x d;}l -
i

- J Sﬂt":)U,x ds— Sﬂs)U,x dsg} <

< A‘uanmr':) — f(s)l ds 0.
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Thus, & contains the set {Upx; x € Z, f'€ $YG), supp f compact} which, by (i) and
Lemma 13.2, is o(Z, Z*)-dense in 4. Hence & = Z.

(ii) = (iii). Let K< G be a compact set. From (i) it follows that
Ax=sup{|U,ll; teK} < 4 c0. If Kat,+>1€G and x,— x in %, then, again
by assumption (ii), we get

U, %s = Ukl < U, (0 — D)1l + U, x = Uxll <
< Allx, — [l + U, x — Ul - 0.

13.5. Let # be a W*-algebra with predual #, c.#*. Then # = (v 4)*, condition
(L.4) is clearly satisfied for the pair (.#,.#,), (2.4) follows from the Alaoglu theorem
and (3.4) follows from the Krein-Smulian theorem ([79], V.6.4). The topology
w = o(A, M) is just the usual w-topology on .. Recall ([L], C.5.1) that on .4
we can consider also the topologies s, s*, as well as the Mackey topology r,,
associated with the w-topology.

A representation of the locally compact group G by *-automorphisms of .#,
or an action (2.24) of G on , is a group homomorphism ¢: G — Aut(A). The
weak continuity condition (13.2) for such a representation is just the continuity
of the mapping ¢ with respect to the p-topology (2.23) on Aut(A), while the strong
continuity condition (C3¥) amounts to continuity with respect to the u-topology
(2.23) on Aut(#). Actually, these two conditions are equivalent, as the following
shows

Proposition. Let 0: G — Aut(#) be an action of the locally compact group G
on the W*-algebra M. The following statements are equivalent:
(i) the mappings Gt v a(x)eM are w-continuous (x eM);

(i) the mappings G>t > o (x) €M are s-continuous (x € M);

(iii) the mappings G>tv» o(x)eM are s*-continuous (x € M);

(iv) the mappings G>1t v o (x)eM are t,-continuous (x ef);

(v) for every o(M o, M)-compact subset & of M ,, the mapping G X & > (t, Q) >
> @ o, €M, is continuous with respect to the o(M o, M)-topology on &L and M .

(vi) the mappings Got > ¢ < a,e€M, are norm-continuous (¢ €f,);

(vii) the mapping G XMy > (1, 9) > @ ° 0, €M, is norm-continuous.

Proof. 1t is clear that (iv) = (iii) = (ii) = (i) and it is easy to check that
(iv) = (v) = (i). Since (A ,)* = A, it follows from Lemma 13.4 that (i) <> (vi) <= (vii).

By a result due to Akemann ([1]; [3]; [236], Cor. 8.17) the restriction of the
Mackey topology 7,, to the closed unit ball of # coincides with the restriction of
the s*-topology; since [|a(x)]| = || x|, it follows that (iii) <> (iv).

For xe.#, ¢ e M, t € G we have o((c(x) — x)*(o,(x) — x)) = oo (x*x)) —
— @(o(x)*x) — @(x*c (x)) + @(x*x). If 1 € G converges to e € G, it follows from ()
that the right hand side of this equation converges to 0. Thus, (i) = (ii) and (i) = (iii).

Recall (2.24) that if ¢ satisfies the equivalent conditions of the above Propo-
sition, we say that ¢ is a continuous action of G on 4.

13.6. Notes. The exposition in this Scction is based on the article of Arveson {12}
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§14. Spectra and spectral subspaces

In this Section we introduce the spectral subspaces associated to a continuous
representation of a locally compact abelian group on a Banach space, together
with their main properties and some applications.

14.1. Let G be a locally compact abelian group with dual group G. For1€G

and ye G we shall denote by {t,7) the value of the character y at . We shall denote
the group oggralion by addition; in particular, 0 will dcnote the ncutral clement

of G or of G. R
For j €.#(G), f€ £}G) we define the Fouricr transforms fi, f by

A = S(t, ) du(), f4)= Sﬂt)(t, ydr  (ve G).

For fe 2V G) we write Z(f) = {y e(;';f(y) == 0} and for an ideal # of ZYG) we
define its “hull” to be the closed set Z(f) = n{Z(f); feJ} c G. Clearly,
Z(J) = Z(F). Recall the following important result:

The Maximal Tauberian Theorem. Let f€ £NG) and let § < LNG) be a closed

ideal such that Z(F) < Z(f). If the intersection of the boundaries of the sets Z(y)
and Z(f) does not contain any non-empty perfect set, then f€ S

In particular, for a closed ideal # = £(G) we have

) fe ZYG), Z(F) c int Z(f)=fe f.
2 Z(f) = 0 = f = ZYG).
(&)} Z(S) = {3} = 5 = {f € LUG); fi) =0}

Let F e G be a closed set. Then the sct of all closed ideals # = £3(G) with
Z(#) = F has a greatest element :

H(F)={f e £ G); Fe Z()}
and a smallest ;:Icment #(F) which is the closure of cach of the following ideals:
So(F) = ([ € 2G); F < int Z(f)}
SoolF) = {f € 2Y(G); supp f compact, F < int Z(f)}.

In particular, the ideal {f e £G); supp f compact} is dense in £Y(G).
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Note that every dense ideal ¢ of £X(G) contains an approximate unit of LYG)
with elements of norm <1. Indeed, if {f1}ie1 is an approximate unit of ZLY(G) with
lifillh = 1, then, for each i € I and each n = 1, there exists an element h;,, € # such
that |If; — hy,[ly < 1/n and the family {hilll by, i} s = £ is an approximate
unit of £YG).

Confequently, there exists an approximate unit {ki}ie1 of £YG) with Ikl <1
and supp k; compact (i € I). In particular

0 Jor every fe .?I(G)A and every ¢ >0 there exists ke PYG) with
Ikl < 1 and suppk compact such that If —f*kll, <e.
Moreover

Jor every compact set C = G and every open set D < G with C = D

5) there exists a function fe ZYG) with supp f < D such that f(y) =1
Jor any yeC. :

For all the above results, and for various other results in harmonic analysis
which we shall use in the sequel, we refer to [118], [199], [227].

14.2. Let (2, ,) be a pair consisting of a Banach space 2 and a closed linear
subspace &', < Z* which satisfies conditions (1£) and (2¢) of Section 13.1. Let
U:G - B (X)bea continuous representation of the locally compact abelian group G
on Z such that U, e #,(2) for all u €.(G); this last condition is implied, for
instance, by condition (3y).

For each element x € ' we consider the closed ideal

S ={feLYG); Ux=0} c ZYG)
and define the spectrum of x with respect to U by
Spu(x) = Z(#Y) = {y e G; fe LXG), Upx =0 = jiy)=0}.
Proposition. For x,yed; BuLpaeM(G); teG; ye 6; 0#2eC we have

m Spy(Ax) = Spy(x)

(0] Spu(x + y) = Spy(x) U Spy(y)

(3) Spy(U,x) = Spy(x) nsupp fi

@ Spy(Urx) = Spy(x)

5) Spy(x) =B <> x=0

(6) Spu(x) = {y} «> x #£ 0 and Ux = (5, y)x for se G
()] Spy(x) = {0}« Ux=x# 0 for seG

®8) Spy(x) cint {w e G; (@) = fiy(w)} = Upx=U,x

€)) Spy(x) < int {we&; A@)=1}=>Ux=x

A e S e 50
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Proof. (1) follows from SY = S, and (2) from SYnsY c #Y,,
Let us prove (3). If y¢Spu(x), thcn: cxlsts fe ZYG) wnh U,x = 0 and
f('y) # 0, so that UlUpx = UUx=0 and f(y) # 0 hence y¢ Spy(U,x). If
y ¢ supp fi, there exists fe £%(G) wnthﬂy) = ] and .mppfn supp ji=0 (sce 14.1.05));
we have (f * u)* -—jﬁ 0, hence f+ p=0and U U,x = U,,,x =0, butf(y) #0,
so that y ¢ Spy(U,x).
Equation (4) follows from (3) since for the Dirac measure §, we have

5 =<, Geb).

Let us prove | (5). If x # 0, then by Lemma 13.2 there exists f€ £Y(G) with
Upx # 0, hence SY # £YG) and using 14.1.(2) we scc that Spy(x) # O, If x =0,
then J” £YG) and therefore (14.1.(5)) Spy(x) =

Let us prove (6). If Spy(x) = {y}, then (14.1. (3))J” {f € 2XG); j‘(r) = 0},
i.e. for fe LYG) we have Uyx = 0»]‘(7) == 0, Then, for pec.#4(G) we get

Uyx =0 ji(y) =

Indeed, Ux =0 = U, U,x=0=U, ,x—O:(ftp) () = 0=>ﬂ7);4(r) 0 for
any fe .‘f‘(G) and thercfore (14.1 (5)) i) =0; conversely, if fi(y) = 0, then we
obtain similarly U, Upx = 0 for any fe€ £YG), and usmg Lemma 13. 2 we conclude
that Ux=0. Smcc 1 — f1(y)0o € M4(G) and (;4 — fi(1)8)"(7) = 0, it follows
that U,x = fi(y)x for all pe.#(G). Taking in particular pu =34, we oblnm

Ux = {5, 9x (s€G). Conversely, if Ux=:{(s5,x (s€G), thcn Ux = ﬂy)x
for any fe £Y(G) and if x # 0 it follows that #Y = {f € £}G); f{y) =0}, hence

Spy(x) = {y}.
(7) follows obviously from (6).

Let us prove (8). For pt = py — pts we have Spy(x) < int {weG fi(w) = 0}
by assumption, hence Sp,(x) nsupp i = ©. Using (3) and (5) it follows that
U.x =0, hence U, X =U.x.

Finally, (9) follows from (8) since 6°(w) =] (weG)
In this proof we have also shown that

(10) Spu(x) = {y€G; neM(G), Ux =0 = ji(y) = 0}.

. Note that Spy(x) is “the support of the vector distribution f - U,.r , i.c.

G\Spu(x) is the greatest open set D < G with the property: f€ £Y(G), supp fcDo
= Ux=0.

14.3. We continue with the notation of the previous Section.

For each set E c G define the spectral subspace I(U; E) of 4 associated
to U and E to be the w-closure of the set

T(U; E) = {xeZ; Sp/x) c E}.
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Clearly,
) E, c E, > %(U; E) « X(U; E,).

Proposition. For every subset E c é, the spectral subspace Z(U; E) is a
w-closed U-invariant linear subspace of & and is equal to the w-closure of the set

Zo(U; E) « {xeZ; Spy(x) = E compact}.

For every closed subset F — G we have
) U F) = ZyU; F) = {xe X; Fo(F) < S} = {x € X; Fo(F) < S,

For every open subset D < 6, Z(U; D) is the w-closure of the set
{Ux; xe, fe 2YG), suppfc D compact}.

If {F} is any family of closed subsets of G, then

3) -Q’(U;OFD=O55(U;F1)

and if {D;} is any family of open subsets of G, then

C)) Q(U;HJDz)= \,/.%'(U;D,).

Proof. By Proposition 14.2 it follows that 4 o(U; E) is a U-invariant linear
subspace of Z, so that its w-closure & (U;E) is a w-closed U-invariant linear
subspace of .

By Lemma 13.2 and Proposition 14.2.(3), the set of elements in Z(U; E) of
the form Upx is w-dense in &(U; E)and hence, using 14.1.(4) and 14.2.(3), it follows
that Zo(U; E) is w-dense in (U; E). Consequently,

&) A(U; E) = Zo(U; E)* = Zoo(U; EY™

Consider now a closed set F< G and xeZo(U; F). If fe #(F), that is

Fsuppf= @, then (14.2.(3), 14.2.(5)) U,x = 0, that is fesY. 1t follows that
T(U:Fc{xeq; fo(F)csV}c{xeq; w(F)c Y}, Conversely, if £o(F)csY,
then Spy(x) = Z(SY) € Z(Fo(F)) = F (14.1), hence xedo(U; F). Thus, the
above inclusions are actually equalities and it follows that

6) Zy(U; F) =M {Ker Us; fe So(F)}

is w-closed, since the U,’s are w-continuous.
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For any set D < G we have (14.2.(3)) {Ux; xe, suppfc D compact}<
e Z(U; D). Assume that D is open and let x € Too(U; D). Then K = Sp(x) € D
is compact and hence (14.1.(5)) there exists fe€ £YG) with supp f < D compact
and K < int {re G; f(y) = 1}. It follows (14.1.(9)) that x = U,x with fe ZYG),
supp f < D, and using (5) we obtain

) FWU; D)= {Uyx; xeZ, feZLYG), supp f < D compact}*.
Equation (3) follows easily using (2) and (6).
To prove (4) we note first that Z(U; D,)) « T(U; U D)), so that the w-closed
linear subspace V Z(U; D)) generated by \ U 2Z(U; D) is contamcd inZWU;JD).
i / f
Conversely, let x € Z9o(U; U D). Then K = Spy(x) « U D, is compact and there
i i

exist iy, . . .,i, such that Kc L"J D,,. Using 14.1.(5) we find functions f;,. . - fa € LYG)
kel
such that suppf: < Dk =1,...n), and Kcim{ye 6; Z ﬁ()’) = 1}. Then
kmt
(14.2) x = Z Uy, x with U,-kxef[(U; D), and hence x € V 2(U, D).
Iy i

Let Fc G be a closcd set. From (3) and (1) it follows that if {D} is any
family of open setsin G such that F= ﬂD, = ﬂD, then

®) -T(U:B=O%(U;D:)=F,\1'(U;D¢)-

Thus, for every fundamental system{N},c, of open and relatively compact neigh-
bourhoods of 0 in G with (M} N, = {0}, we have
{

©) IWU; F) = LU F+ N) =T F+ ).
In particular,
(10) ~ &U; Fy=N{2(U; D); D > F open}.

On the other hand, by (5), for every set E G we have
(1) a(U; E) =V {Z(U; K); K c E compact}.

Equations (10) and (11) prove the “regularity” of the family of spectral sub-
spaces associated with U. We have also (14.2.(5))

(12) TU;0) = {0}, 2(WU;G)=X.
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For ye G the spectral subspace (14.2.(6))
(13) EU; {y) ={xex; U =<t y)x for all teG)

. will be called the eigenspace of U corresponding 10 the eigenvalue y € G. In particular

(14) 2V = Z(U; {0) = {xeZ; Upx ="x for all te G}

will be called the centralizer of U.
14.4. We shall need the following extension of 14.3.(13):

Lemma. For each y e &, eacllz\ compact set K < G, and ¢ > O there exists a compact
neighbourhood W of 0 in G such that

1Ux — <6, x|l < el x| for x e X(U; y +- W) (teK).

Proof.A Let W, be a compact neighbourhood of y in G and feLYG) be
such that f(W,) = {1}.
For each 1€ K we define a function [ € £YG) by

SO =fs—0)—&,Df)  (seG).

‘Then f:(y) =0 and hence ([£99], 2.6.3) there exist a function k.e £YG) and a

neighbourhood W, of y in G such that I’c\,(W,)= {1} and ||f,*k,|, < e. Since
the mapping Ga s> f, e ZY(G) is norm-continuous, there exists a neighbourhood
N, of tin G such that s>kl < eforallsen,.

n
Since K is compact, there exist #,,. . . s4, € K such that K< UAN,. Let W be
A =1
a compact neighbourhood of y in G such that W < int(Wy n W,‘ N...nw,).

For each re X there exists a function h,e{k,l,...,k,"} < ZY(G) such that

Weint{weG; Afw)=1} and |If,»h,|, <e. '

Let xe Z(U; W) and te K. Then (6 — <t,¥)80)* coincides with (fi*h)"
on a neighbourhood of Spy(x) and hence (14.2.8)) [|Ux — ¢, x| =
= Uy Il < gllx]l. -

14.5. In the setting of Section 14.2, the set Ker U= {f e LY G); U, =0} is a
closed ideal of #1(G). The spectrum of the representation U is defined as being
the closed set

SpU=Z(KerU) = {yeG; fe £Y(G), U, =0 = Jiy) =0}.
Using 14.1.(5) it is easy to check that for every w-total set &, in & we have

m SpU = U {Spu(x); x € T,).

-
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It is alsg\ easy to check that Sp U is “the support of the vector distribution
1/~ ({,”, i.e. G\Sp U is the greatest open set D in G with the property: fe £Y(G),
supp f < D = U, =0,

Proposition. For y € G the Jollowing statements are equivalent :
() yeSpU; .
(i) LU;y + W) # {0} for every neighbourhood W of 0 in G;
(iii) there exists a net {x,} = &, |x,|l = 1, such that

lilm U — <t x| =0

uniformly ji)r t in compact subsets of G;
(V) 1A < WUl for all peM(G);
W SO < WUl for all fe£YG).

Proof. (i) = (ii). Let W be a neighbourhood of y in G. By 14.1.(5) there
exists fe £YG) with f(y) =1 and supp f = W. Since ye Sp U, we have U,#0
so that 0 ## U‘,xe.‘I(U; W) for some x € X.

(ii) = (ii). Using Lemma 14.4, we infer, assuming (ii), that for cach compact
set K< G and ¢ > 0 there exists an element xg €, ||xx, .l = 1, such that
Uk, o — <t ¥Dxx, .|| < eforall t € K. Then {xg, ¢}x, is the required net.

(iii) = (iv). Let u €.#(G) and ¢ > 0. There exists a compact set K < G with
IM(G\K) < ¢/4. By assumption (iii) there exists x4, (x| €1, such that
HUx — {1, x]l < ¢/2 |u)(K) for all te K. Then

1Ux — A()xll < S 1Ux — ¢, 7]l digl

G

< Su Uk = G pxldial + 2GNK) < =+
K

It follows that ()] = IAM)x]| < | U,xll+ ¢ < (U]l + . Since &> 0 was arbi-
trary, we get |i(y)| < (| Ul

(iv) = (v). Obvious. "

) = @). If-fe £%(G) and U, =0, then f(y) =0 by (v). Hence ye Sp U.
Corollary. Let <f be the Banach algebra defined as the norm-closure of the subalgebra

{Us; fe £YG)} of #(X) and denote by Q. the Gelfand spectrum of of. Then
the mapping

c
—~— =g,
2

QJB(DH(D°UGQg!(c)=G

is @ homeomorphism of Q.4 onto Sp U.

Proof. If o is a continuous character of &, then the mapping 7,: £1(G) 3 f++

+ o(Uy) is a continuous character of £X(G); hence 7, € G and |f(7.)] = l(Uy)| <
S Uyl for every fe £)G). The above Proposition shows that y, € Sp U. The
mapping @+ y, = @ o U is clearly continuous.

13 -~ 707
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If ye Sp U, the above ,Proposition shows that the mapping Uy > f(y) can
be extended to a continuous character o, of <, which is uniquely determined by

the condition w,(U)) = f(y) (f € £Y(G)). The mapping y > w, is continuous and
its inverse is just the above defined mapping @ > y,,. .

14.6. With the help of the set Sp U we can describe the usual spectrum Sp(U,)
of the operator U, € #(%):

Proposition. Sp(U,) = {{t,y); y€ Sp U} (teG).

Proof. If y€ Sp U, then, by Proposition 14.5, there exists a net {x}ca,
lx;ll = 1, such that ||(U, — ¢, )xill = 0, hence <1, y> € Sp (U,) for t € G. v

Since ||U,ll=||U; |} =1, we have SpU)=T ={zeC; |z = 1}. Assume
that there exists e T, 1 ¢{<1, ); ye Sp U } and consider two open neighbourhoods
Ve W of the set {{t,7); ye Sp U} with A ¢ W. There exists a C™-function i
on T which is identically equal to 1 on ¥V and suppp < W. Then T3z f(z) =
= @(2)(z — A is a C*-function on T, equal to (z—2™" on Vand supp f <= W.
The Fourier series associated with [ is absolutely convergent, and so we can write

S = %a,,z" with Y la,| < 4-c0.
ne

neZ
We consider the operator

T= "gaanvul = U? 'n',nt € g(m'
Then
U, —H)=U,— )T = U, with p = (5, — A8,) » z a0,

and we have

A0 = (L7 — DKL D) =0t 1))  (reb).

Since ¢ is equal to 1 on V; it follows that Sp U<int{yeG; fi(y) = 1}, and so
U, = the identity mapping on . Thus, U, — 1 is invertible in B(%),i.e. 2 ¢ Sp(U).

From the above Proposition it is easy to obtain the following expression for
the spectral radius of U, — I:

U, — I, = sup {|l — <t y)I; y€ Sp U}.

On the other hand, it is easy to check that a closed set X < G is compact if and
only if lim sup {|1 — <1, )|; y€ K} = 0. Consequently, we have
10

lim |U, — Il,, = 0 <> Sp U is compact.
-0

Corollary. The representation U:G — ®,(Z) is norm-continuous if and only if
Sp U is compact.
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Proof. By the above remarks, if lim |{U, — I]| = 0, then Sp U is compact.
1-+0

Conversely, if Sp U is compact, then there exists a function fe £%(G) with
SpU<{yeG; f(y) =1}, hence U, = I and

Em (U, — I =1lim |U, ., — U]l < lim (|6, f — 1, = 0.
-0 1-0 =0

14.7. Consider now two pairs (2, 2,) and (%, ¥,) satisfying conditions (1), (2¢),
(3¢) and (1), (24), (34) of Section 13.1. By Lemma 2/13.1, the pair (#.(2,9),
2.2, ¥),) satisfies conditions (la_(r,m), (22 (r.9)).

Consider also a separable locally compact abelian group G and two conti-
nuous representations U: G — B(X), V:G~ #,(¥) of G on 2 and ¥, respec-
tively. We assume that V satisfies the strong continuity condition (C). By Lemma
13.3 we then obtain a continuous representation S: G » #(# (L, ¥)) defined by
§T=V,TU;' (Te 2,(Z,9), s€G), such that S, € B,(B (L, %)) for all
HEM(G).

We shall write 2 = #.(4,9).

Theorem (W. B. Arveson). In the above situation, for Te #, Q < G a closed set
and {W.)e, a family of neighbourhoods of O in G such that 0=MNQ+ W,
the following statements are cquivalent ‘
() Te 2(3; Q);
(ii) TTWU; F) <« ¥(V; Q + F) for any closed set F c 6‘;
(iii) TX(U; E) <« ¥(V; Q + E) for any set 5:6‘; R
(iv) TZ(U; D) <« ¥(V; Q + D) for any open set D < G;
) TAW; K) <« Y(V; Q + K) for any compact set lg c &;
Vi) TZWU; 9+ W) e (V; 74+ W+ Q) forany ye Gand any iel.

Proof. (i) = (ii). Let xo€ Z(U; F). To show that Tx.e@'(V;Q-i— F)it is
sufficient to show that for every neighbourhood W, of 0 in G we have
Txo€¥(V;Q + F+ W) (see 14.3.(8)). Let W be an open and relatively
compact neighbourhood of O in G such that W4 W< W,.

Since xo€ L(U; F) =« (U; F + W), it follows using 14.3.(7) that x, is the
welimit of a net of clements of the form U,x with xe€Z and ge£%G),
supp § = F+ W compact. Since Te @,.(Z,9), it is sufficient to show that
TUxe¥(V;Q+ F+ W,) for any xe X and any ge LN G) withsuppg c F+ W
compact.

Similarly, T is the w-limit of a net of elements of form &,S with Se #.(2,9)

and f'e £YG), supp j‘ < Q 4+ W compact; hence it is sufficient-to show that
ES)Uxed(V; 0+ F+ W)

for every Se 2.(2,9), x€, fe L£YG) with .wppfc Q -+ W compact and
g € £YG) with supp § = F+ W compact.
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It is easy to see that

(€, SUx= (Sf(t)V,SU_, dt) Sg(s)U,x ds

= SSf(t)g(s) V.SU,_xdsdt = S (Sf(t)g(s +HV,SUx dt) ds; .
thus it is sufficient to show that for every s € G we have
0 Vo (SUS) = Sf(t)g(s + OV.SUxdt e9(V; @ + F+ W),

where g,(t) = g(s + 1), (t € G). The functions f and g, are continuous and compactly
supported, so they belong to #2(G). By the Plancherel theorem it follows that

1, & € Z%G), hence fg,€ #%(G), and supp (fg,)* = supp f* &, < supp f + supp §c
CcQ+ W+ F+We Q-+ F+ W,, thus proving (1).

(i) = (iii). By 14.3.(5) it is sufficient to show that T'Z" wU; E) c ¥(V; Q + E).
Let x € Zo(U; E). Then F= Spy(x) = E is compact; hence Q + F = 0+ F,
and xeZ(U; F). By assumption (i) it follows that Txed(V;Q + F)c
<¥V;Q+ E).

(iii) = (iv). Obvious.

(iv) = (v). Let {N;},e; be a fundamental system of open and relatively

compact neighbourhoods of 0 in G. Assuming (iv) it follows that TZ(U; K) <
CSTZWU; K+ N)c¥WV; 0+ K+ Ny for all jeJ, and using 14.3.(9) we get
TZ(U; K) c¥(V;Q + K), as O + K is closed.

(v) = (vi). This follows easily using 14.3.(5).

(vi) = (i). To prove (i) itis sufficient (14.3.(3)) toshow that T'e .‘3(&5; o+ W)
for every ieI. Accordingly, consider a neighbourhood W of 0 in G such that

@ TIU;v+ W) <YW+ Q+ W) (yeb)
and let us show that Te 2(S; Q + W). To this end it is sufficient (14.3.(2)) to

show that
3) ST =0 for all / € L0 + W),

Let fe 21(G) with f(O) # 0 and supp f < W compact. For y€ G we denote
by jfthe Zlfunction G3tms (&, 7> S(t). Then supp (/)" < y+ W, hence
Uiy;xe Z(U; y + W) for all xeZ. Using (2) we get TUsxe®(V;y+ Q@+ W)
(xeX). If he (0 + W), then jhe £ (y+ Q+ W) and hence (14.3.(2))
ViraTU;px =0 (x € 4, y€G). Consequently,

@ 0= SS S+ LDV, TUxdsdt = SW ( S (e — 5V, . TUx ds) dr.
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For every pe%,, the formula k(1) =\ fs) it — s) p(V,.,TUX) ds (1€G)

determines a function k, € £X(G); from (4) it follows that k, =0, so that k, =0

as an clement of Z)(G). Since the functions f and £ are compactly supported,
and so belong to £¥G), we have £, h € £%G), while the function s+ p(V,TU,X)
is bounded and continuous. Thus, the function &, is continuous, and it follows that

k,(0)=0, i.c. Sf(—s)h(s)p(V,TU_,x)ds:O. Replacing the function f here by
its translates we get

) S fir = (Sp((S,T)x)ds =0  (reG).

Furthermore, the formula g,(s) = h(s)p((S,T)x) (s€G), determines a funcuon
£, € Z%G); from (5) it follows that fxg, =0, and 0 = (f+g,)"(0) = ﬂO)g,(O)

Since f(O) # 0, we obtain £,0)=0, ic. p((ET)x) =\ I(s)p((E,T)x)ds = 0.
Sincc pe?, and x €2 were arbitrary, we obtain the required conclusion (3).
Corollary 1. For any sets P < G, Ec G we have #(S; P)X(U; E) € (V; P + E).

Proof. Indeed, if Te ByS; P), then Q= Spa(T) <= P is closed and
Te 4E;Q), hence TY(U; E)cH(V; Q0+ E)c ¥(V; P+ E) by the previous
Theorem. Thus, Corollary 1 follows using 14.3.(5).

Corollary 2. An operator T€ 3#.(Z,%) intertwines representations U and 'V, e,
6) VT=TU, (s€@)

if and only if the inclusion TY(U; E) « ¥(V; E) holds for any E c G which is
closed (or open, or compact, or of the form y - W)).

Proof. (6) means that S,T =T (s€G), that is (14.4.(13)) Te #(S; {0})
and the Corollary follows from the Theorem by taking Q = {0}.

In particular, taking (7, 2,) = (¥,%,) and T = I in Corollary 2, we sce
that the spectral subspaces associated with a continuous representation of G deter-
mine the representation uniquely:

Corollary 3. Given two continuous representations U: G = B () and V: G - B (X)
of Gon A, we have U =V if and only if the inclusion Z(U; E) < A(V; E) holds

Jor cvery set E < G which is closed (or open, or compact, or of the form y + W,).

In Corollary 4 we assume that G is ordered by a closed semigroup Sc G
with Sn(— )= {0}, Su(— S) =G and that 0 is adherent to the interior

Sof S.
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Corollary 4. Let Te B (% »¥) and ye G. The following statements are equivalent:
(@) Te BE;y+ S);

() TZU; 0+ )< ¥(V;7+ o + S) for weG;

(i) TTWV; 0 + 8) < ¥(V;y + 0 + 8) for we .

Proof. (i) = (iii). Since (y+ )+ @+ §) cy+w+ S, this implication
follows from Corollary 1.

(iif) = (ii). Let {y,} be a net in S which converges to 0. Then, for every
leG we have 14 §= O A=y + §). Thus, using assumption (iii) we get

TZWU; 0+ 8) « TZWU; 0—3,+8) c¥(V; y+w—y,+ 5 and hence
TIU; 0+ 5) « NIV y+ 0 — 3, + S)=a¥; y+ o + S).
(ii) = (i). Let Q=y+ S. For each 1€ S we consider the set W,=(—2-+ S)n

N —5). Since W,>(—2+8)n(A—8), W, is a neighbourhood of 0
in G and we have M {Q + Wi deSt=M{y — A+ S; 1€ S} = Q. Using assump-
tion (ii), for every w € G we obtain TZ(U; 0o+ W) TTWU: 0o — A+ S)c
CSYV;v+0— A+ S)=FV; o + W, -+ Q) and using the implication (vi)={(i)
from the previous Theorem we get the required conclusion (i).
14.8. In the context of in Section 14.7 we also note the following result:

Proposition. Let xe X and Te B, ¥). If T intertwines the representations U
and V, i.e. V,T = TU, (s € G), then Spy(Tx) < Spy(x), and if moreover T is injective,
then Spy(Tx) = Sp,(x). ' )

Progf. For fe £YG) we get ViTx = TU,x, so it follows that SYcsY,, and
indeed SY=UY, if T is injective. Thus, the Proposition follows by the definition of
the spectrum of an element (14.2).

14.9. Let U: G — 2,(%) be a continuous representation. Consider another sepa-
rable locally compact abelian group H and a continuous homomorphism o:H—-G.
Then Us@: H — B (%) is a continupus Tepresentation and the mapping y — y- ¢

defines the dual homomorphism ¢: G — H.

Proposition. In the above situation we have:

) SPyee(®) = ¢(Spu(x))  (x€2).
)] F(U-9; E)c L(U; $(E)) (Ec ).
(€)) I e; Fy=2U; UE) (F < H, closed).

@ Sp Uo @ = o(Sp U).
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Proof. For every v e.#(H)we denote by ¢(v) €.#(G) the image of the measure
v by the continuous homomorphism ¢. It is casy to check that

NG WUeo),=Uy, (ve(H))
©) e @) = GG (v ed(H), 7€G).

Let us prove (1). Let y € Spy(x) and o) e HIfv eM(H) and (Uo @) x =0,
then U,,x =0, hence ¥(p(y)) = @(v)"(y) = 0, since 7€ Spy(x) (see 14.3. (lO))
Consequently, ¢(7) € SPuyse(X). Wc have thus provcd that $(Spy(x)) < SPuse(X).
Conversely, assume that o€ H and o ¢ q)(Spu(x)) There exists a function
he $(H) c J((H) wnth h(w) # 0 and supp h hn @(Spy(x)) = O. Then u = @lh) e
€#(G) and i = ho q) vanishes on a neighbourhood of Spy(x), so that (U @),x =
= U,x = 0. Since h(m) # 0, it follows that w ¢ Spy.4(x). We have thus proved that
Spuo.( x)  @(Spu(x)).

The proof of (4) is quite similar to the above proof.

Finally, (2) and (3) follow obviously from (1) using also 14.3.(5).

In what follows we consider some cxamples.

14.10. Let o be a Hilbert space and G a separable locally compact abelian group.
Then the pair (O, #*) satisfics conditions (1), 2x), (3x) of Section 13.1 and every
so-continuous unitary representation u: G — #(f) is a continuous representation of
G on ¥ according to the definition given in Section 13.2; morcover, u satisfies the
strong continuity conditions (C,) and (C?).

In this case, as is easily verified, the mapping £NG)3f v u, € () is a
=-representation of the involutive Banach algebra £Y(G), where the involution

S+ f* is defined by f*(r) = fi—1) (1€G):
up=ut  (fe ZYG)).

On the other hand, for each & € #, the function G5t — (u ,$18) is a positive definite
funcuon on G and hence, by Bochner’s theorem, there exists a positive mecasure

ve €4(G) such that

el =§ dvly)  (teG).

Then, for fe 2(G) we obtain

Uy = (o0 21E) = Slﬁr)l’dvm < IfiRe.
[
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The set 4(G) = { f, fe £ G)}isa *-subalgebra of %((3) which separates the points
of G and hence is norm-dense in %,(G), by thf Stone-Weierstrass theorem. The above
inequality shows that the mapping #(G) 5f > u, can be extended to a *-represen-

A

tation 7,: €,(G) - B(s#) of the C*-algebra (60((3), uniquely determined, such that

wH=u  (fe21G).

Furthermore (see, e.g. [236], 7.14) the *-representation =, can be uniquely extended
to a *-representation, still denoted by =,, of the C*-algebra gaam(é) of all bounded
Baire functions on é, such that m,(p,) 5 m(¢p) for every norm-bounded sequence .
{0.} .@m‘u(@') which is pointwise convergent to Q e.‘!&m‘u(é), and we have

(@ (0)E18) = S«p(y) dv0) (9 eBaired), Ee ).
G

Then, putting p,(E) = ,,(x,;\) for every Baire set E < G: we obtain a B(s#)-valued
spectral measure p,(-) on G, uniquely determined, such that

@15 = S(t, »d@0E)  (eG tex).

G

D, is called the Stone spectral measure associated with u. This spectral measure has
regularity properties similar to 14.3.(10) and 14.3.(11).
We are now in a position to state the next result:

Proposition. Let u: G — Qp?’) be an so-continuous unitary representation of G on X¥.
For every Baire set E < G we have

#(u; E) = p(E)# .
Sp u is the support of the Stone spectral measure 2.().

Proof. For every fe £Y(G) and every Baire set E = G we have

) u,p.(E>=p.<E)u,=Siry)dp.(w).

E

Let D < G be an open set. If fe £YG) and suppfc D, then u,5¢ < p(D)#,
by (1). Hence (14.3.(7)) ,

) H(u; D) < p(D)#.
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Let F < G be a closed sct. For every f€ Jo(F) we have u;p (F) = O again by
(1). Hence (14.3.(2))

PF)X < H(u; F).

On the other hand, using (2), 14.3.(10) and the regularity of the Stone spectral
measure, we obtain

H(u; F) = (M {o#(u; D); D > F open} c(\{p(D)H’; D > F open} = p(F)or.
Hence
3 H(u; F)=p(F)X.

Consider now any Bairc set £ < G. Using (3), 14.3.(11) and the regularity
of the Stone spectral measurc we obtain

XH(u; E)=\ {X(u; K); Kc E compact} =V {p(K)X¥'; KcE compact}=p(E)X .

Since, for an openset D < 6, we have X#'(u; D) = 0 if and only if p, (D)o == 0,
it follows that Sp u is just the support of p,(-).

Recall ‘([236], 7.14) that if G has a countable basis of open scts then any
Borel set in ¢ is also a Baire set.

If G=[R, then we can identify G with R so that for r¢R == G and
seR =G we have

{, sy =c¢n,

In this case the Stone theorem shows that there exists a unique sclf-adjoint operator
A in 2 such that u, = exp (it4) (t € R); A is called the infinitesimal generator of the

so-continuous unitary representation u. For any Borel sct E<c R = G we have

@) PAE) = X(A).

Also,

(5) : Spu=SpA

(6) flA) = Sf(:) idr (fe2(R)).
®

If (2,2,)=(F,9,) = (X,H*), then (L. ¥) = #()XF)and the w-topology
on B (&, ¥) is just the w-topology on the ¥ *-algebra 2(X), defined by the predual
B(X)y = BAL, V), of B(X).
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Given an so-continuous unitary representation u: G — B(3), the represen-
tation S(u,u) of G on (o) is just the continuous action o: G —» Aut(B(#))
defined by

a,(x) = uxu* (xe B(#), teG).

Assume that G is ordered by a closed semigroup S<G with § n(—S)={0},

Su(—S) = G and that 0 is adherent to the interior S of S. Then, applying
Corollary 4/14.7, we obtain

Corollary. Let u: G — B(H) be an so-continuous unitary representation and
6: G = Aut( B(K)) the continuous action defined by o,= Ad(u,) (teG). For

XE€EB= RB(H)andye 6, the following statements are equivalent:

(i) xe B(a; v+ S);

(i) P+ S)# < py + @ + S)H forall e 6;

(i) xp (0 + g’)# cply+ o+ 5’).%” Jor all v e G.

In particular, for G= R we can take S = [0, +o00) = GorS = (—o00,0] = G.
14.11. Let Z be a Banach space and D € AB(Z) be such that
o flexp (itD)|| = 1 for all t e [R.
Since [lexp (itD) — I|| < exp 1Dy — 1, it follows that the formula
() U=exp(itD) (telR)
defines a norm-continuous representation U: R — @(5#) which is also a conti-

nuous representation in the sense defined in Section 13.2, with respect to the pair
@, ).

From (1) it follows that the usual spectrum Sp(D) = Spa«)(D) of the operator
D e B(2) is real, and, clearly, Sp(D) = [—11Dll, ID]). We have
3 Sp (exp (itD)) = {e'*; se Sp(D)} (1 [R).

On the other hand, since the representation U is norm-continuous, the set
Sp U = R is compact, by Corollary 14.5. Using Proposition 14.5 it follows that

“4) Sp(U,) = {ei"; se SpU} (teR).
Using (2), (3) and (4) we conclude that

(&) Sp U= Sp(D) = [~|| D], ||DI}}.
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1tis a classical result that for any norm-continuous representation U: R — 3()
of R by isometries on & there exists a unique operator D e #(Z) which satisfics
conditions (1) and (2). This result can easily be obtained using the compactness
of Sp U. Indeed, one can take D = U, for any compactly supported C*-function S/

such that Sp Uc int {seR; fzs) = s}. Moreover, D = norm-lim 1 ,~1I.

140 |

14.12. Let (2, 4.) be a pair satisfying conditions (1#), (21), (3x) of Section 13.1 and
let Te @,,(Z) be an isometry on . Then we obtain a representation U: Z — #,(7)
defined by

) u=1 (nell).
The dual group ﬁ of ZZ can be identified with the onc-dimensional torus
T = {4eC; |4 = 1} in sucha way thatforne€ Z and 2 € T we have {n, ) = A"

Since Sp Uc T is compact, using Proposition 14.5 we get Sp(T) = Sp(U,) =
= {4; Ae Sp U}, that is

) Sp U= Sp(T)
where Sp (T) is the usual spectrum Spary(T) of the operator T € #(2).
For Ae C, | = 1 we have
3) T = Al < Sp(T) = {4}.
Indeed, the implication (=) is obvious. Conversely, if Sp(T) = {2}, then Sp U={A},

hence Z(U; {A}) = Z. Consequently (14.3.(13)), for every xeZ wec have
T'x = Uyx = A" x(ne€Z), hence T =L

14.13. Recall that if @, b are two commuting elements of a unital Banach algebra
&/, then

Spala + b) {4+ p; A€ Spala), pe Spa(b)},
Spalab) © [Ap; %€ Spala), ne Spa(b)}.
Now, for arbitrary elements a, b € &/, the mappings L,: &/ 3 x++axe o,
R,: of 5 x + xb € o define two commuting clements L,, R, of the Banach algcbra

2() of all bounded linear operators on.&/, and itisclear that Spa.y(L,) = Sp(a),
Spaa(R,) = Spa(b). Consequently,

M Space(Ly + R) = {4+ p; 4€ Spala), pe Spa(b)}s

@ SpacL.R,) = {4t; A€ Spafa), ne Spaib)}.

Proposition. Let ./ be a W*-factor, and let u € U(M), 0 = Ad(u) € Aut(#). Then
Spacafo) = (At 2, p € Sp.aw)}.
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Proof. By the above remarks it is clear that Spacay0) = {Ap; 2, pe Sp_4(u)}.
. Now, let 4, € Sp_,(u) and ¢ > 0. There exist two non-zero spectral projec-
tions e, fe.# of u such that llue — Zell < ¢/2 and || fu — pf|) < &/2. Since A is a
factor, there exists a non-zero partial isometry v €.# such that vo* < e and v*p <f.
We have

llo(v) — Au~toll = fluv — Ap o)l = || At — ptou))
S A% — o)l + flv — p o))
= lluv — Aol + [fou — pol|
= |l(ue — 2e)oll + ||e(fu — pf)|) < e.

Hence Spacu(o)o{Ap; 4, pe Sp.a(u)}.

14,14, Notes, The spectral theory of the action of a locally compact abelian group on a Banach

space appeared in the works of Borchers, Colojoara and Foias, Godement, Lyubic, Macaev and

Feldman, Wightman, and others, but it was Arveson [12] who, as well as giving a systematic,

self-contained exposition of this subject with several new results, showed the relevance of the

theory for the study of operator algebras. The main result of this Section, Theorem 14.7, is due

to Arveson [12). Propositions 14.4, 14.5, 14.9 and 14.13 arc due to Connes [36] (see also [177]).
Four our exposition we have used (121, [34), [36]), and [177].

§ 15. Continuous actions on W#-algebras

In this Section we apply the spectral theory so far developed to continuous actions
of locally compact abelian groups by x-automorphisms of W*-algebras. The main
results concern the inner implementation of *-automorphisms and derivations.

15.1. Let 6: G — Aut(.#) be a continuous action (13.5) of the separable locally com-
pact abelian group G on the IV *.algebra 7.

Since ¢ is u-continuous, we infer (see 13.2) that every ¢ €.4#, belongs to the
norm-closure of the set {p °g,; fe Z1G)}. 1t follows that

Jor every norm-bounded approximate unit {f},e, of the Banach algebra
) LYG) we have

lpco;,—@ll>0 (pe.a,).

Indeed, let g €.#,, lell < 1, and ¢ > 0. We assume that Ifill <1 foreach iel.
There exists fe #YG) with l¢ cop —@ll <&/3 and then i,el such that
If*fi—fi <¢3 for every i » i,. Thus, for i > i, we get jlo o o, — el <
Sl co7,~¢ <0; 2 o7 lI+1l9 * o, =@ *olltlle cop—pli<ifililie—e * o I+
+iellS*fi=flh+ lp oo, — ol <.
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Also (13.2), every x €.# belongs to the w-closure of the set {o,x; f€ £Y(G)}.
Using (1) it follows that

Jor every norm-bounded approximate unit {f\},c, of the Banach algebra

1 . ,
Q) LYG) we have

o xx  (xed).

Indeed, let xed, Ixfi <1, pef, |pll €1 and ¢ > 0. There exists fe€ LYG)
with [p(x — oyx)| < £/4 and there exists i, €] such that |if;*f— fll <¢/4 and
liog — @ °op |l < e/d|lx — opx|ifor i > i.. Thus, for i > i, we get |p(orx — x)| <
<@ 0 )x — opx)| + lo(opopx — 0,%)] + |@loyx — X)| < 2lp(x — opx)] +
+ @ ° o, — @lllix — opxll + fixf — flhll@ll I x]l <e.

In particular, for every x €.#

3) x€{oyx; ke LYG), |kl <1, supp 3 compact}*

Indeed, {o,x; k € LXG), jikll, <1, supp k compact} is a convex set and, by (2)
and 14.1.(4), x is w-adherent and hence also s*-adherent, to this set.
We shall also use the following result:

Lemma. Let {D;},e; be an open covering of G. There exist a dirccted set A and a

Jamily {f.:}ier.1e 4 = LUG) such that
a) for each l.e A the set {iel; f;,, # 0} is Sinite,

b) for each i € I and each A € A we have supp f;,; = D,
and, moreover, for every x €/ we have

w
Yo, x5 x
= J1,37 2ea

Proof. Indeed, the linear subspace of 2£!(G) spanned by the set {fe £Y(G);

there exists i € I with supp f' < D} is a norm-dense ideal of #*(G) and hence (14.1)
it contains a norm-bounded approximate unit of Z(G), so that the Lemma follows

using statement (2).

15.2. Let 6: G — Aut(4) be a continuous action of G on .#. In this Section we study
the relationship between the spectral subspaces associated with o and the s-opera-
tion on /.

Let e £Y(G) and let f € £X(G) be its complex-conjugate. It is easy to see that

for any x e # and any y € G we have

M) (@ 0)* = ap(x*), (NG =A—).
It follows that
(2) spc(x.) == Spa(x)'
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Consequently, for any set E < G we have

3) M(c; EY* = M(0; — E)

and Spo is a symmetric subset of &, ie,
4 Spe = — Spo.

Let 6': G — Aut(#) be another continuous action of G on 4. We consider
the pair (2, 4,) consisting of the Banach space # of all w-continuous linear map-
pings # — . and the norm-closed linear subspace #, < #* generated by {o(-x);
@ €M ,, xeM} (cf. 13.1), together with the continuous representation & of G on
# defined by (cf. 13.3)

ST =o0,°T-0,, (Te A, sei).

Note that there is a natural *-operation T+~ T* on the Banach space %, namely
T*(x) = T(x*)* (Te B, x €M), and it is easy to check that S is a s-representation,
i.e. S(T*) = (S,1)* (Te B, s€G). The same argument as above shows that

%) Spe(T*) = — Spg'T)  (Te %),

so that 1he spectrum of every self-adjoint element of @ is symmetric with respect
to 0eG. R R
Assume that G is ordered by a closed semigroup S<G with S n (—S)={0},

Su(—S)= é, and that O is adherent to the interior S of S. Using (5) and
Corollary 4/14.7 we get the following result:

Proposition. Let o: G — Aut( M), ¢': G > Aut(M) be continuous actions of G on
M and 0 € Aut(M). The following statements are equivalent

(i) or°0=0-0, for all teG;
(i) 0403 ¥+ S)) = M(&"; v+ S) for all yeG;

(iii) 0(A(e; 7+ S)) = M(a'; y+ §) for all ye 6.

Proof. By Corollary 4/14.7, statements (ii) and (iif) are both equivalent to the
fact that the *-automorphism 0 € Aut(#) = @ belongs to the spectral subspace
2(S; S). Since 0 is a self-adjoint element of @, the spectrum of 0 is symmetric and
so Spg(0) = Sn(—S) = {0}, that is (14.3.(14)) S,0)=0 and 6;1°0=0-¢,
for all te G.

Clearly, the previous Proposition still holds for any self-adjoint element
0 € @ and can be extended to actions on different W*-algebras.

If 0 = the identity mapping on ., we get spectral conditions which are equi-
valent to the equalities ¢, = o)(f € G).
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The previous Proposmon is particularly useful in the case G = R, when we
can take S =[0, +o0) = G or S§=(—00,0]c G.
15.3. Let 6: G — Aut(.#) be a continuous action of G on .#. We now study the rela-
txonshxp between the spectral subspaces associated with ¢ and the multiplication
operation on /.

Consider again the pair (%, 8,) as in Section 15.2 and the continuous represen-

tation S of G on # defined by §,T=o0,°T 0, (Te B se€G). We define an
operator L: .# — 2 by putting

L(x) = ax (aet, xe.4).

The operator L is injective, w-continuous and intertwines the representations ¢ and
&, i.e.

S,*L=L¢°o, (s¢G)

since for a, xe.# we have (S,(L,)(x) = o,(ac_,(x)) = o,(a)x = (L, ‘,,,)(x). By
Proposition 14.8 it follows that

Spe(L,) = Sp,(a) (ac.).
Thus, using Theorem 14.7, we obtain the following result:

Proposition. Let o : G — Aut(M) be a continuous action of G on M, ac.l, Q c G
a closed set and {W}e; a fundamental system of compact neighbourhoods of O

in G. The Jollowing statements are equivalent:
() aeh(o; Q);
(i) a.4(c; F) c M(c; Q + F) for any closed set Fe G
(iii) a#(0; E) = M(c; Q + E) for any set E < G
(iv) a.#(o; D) = #M(c; Q + D) for any open set D = G
(v) ak(o; K) = M(c; Q + K) for any compact set K = G
(vi) adt(o; 74+ W) < M(o; y + W+ Q) for any ?EG and any iel.

In particular, for every a, b € 4 we have

0] Sps(ab) = Sp,(a) + Sp.(b)
and for every E,, E, G we have
@ M(0; E) M(o; Ey) = M(0; E, + Ey).

We note also the following obvious identity:
3 o,(axb) = as,(x)b (a, beMs, xe M, nc.H(G)).

154. Let 0: G - Aut(4) be a continuous action of G on .4.
If 0 # ee’ is a projection, then & obviously defines a continuous action
0°: G > Aut(e.#e) of G on the reduced W*-algebra ele: o0t = o, | elle (t€G).



208 MODULAR THEORY IN OPERATOR ALGEBRAS

It is easy to check that for every x € e#e we have
1)) Spoe(x) = Sps(x).

For every set E < G we shall write #(0°; E) instead of efe(o®; E). From (1) it
follows that

) M(0%; E) = M(0; E) N ete.
In particular,
Q3) (efle)” = M nete.

If ¢, and e, are both projections in .#°, then
“) 0+# e <e=Spac Spoe.

Let 0 # e e/ be a projection and denote by € € 2'(.#°) the central support
of e in .#°. Then we have

(5) Sp o = Spo°.

Indeed, let E = G be any set and suppose that there exists 0 # x €.#(c%; E) =
=ul(o; E) nedle. Since é=V {ueu*; u e U(A°)}, We can find u, v € U(®) such
that uet*xvev* # 0. Then 0 # eu*xve € efle and eu*xve €M(o;E) as e, u, ve M°,
X €M(o; E) (15.3.(2), so that M(o%; E) = M(c; E)NeMe # {0}. Thus, (5) fol-
lows using Proposition 14.5.

15.5. Let 6: G — Aut () be a continuous action of G on the von Neuman algebra
M = BK).

Let E < G be an arbitrary set. We consider the w-closed left ideal 2(c; E) =
= {x €M ; xM(0; E) = 0} of # and denote by q(s; E) the greatest projection in

2(o; E), i.e.
2(o; E) = Mq(o; E).
From this definition it follows that

M 1 —g(o; E) = V{I(x); xeH(o; E)}
-of, equivalently,
() (1 — g(o; E) ¥ = M(0; E)F.

The spectral subspace .#(o; E) is o-invariant (14.2.(4)) and also invariant under left
or right multiplications by clements in .#°(15.3.(2), 14.3.(14)). It follows that 9(c; E)
<njoys the same properties and hence

&) g9(o; E)e Z(4°).

ST BN




GROUPS OF AUTOMORPHISMS 209

If 0 € Aut(#) and .0° o, = 0, 0 (t € G), then, by Corollary 2/14.7, 0(.#(c;E)) =
= M (c; E), and hence

C)] 0 € Aut(M), 0° 6, = 6,° 0 = 0(q(c; E)) = q(5; E).
15.6. We now restrict ourselves to the case G = [R, and consider a continuous actmn
o: R — Aut(A) of R on the von Neumann algebra A < B()identifying G with

R so that {,s)=¢* (teG= MR, seG=R).
By the construction in Section 15.5, for each t¢ G = R we have a projection

m g? = q(o; (t, +00)) € Z(M°)
such that
) 1 —qf = V {I(x); xed(o; (1, +00))} =M(o; (1, +00)).

We also consider the projection

3) 9% =';/Rq;’ € Z(M°);
clearly
) 1—q% = /\ M(o; (t, +00))H.

Lemma. The mapping R3t+ qf € Proj(Z(M°)) has the following properties:

(a) L <ty =>q, <
(b) >ttt S,
() t.—»+oo=>q‘,’"-"q‘éo.
) : t<0=gq/=0.

If there exists ¢ > 0 such that Sp o < [—¢, €], then
© t>ce=>qi=1.

Proof. For the proof put .(t) —./{(a, (t, +09)), O(t) = Qlo; (1, + 00))
the left annihilator of #(f) in 4, g, = ¢ and g, = g&. We have 2(1) = .4g, and
9=V ¢q,.

[

14— 707
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Statement (a) follows from the fact that the mapping ¢+ .#(t) is decreasing
and hence the mapping ¢+ 2(t) is increasing. Statement (c) is now obvious as

9o = Y qy.
Lets,> ¢, ¢, — ¢. Since the mapping 7 — ¢, is increasing, in order to show that
q, 54 g, We may assume that the sequence {t,} is decreasing. Then (14.3.(4))
AM(t) =V (1), hence 2(t)=()2(t,) and q,= A g, = s-lim 4., We have
n n n

thus proved statement (b).
If + <0, then A(t) o #°> 1, hence 2(t) =0 and q, = 0.
If Spo < [—e¢, €], then for ¢ > ¢ we have .#(t) = {0}, hence 2(f) = .# and
1

g, = 1. .
15.7. Continuing with the notation of the previous Section, we assume that

q%, = 1.
Then Lemma 15.6 shows that the mapping [R 5 t-»¢f € 2/(#°) defines a spectral reso-
lution of the identity on the Hilbert space 5# (see [79], XI.5) and hence a self-adjoint
operator A4 in ) affiliated to the von Neumann algebra Z(.#°),

+oo
M A= S ¢ dgz,

-0

and an so-continuous unitary representation u: R - 2(/°) < 4,
#3)] u,=exp (isd) (selR).

Since g7 = 0 for ¢ < 0, the self-adjoint operator A is positive. Let p,(-) be the Stone
spectral measure associated with u (14.10). Using Proposition 14.10 and 14.10.(4),
14.10.(5) we get

H(u; (1, +00)) = pu(t, +00)) H = X, 400 (A)H# = (g% — g)¥  (teR).

Since, by assumption, g% = 1, we obtain using 15.6.(2)

3) H(u; (1, +o0)) = M(o; (1, +o0) ¥  (teR).

?Z:SCS) (15.3.(2) 4(o; (s, +00)) H(o; (1, +00)) = M (o; (s+1, +00)), we infer from
at

@ Mo (5, +0)) H(u; (1, +0)) € H(u; (s + 1, +00)) (s, teR).
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Using Corollary 14.10, we further deduce from (4) that

(5) M(o; (5, +00)) © M(AAW); (5, +o0))  (s€ R).
Finally, with the help of Proposition 15.2 we conclude from (5) that
(6) o, = Ad(m) (teR).

Recall that the so-continuous unitary representation u:R — . defined above
has positive spectrum,

Sp u = Sp(4) < [0, +00),

that is, its infinitesimal generator 4 is positive. :
If Sp o < {—¢, ¢}, then (15.6.(c)) g7 = 1 for every t>¢, in particular ¢% = 1,
and from the definition (1) of the operator A it follows that

) 0<A<e:.

15.8. As a conclusion to the above considerations we have the following remark-
able result:

Theorem (H. J. Borchers, W. B. Arveson). Let o :[R — Aut () be a continuous action
of R on the von Neuman algebra M < B(X). T e following statements are equivalent :

(i) there exists an so-continuous unitary representation u:R — FB(X) with
positive spectrum such that o, = Ad(u) (teR);

(i) there exists an so-continuous unitary representation u:R — M4 with posi-
tive spectrum such that o, = Ad(u,) (t€ R);

(iii) g% = 1;

@) Q-4 (6 +oo)H = {0}.

Proof. (i) = (iv). Since Sp u = [0, +00) we have X = ¥ (u; [0, +00)). Let
p.(+) be the Stone spectral measure associated with u (14.10). Since o = Ad(u),
using Corollary 1/14.7 and Proposition 14.10, we obtain for cvery telR,
(o (1, +00)) H = M(o; (f, +00))H(u; [0, +00))

< #(u; (1, +00)) = p,((t, +00)) X,
hence

(e (1, +o0)) X < 1 pu((t, +00)) HF = (A pu(t, +00))) X = {0}.
teER 1ER 1eR

(iv) = (iii). Follows from 15.6.(4).
(iii) = (iii). This was proved in Section 15.7.
(ii) => (i). Obvious.
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Clearly, the Theorem still remains valid if we replace the condition concerning
the positivity of the spectrum by the requirement that the spectrum be left or right
bounded.

15.9. Let 0:R — Aut () be a continuous action of R on the von Neumann algebra
A = Z(#) and assume that g2 = 1. Then the so-continuous unitary representa-
tion u:R — . constructed in Section 15.7 has the following minimality property:

If v:R » B(s¢) is any so-continuous unitary representation with positive spec-
trum such that o, = Ad(v,) (se [R), then

H(u; (t, +00)) = H#(v; (1, +00)) (te[R)

that is, for the corresponding infinitesimal generators A, B we have
X, +ox(A) < X, +o(B) (1€ R).

Indeed, since 5# = #(v; [0, +00)) and ¢ = Ad(v), using Corollary 1/14.7
we obtain S(o; (t, +00)) # = M(0; (1, +00)) H#(v; [0, +00)) < H#(v; (¢, +00)),
so that the desired conclusion follows using 15.7.(3).

15.10. The arguments presented in Section 15.7 also give the following

Proposition. Let 6:[R — Aut (#) be a continuous action of R on the W*-algebra .
If there exists € > 0 such that Spo < [—e, €], then there exists a = a*e & °),
llall < &/2, such that o, = Ad(exp(ita)) (t € R).

Proof. By the last remark in Section 15.7, there exists A € Z(M),0< 4 <e,

such that o, = Ad (exp (it4)) (t € R), and we can take a = 4 — 7‘:— .

<

15.11. Let 6:G - Aut(#) and 7:G — Aut(#) be two continuous actions of G
on /. We shall say that the actions ¢ and t are outer conjugate, and we shall write
¢ ~ 7, if there exists a unitary o-cocycle w € Z,(G; U(AM)) (see 5.1) such that
T, =Ad(w,)*0,(tcR). It is easy to check that ““~" is an equivalence relation.

In this case we can define the balanced action 0 = 0(o, w) of G on the W*-al-
gebra 2@ = Mat,(4) by putting

M 0, (x“ x,,) - ( o (x1) a,(x,,)w,‘) (Ix,)e ).

Xa1  Xeg W (X2) WO (X)W
Since w € Z,(G, U(#)), putting v, = (:) 0 ) (teG), we define a unitary
—— u" —
(o ® 1)-cocycle ve Z 5.(G, U(#)) such that0,= Ad(v):(c,®1) (te G). Thus,

0:G - Aut(2) is indeed a continuous action of G on 2. It is clear that for t€ G
and x €.# we have

ol =(9 Y L Y-( L)
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10 0
The projections e = y f=
proj (0 0) J (0

e, fe 2°. Moreover, from (2) it follows that

(l)) are equivalent in @ and we have

3 (4, 6) = (ePe, 09, (M, 1) = (f2f, 0).

In particular, for every x €.# we have:

@ sp) =53 g+ sn=sn(g )

Note that, conversely, if there exists a continuous action 0:G — Aut(Mat, (4))
which satisfies (2), then the actions ¢ and t are outer conjugate.

15.12. Using the results of Sections 15.10 and 15.11, we now prove a result which
we shall need later.

Proposition. Let 6:IR — Aut (/) be a continuous action of R on the W*-algebra M
and ¢ > 0 such that

m : Spon{[—2, —c]ufe, 2]} = O.

Then there exists a = a* € Z(M°), |lal| < ¢/2, such that for the continuous action
:R — Aut(M) defined by t, = Ad(exp(ita))* o, (t€ R), we have

() Spzn(—¢,¢) = {0}.

Proof. From (1) and statements 15.2.(3), 15.3.(2), it follows that the spectral
subspace A" = #(o; [—¢, £]) is a o-invariant unital W*-subalgebra of .#. Let o} =
= o,| ¥ (teR). Then o’: R — Aut(4") is a continuous action of R on, ¥/ =
== #° and Sp o' c [—¢, ¢]. By Proposition 15.10 there exists a = a®* € Z(N) =
= 2Z(M°), lall < g2, such that o= Ad(exp (ita)) (€ R). Since ae.4°, the
equation t,(x) = exp(ita)o(x) exp(—ita) (xe.#, t€[R), defines a continuous
action 1:[R — Aut (/).

By (1) and Lemma 15.1 we see that the sct 4" U.#(o; R\[—2¢, 2¢]) is w-total
in .#. Thus, in order to prove (2), it is sufficient (14.5.(1)) to show that

xeN UM(o; R\[—2, 2]) = Sp(x) n(—¢, €)= {0}

Since N < .4, for xe N we obviously have Sp(x) = {0}.
Consider now the balanced action 8 = 0(c, w) of R on 2 = Mat, (/) cons-
tructed as in Section 15.11 with w, = exp (ira) (1 € R). Then we have

0c ((l) g) - (Sxp(ita) g) (te®)
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and hence for every fe LYR) we get (see 14.10.(6))

5(i o)~ (o o)

It follows that

®) Sl’o((l) g) = Sp(a) = [—f2, ¢f2].
. 0 0 0 O0\/x O\/0 1 .
Let x e (o; R\[—2¢, 2¢]). Since (0 x) = (l 0) (0 0) (0 0), using

15.3.(2), 15.2.(2), 15.11.(4) and (3) above, we get Sp,(x) = [—¢/2, ¢/2] + {R\[—2¢,

2¢)} + [—¢/2, £/2]; hence Sp,(x) n (—¢, &) = {0}.

15.13. We now give another application of the technique developed in Section 15.7.
Let 4 be a W*-algebra A linear mapping &:4/ — A, such that d(xy) =

xo(y) + 5(x)y (x, ye), is called a derivation on ./// Every derivation on a

J¥*-algebra is bounded ([204], 4.1.3).
Let  be a derivation on .#. Then the mappings 6,, 6,: # — A defined by

y(x) = (6(x) — 6(x*)*)[2, 0x(x) = (6(x) + 6(x*)*)/2i

are antihermitian derivations, 1.e. 8,(x*) = —é,(x)* (k= 1,2), and & = §; + iJ,.
Every element a €4 determines an inner derivation 6, on # defined by
0,(x) = ax — xa (x eM).

Theorem (R. V. Kadison, S. Sakai). Every derivation on a W*-algebra is inner.

Proof. Without loss of generality, we consider an antihermitian derivation &
on the W*-algebra . It is then easy to check that the elements &, = exp (itd)
(te[R) of the Banach algebra #(#) are s-automorphisms of .# and that the
mapping ¢:[R >t~ g, Aut(#) is a norm-continuous action of IR on /.
In Section 14.11 we proved that Sp ¢ = Spac.«)(d) < [—{I5]l, lI61]).

As we saw in Section 15.7, a =\t dgf is a positive element of .#, | a|| <[5
and o, = Ad(exp(ira)) (fe R), that is
(exp (i18))(x) = exp (ita) x exp (—ita) (xe.#, teR).

Taking the derivative here with respect to ¢ and then putting ¢ = 0, it follows that
6(x) = ax — xa (x€.l), i.e. d =9,.
15.14. For an antihermitian derivation 8 of M, the element a € M constructed in the

proof of Theorem 15.13 is the smallest positive element b € .4 such that & = &,; more-
over, for every central projection e in # we have

[lae]] = ||d]e.#ell.
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Indeed, let e €./ be a central projection. We have d(e) = d,(¢) = 0. It fol-
lows that (ece) = ed(x)e (x €), and o (e) = e (1€ [R), that is ee.#°. Consec-
quently, the restriction of & to ee is a derivation & on the W*-algebra e/e
and exp (it6?) = of (t€R). By the proof of Theorem 15.13, we have of =
= Ad (exp (ita’)) (t€R), where the positive operator a'eefle with |a']l €

< [|6°]| is defined by o' =\rdge" - It is easy to check that g = egq} = gle

(t € R), hence a’ = ae and therefore
llae(| < ||dleel.

If ¢ = ae — |jael}/2, then ||l < llael/2 and 6, = J,, = &, hence licl] > 18°]1/2.
Consequently

llaell > ||6leAell.

Consider now 0 < b e/ with =6,. Then the mapping v: R - e.#e defin-
ed by v, = exp (ithe) (€ R), is an so-continuous unitary representation with
positive spectrum and of = Ad(v,) (t€ R). By the minimality property cstablished
in Section 15.9, we have

X, +o(@€) < X, +or(be)  (teR).
In particular, taking ¢ = ||bel, we obtain
Q) llael| < libell (e € Proj(Z(A))).
Assume that (@ — b)* # 0. Then there exist 1 > 0 and a spectral projection ¢ # 0
of (a — b) such that
A3) (@—b)e > e..
Since 8, = &,, we have a — b € Z(M), hence (a — b)* € Z(4) and ¢ € Proj (Z(M)).

Now from (3) we deduce that [lbell < ||be|l + A = [lbe + A|| < llae]l, contradict-
ing (2). Thus, (@ —b)* =0and a <b.

15.15. Using Theorem 15.13 we can also obtain a similar result for automorphisms
of W*-algebras. To this end it is necessary to consider, when possible, the logarithm
of an automorphism and to show that it is a derivation.

We shall denote by In the principal branch of the logarithm defined on the
domain ©\(—oc0, 0}. Then

In: C\(—o00, 0] = {4 € C; |Im 2] < n}
is an analytic function, namely the inverse function of

exp: {Ae C; |Im 4| < n} - T\(—o00, 0].
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Let o be a unital Banach algebra and ¢ € o such that
¢)) Sp4(0) = {AcC; Red > 0}.
Then o is an invertible element and so defines a bounded linear mapping
Ad(o): A 50+ gac™l € o,

Since Sp(6) = ©\(—o0, 0], it is meaningful to consider 6 = In (0) e . We have
o = exp () and, by (1),

(V) Sp4(©0) = {AeC; [Im 4| < n/2}.
0 € of defines a bounded linear mapping
ad(): ' da > dx — ad € .

Then Ad(c) and ad(6) are elements of the Banach algebra 2(+) and, using 14.13.(1),
14.13.(2), we deduce from (1), (2) that

€)] SPacn(Ad(0)) = {Ap2; A, pe Sp (o)} = T\ (—o0, 0]
@ SPan(@ad@®) = (A — p; 4, e Sp(8)} = {Ae C; Im | < =}

Since o = exp (9), it is easy to check that

&) Ad(c) = exp (ad(9));
and using (3), (4) we deduce that
©) ' ad(3) = In(Ad(0)).

Now let M be a unital Banach algebra and of = R(M). If 6 € & is an auto-
morphism of M satisfying (1), then § = In (o) € f is a derivation on K.

Indeed, consider the mapping L:.# — & defined by L, (y)=xy (x, ye ).
Then L is a bounded injective Banach algebra homomorphism and we have
(Ad(0)) (L;)=L,y) (x €4), thatis Ad(e)°L = Leo. It follows that p(Ad(0))° L =
== Lep(o) for every polynomial p and, using Runge's theorem ([271], 1.3.2), we also
obtain In (Ad(0))eL = L¢In(s). By (6), this means that ad(d)°L = L5. Since
ad (9) is a derivation of & and L is an injective homomorphism, we conclude that
6 is a derivation on ..

If & is an inner derivation, i.e. § = §, = ad(a) with g €.4, then ¢ = exp(d) =
= exp (ad(a)) = Ad(exp (a)). .
Using Theorem 3.13 we thus obtain the following




GROUPS OF AUTOMORPHISMS 217

Corollary. Let ¢ be an automorphism of the W*-algebra .4 such that Sp 4 a(0) =
c {ie@; Rel>O0}. There exists an invertible eclement ve.M such that
o = Ad(v), i.e.

o(x) = vxv! (x e ).

If, moreover, o is a +-automorphism, then there exists a unitary clement u €. sucl
that o = Ad(u).

Proof. The first statement has already been proved. Assume that ¢ = Ad(r)
is a s-automorphism and let v = ua be the polar decomposition of v. Then ue.#
is a unitary element and a €.# is an invertible positive element. For every x €.4 we
have uax*a'u®* = a(x*) = o(x)* = ua x*au*. It follows that a*e 2(.4), so
that g€ 2'(#/) and 6 = Ad(u).

We note that if o€ Aut(#) and Jlo — 1]l <1, then the requirement
SPacn(0) = {2; Re A > 0} is satisfied and hence o € Int(A).

Actually, Kadison and Ringrose [131] proved that if o€ Aut (4) and
llo—1,0l < 2, then o € Int () (see also [16], Thm. 5.4.A). Since for any s-automor-
phism o we have [lo — 1 4[| < 2, it follows that ||¢ — 1 4[| = 2 whenever o is outer.
A simple proof of the implication [jo—1 4]l < V3 = o e Int(.#) can be found
in [76).

15.16. Let o: G — Aut (.#) be a continuous action of the locally compact group G
on the W*-algebra / such that o, € Int(.#) for all 1€ G. Without the assumpltion
that the predual .4, of . is scparable, this property of ¢ does rot imply the existence
of an s-continuous unitary representation u: G — .# such that 5, = Ad (u,) (t€G)
(see [36), 1.5.8.c). In the case when ./, is separable several positive results are known
(175), (113), [126], [134), [163]). We note here the following result

Theorem (R. R. Kallman, C. C. Moore). Let 5. [R — Aut () be a continuous action
of R on the W*-algebra .#. If the predual M, is separable and o, € Int(MA) for all
te R, then there exists an s-continuous unitary representation u: R — 4 such that
6,= Ad(u,) for all teR.

For the proof of the full Theorem we refer to ([134], [163]). In this Section
we present some arguments, due to Hansen [113), which lead to a simple and ele-
mentary proof of the Theorem when ./ is a factor.

Let 0: IR — Aut () be a continuous action of R on the W*-algebra M and
{v)rem © U(H) such that a,= Ad(v) (teR). Then

n 0,0, = 0,0, (5,1€R)

Since Ad(r,0,) = 0,,, = Ad(p,r,), it follows that there exists a mapping
¢: R xR - U(Z(4)) such that g (v,) = v,v,t® = 1, s)v, for all s, teR. It is
clear that the mapping ¢ is scparately w-continuous, (0, s) = (t, 1) = 1, (s, f) =
= ¢(—1, 5) = o, 5)* and o(t + 1, 5) = c(t, ) c(t', 5). It follows that 21, 1) =
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c(t, 1) = 1, hence ¢(g2™",1) = ¢2™"t, t)? =1 for any re R, nc N, g€ Z and the
continuity of ¢ allows us to conclude that ¢(s, ) = 1 foralls, ze R.

Assume now that .# is a factor. Then the elements v, e U(#) with ¢, =
= Ad(v,) are uniquely determined modulo the normal subgroup T = {A:14;
2€ @, |4 = 1} of U).

Consider the topological group U(«#) with the w-topology and the group Int(.#)
with the p-topology (2.23). Then the mapping Ad: U(A) 5 u > Ad(u) € Int(A) is
the composition of the canonical quotient mapping k:U(.4) — U(A4)|T with an
injective homomorphism

«: UG = Int (A)

of the quotient topological group U(#)/T into Int(#).
Then the equation v, = k(v,) (¢ € R) defines a group homomorphism

v: R - U,

uniquely determined, such that as v = ¢.

Finally assume also that the factor 4 has separable predual. Then U(4) and
U(#)/TT are polish groups. Using the measurable selection theorem of von Neu-
mann [76] and the continuity of the action o, we find a Lebesgue measurable map-
ping v: R — U(#) such that Ad(v)) = o, (€ [R). It follows that the mapping v
is a Lebesgue measurable homomorphism and hence v is a continuous homomor-
phism,

To prove the Theorem, it is sufficient to show that there exists a continuous
homomorphism u:[R — U(4) such that k(u,) = v, for t € R.

By statement (1), the set G = {(u, ¢) € U(#) X R; k(u) = v,} is an abelian
subgroup of U (.#) x [R. With the topology inherited from U(#) X R, G is a topo-
logical group. The mapping

JiGa(u)m»telR

is an open, continuous and surjective homomorphism, whose kernel is isomorphic
and homeomorphic to T. Since T and [R are locally compact groups, it follows
{[118], 5.25) that G is also locally compact. On the other hand, the mapping

itTair(A,0€eCG

is a_ homeomorphism of T onto a compact subgroup of G. The character 4 > A
on T can be extended ([118], 24.12; [199], 2.1.4) to a continuous character 7on G,
Thus, there exists a continuous homomorhism y:G — T such that yei= 1.
Thus, the short exact sequence

0-TAGL R0
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is split and thercfore there exists a continuous homomorphism &6:R — G with
Jj* 6 = Ig,i.c. a continuous homomorphism u:R — U(H) withk(u)= v, (t€R).

15.17. In this final Section we prove a general result which we shall use later in some
particular situations.

Proposition. Let ¢:G — Aut(#) be a continuous action of the scparable locally
compact abelian group G on the countably decomposable W*-algcbra M. Let x€M,
e =r(x), ¢ = I(x) and let x = ulx| the polar decomposition of x. We assume that
there exist projections J, [ € 4°, [ > e, [ > ¢, such that

) (SPo(x) — Sp.(x)) n(Spa’u Spa”) = {0}.
Then
) Spy(u) = Sp,(x), |x]eM, eeM’, ¢ €M’

If, moreover, {(° is properly infinite, then there exists a partial isometry v e.H
such that:

3 Sps(v) = Spa(x)

“) v*v = the central support of e in M°
) | vv* = the central support of ¢’ in M°
(6) oMo < M0, VMM

Q) a=v*xel’

@) X = ta.

Proof. Let E = Sp,(x). We have x €.4(o; E), x*eM(c; —E) hence x*x€
el(o; E— Eynfdf < .#4°, by (1). Thus, [x| c#° and Sp,(x) = Sp,(u), as
x = ulx|. There exists a sequence {a,} = .#° such that |x]a, = s(}x]) = e. It follows
that ee.#° and ./#(o;E) > xa, = ulx|a, % u, hence Sp,(u) c Sp,(x). Conse-
quently, Sp,(u) = Sp,(x)=E and ¢ =wuu*€M(;E—E) 0 fHf < M°, by
(1). We have thus proved (2).

Let c =z 4(e), ¢ =2 () € 2(°) be the central supports of the projec-
tions ¢, e’ € .#°.

There exist projections ¢, e, € Z(c-#’), uniquely determined, such that
¢ = ¢y + e;, ¢qll’, is properly infinite, and e,.#°e, is finite. Also, there exist pro-
jections ¢}, e, € Z(e.#°¢"), uniquely determined, such that ¢ = ¢ + e, eol’e is
properly infinite, and e;.#°e; is finitc.

Then there exist projections ¢, ¢, € Z(A°) withcg 4 €, =€, Co€ = €p, 1€ = €
and ¢}, c] € Z(A°) with cg + ¢| = ¢', coe’ = €, cie’ = .



220 MODULAR THEORY IN OPERATOR ALGEBRAS

For y e e.#/°e we have uj:u* eede’ and Sp,(uyu*) < (E— E)n Spe® = {0},
hence uyu* € ¢'.#%’, Thus, the mappings

efl’esy > uyu* c €M%, M >z 1> utzucedle
Yy Iy s

are reciprocal s-isomorphisms. By the uniqueness of the decompositions e = e +
+ e, € = ¢e; + ¢f, it follows that

ueu* = eq, ueu* =ej, u*eju = e,, u*eu = e,

By construction, e, is a finite projection in .#° with central support ¢;. Since
° is properly infinite, we can write

(-]
¢ =Y, e, with e, € Proj(.#°), e, ~ ¢, in A,

n=1

SN b e Sy

so there exist w, €.#° with Wiw, = e, w,w¥* = e, and w, = e.
Similarly, we can write

o
c; =Y, e, with €} € Proj(.#°), ¢!, ~ e] in J°
n=1

and there exist w, € #° with w*w, = el, wow,* = ¢l and wj = el.
Then u, = wuw® e M(o; E), utu, = €y, Uuy = e, hence

o0
vy =Y u,€Hl(o;E), vfv,=c, v = ;.
n=1

On the other hand, e, is a properly infinite projection in .#° with central sup-
port equal to ¢,, hence e, ~ ¢4in#?, i.e. there exists w € .4° with w*w — €5, WW*= ¢,
Similarly, there exists w’ €.#° with w'*w’ = g, W'w'* = ¢, Then

Vo = Wuw* € M(a; E), 180, = c,, Voly = €.

Thus, v = vy + v, €.#(0; E), v*v = ¢, vv* = ¢’ and this proves (3), (4), (5).
From (1) and 15.4.(5) it follows that

(E — E)n (Spe* u Spo*) = {0}.

Thus, ify €.#°, then vyv* € M(o; E — E)ncc = M°and v*yve.l(o; E — E)n
Ne.dc = .4° proving (6).

Also, a=v*xeM(0;E—~ E)Ncllc =.4° and, as vo* =c' >e' = I(x),
we have ra@ = po*x = x, proving (7) and (8).
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Corollary. Let o:[R — Aut () be a continuous action of R on the factor .M such
that #° is properly infinite. Let € > 0 and let p,, ps € Z(/") be non-zero projections
such that 0 be an isolated point in Sp 6P U Sp 6™. Then there exists a partial isometry
0 #ved with p, >v*ve Z(M°), p, > vv*e Z(M°) and Sp,(v) — Sp,(v) =
c [—¢, ).

Proof. We may assume that (Sp o U Sp ¢™) n[—¢, €] = {0}. Since A is a
factor, theae exists yke./l with p.yp, # 0. By Lemma 15.1, there exists f€ £}(R)
with suppf — supp f < [—¢, €] and x = p,a,(y)p, = o,(psyp;) # 0. We have
pax = xp; = x and Sp,(x) — Sp,(x) = [—¢, £]. From the Proposition we infer that
&, = 1(x) €M, ex=)x) €A’ Let g, =12 ,,(e)) < Py g:=17 ,q(c2) < p2. Again by
the Proposition, there exists 0 # v €.# such that v*v = q,, vv* = ¢, and Sp,(v) =
< Sp,(x), hence Sp,(v) — Sp,(v) = [—¢, ¢&].

15.18. Notes. The proofs of Borchers’ theorem (15.8, (i) «= (ii); {15]) and of the Kadison—Sakai
theorem (15.13; [127], [202]) given in this Section are due ta Arveson {12]. Theorem 15.15
appears in [204] and the proof is based on a device due to ZeHer—Mecier [264]). The results
contained in Sections 15.10—15.12 and 15.17 are dus to Connces [36].

For our exposition we have used (12), {34), [36], [113], and [177]).

Different proofs and extensions of Borchers’ thcorem are contained in [34), [129), (177],
{185]. The following references also contain applications of the theory of spectral subspaces
to groups of e-automorphisms on C*-algebras: [4], (16], {17), {175), [176], [178]), [184]).

§ 16. The Connes invariant I(c)

In this Section we introduce an outer conjugacy invariant for continuous actions.

16.1. Let 6: G ~ Aut(.#) be a continuous action of the separable commutative locally
compact group G on the W*-algebra .#. We define a closed set I'(6) = G by

) )= {Spo; O # ee Proj(#°)}.

According to 15.4.(5), we also have

Q) ) =N {Spo; 0 # ceProj (Z(A))}.
In particular, »
Q) if #° is a factor, then I'(6) = Sp o.

Clearly, for cvery non-zero projection e €.#° we have
O] I () < I'(s°).

Proposition. I'(c) is a closed subgroup of G and for every non-zero projection e ¢ .M
we have

) I(c) + Spa* = Spo”.
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Proof. We remark first that 0 € I'(0), since for every non-zero projection
e€/° we have Spo® > Sp.(e) = {0}.

Therefore, I'(c) + Spo > Spo. Conversely, let y,€ Spo and y2 € I'(0).
In order to prove that y, 4 y, € Sp o, we have to show (14.5) that .#(a; V) # {0}
for every neighbourhood ¥V of y, + 7,. Let ¥; and ¥V, be neighbourhoods of 7: and
72, respectively, such that ¥, + V, < V. Since y,€ Sp o, there exists 0 # X, €
€4(a; V1). Then e = V r(o,(x,)) is a non-zero projection in .#°. Since y, € I'(6) <

tEG

< Spo*, it follows (15.4.(2)) that there exists 0 # x, € #(a; V,) n ele. Since ex, =
=X, # 0, there exists teG with x =0,(x)x, #0 and (14.2.(4), 15.3.(1))
x€.ll(o; V1 + V,) < M(o; V). Hence I'(6) + Spa = Spo.

Using this conclusion and (4) we see that I'(6) + Spo® = Sp o° for every
0 # e € Proj(M°).

From (1) and (5) we infer that I'(6) + I'(6) = I'(6). On the other hand, fro,{n
(1) and 15.2.(4) it follows that I'(6) = —I'(s). Hence I'(c) is a closed subgroup of G.

16.2. Let 6: G — Aut(.#) be a continuous action of G on /.

Proposition. Let e,, e, € #° be two projections with z ez (es) #0 and V a compact

neighbourhood of O in G. There exist two non-zero projections Ju faedls, f; < ey,
J: < e,, such that

) Sperc V+ Spa’, Spofrc V4 Spoh.

Proof. Since z_,(e))z (e;) # O, there exists 0 # ye.# such }\hat ey =y=
= ye; ([L], 4.5). By Lemma 15.1, therc exists 1 € £YG) with supp h — supph < V'
and x = a,(y) # 0. Then (15.3.(3)) e;x = ¢0,(y) = ou(e)) = 0, () =x= ... =
= xe; and (14.2.(3)) Sp,(x) — Sp,(x) = V. We define

L=V 1o,(x), f2= V r(o(x)).
teG 1eG

Then f), fo€M°,0 £ f; < e,0 #f, < e,

Let y, € Sp a/i. Since V is compact, the set ¥ + Spo”t is closed. Thus, in
order to prove that y, € ¥ + Sp ¢/, it is sufficient to show that (V; — VInSpcl*+#0
for any compact neighbourhood ¥, of y,. Since y, € Sp o/, there exists 0 # x; €
€.(o; V1) nfi4fy. Since x,f; = x; # 0, there exists 1 € G with x,0,(x) # 0. Since
o (x)*xtfy = a(x)*x} # 0, there exists s € G such that o,(x)*x?¥o,(x) # 0. There-
fore, x; = g,(x*)x,0,(x) £ 0. We obviously have x,f; = x, = fox, and (15.2.2),
15.3(1)) Spo(xs) < Sp,(x1)+ Sp,(x) — Sp,(x)=¥, — V¥, hence (V, — V) n Spo’++ O.
We have thus proved the first inclusion in (I). The second onc is proved simi-
larly.

Corollary 1. If e,, e, € Proj (#°) and z _,(e,) = z ,(e5) # O, then

#3)] I(c%) = I'(c*).
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In particular, if e € Proj(.#°) and 2z «(€) =1, then
3) I(c*) = I'(0).

Proof. It is clear that if e € /°, then z ,(e) €.#°. Thus, itissufficicnt to prove
(2) only for e, = z_,(e,), that is, it is sufficient to prove 3).

We have (16.1.(5)) I'(6) = I'(6*). To prove the opposite inclusion we note
that
@ I(e) = N{V + Sp o’}

with 0 f€ Proj(.#°) and V compact neighbourhood of 0 in G. The above Propo-
sition shows that for any f and any V there exists 0 # ¢’ € Proj (.#°) withe' <e
and Spo® = V+ Spa’, hence I'(e*) = Spa® < V+ Sp ¢’. Therefore, I'(6°) =
< I'(0).

Corollary 2. If.# is a factor, then the family
§(c) = {V + Spo*; 0 # e € Proj#°), V a compact neighbourhood of 0 € é}
is the basis of a filter with intersection equal to I'(0).

Proof. We have already noticed (4) that the intersection of the family 5(¢)
is equal to I'(s). Now, let ¢, ¢, e:ll" be two non-zero projections and ¥y, V, two
compact neighbourhoods of 0 in G. There exists a compact neighbourhood V of 0
in G such that ¥ < ¥, and V + V < V,. By the previous Proposition, there exist
two non-zero projections f;, fz €.4°, f1 < €1, f2 S ¢, which satisfy (1). Sincc V < V;
and f, < e,, we have (15.4.(4)) V + Spa/ic Vy + Spo“. Since V -+ V < V; and

f: < ey, it follows from (1) that V + Sp o™ < V, + Spa*.

16.3. Let 0:G — Aut(.#) and 1:G — Aut(.#) be two continuous actions of G on
the W*-algebra .#. In Section 15.11 we defined the outer conjugacy rclation o ~ 1.

Proposition. If 6 ~ 1, then I'(6) = I'(1).

Proof. Let # = Mat, (/) and e = ((l) g) s f= (8 ?)e.?. Then e and f

are equivalent projections in 2 and, as proved in Section 15.11, there exists a con-
tinuous action 0: G — Aut (2) such that e, f€ #° and (4, 6) = (¢Pe, ¥), (A, >
x (f#f, 0/). Using Corollary 1/16.2 we conclude that ['(o) = I'(¢) = re’) = re).

By the, above Proposition and by Corollary 2/16.2, it follows that if 4 is a
actor and o ~ 1, then for every F € §(g) there exists F e&(x) with F' < F.

16.4. Let :G — Aut(.#) be a continuous action of G on the I *.algebra /4. Put
Kero = {teG; o,= 14},

Int 6 = {1 € G; there exists u € U(A°) with ¢, = Ad(u)}.
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Note that Kero < Into and
1) ue U(AH°), o, = Ad(u) = u € U(Z(M°)).
For each subset E < 6, the set
El={teG;{t,7) =1 for all ye E}

is a closed subgroup of G and EX! is the smallest closed subgroup of G containing
E ([199], 2.1.3).

Using 14.13.(1) and Proposition 14.6, we get:

= =N

2) Ker 0 = (Sp o)+ c I'(0)4,
since, by definition, I'(6) = Spo. It follows that
3) Sp ¢ = I'(6) <> Ker ¢ = I'(o)*.

Recall (16.1) that these conditionﬁ are satisfied if .#° is a factor and that they imply
that Sp ¢ is a closed subgroup of G. Conversely,

Proposition. If I'(6) is discrete, then

@ Sp o = I'(0) = Z(M°) = Z(M)°.
In particular, if A is a factor and I'(c) is discrete, then
o) ' Spo = I'(e) <>.#° is a factor.

Proof. Let e, fe4° be projections with z 4(€)z ,(f) # 0. Then ([L},4.5) there
exists ye/ with e)f #0. Let ye S{),(eyf). SinceASpa = I'(0) is discrete, there
exists (14.1.(5)) 1 € £X(G) such that h(y) # 0 and A(w) = 0 for all we Sp a\{y}.
Then x = oy(eyf) # 0, Sp,(x) = {¥} and (15.3.(3)) ex = x = x/. Since Spo(x) =
= {7} is a singleton, using 15.2.(2), 15.3.(1) and 14.3.(14) we obtain x*xe.°,
xx*e.#° hence r(x)=s(x*x)eH° I(x)=s(xx*)e.#°; note that I(x) <e,
r(x) < f. Since ye Spo = I'(6), —yeI'(o) (16.1), and since 0 # x(x) € Proj(#®),
there exists 0 # = €.4(c; {—7}) N r(x).#r(x). Then 0 # a=xze.#° and eaf =
= a # 0. Hence ([L], 4.5) z_0(e)z o(f) # 0.

It is clear that 2(.#)° c 2(.#°). Conversely, let e € 2'(#°) be a projection

and let f = | — e. Since ¢f =0, by the above arguments we infer that z_(e)z_(f)=0,
hence e = z_(c) € Z(./).
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This ?roposition can be applied, in particular, if the group G is compact,
since then G is discrete ([199), 1.2.5).

16.5. The main duality result is the following

Theorem. Let 0:G — Aut(#) be a continuous action of G on the W*-algebra 4.
Then:

a) Int ¢ = I'(0)~.
If M is a factor and the set Sp o[I'(c) is compact in 6/1' (o), then
) Int ¢ = I'(6)*.

Proof. Let t € Int o and let u € U(Z(A°)) be such that o, = Ad(u). Let e> 0.
There exist Ay € €, with [4g|=1, and a spectral projection e € Z(#°) of u, such that
llue— Aqel| <e. Then the spectrum of ue in e.#e is contained in {1 € C; 14— A <&}
Using 14.13. (2), it follows that the spectrum of the automorphism of = Ad(ue) €
€ Aut(e#le) as an element of B(e.#e) iscontained inthe set {le C; 14— 1] <2}
On the other hand, by Proposition 14.6, the spectrum of of in @(c.#e) is
equal to the closure of the set {{t, y); v € Sp ¢*}. Consequently, (% 7) — 11 <2t
for every y € Sp 0%, in particular for every y € I'(g). Since £ > 0 was arbitrary, it
follows that re I'(0)t.

. We assume now that ./ is a factor and that Spa/I'(c) is a compact subset
of G/l e). ,

Let k: G — G/I'(c) be the canonical quotient mapping. Since, by assumption,
k(Sp o) is compact, using gorollary 2/16.2 we see that the family {k(F); Fe (o)}
is the basis of a filter on G/I'(c) with intersection equal to {k(0)}. By Proposition
16.1, we have k™1(k(F)) = F for every F e &(0). R

Let 1€ I(0)t and 0 < £ < 1. The set D, = {yeG; Re {t,7) > 1 —¢} isan
open neighbourhood of k(0) in G/I'(s). Consequently, there exists F e &(o) such
that k(F) < k(D,). Since t € I['(6)*, we have k(k(D,)) = D, and therefore F < D,.
We conclude that there exists a non-zero projection e €.4° such that Spo* < D,.

Using Proposition 14.6 it follows that
) © Spepc{AeC;i=1,Red>1—2g},

where, we recall, Sp(c?) is the spectrum of of in #(e.#e). By Corollary 15.15 we
infer that of € Int(e.#e¢). Since / is a factor, using Proposition 17.1 we deduce that
o, € Int(M), i.c. there exists u € U(#) such that g, = Ad(v). We still have to show
that ue.#°.

Note that ueu* = o (e) = e, ue = eu, and so o7 = Ad(ue). Since ele is a
factor, it follows from Proposition 14.13 that

C)) Sp(of) = {Au™%; 2, p € Sp_4(ue)}.

157207
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Comparing (3) and (4) and usiﬁg the spectral theorem, we deduce by some elementary
computations that :
5) inf {lue — Je|l; A e €, |A| = 1} < 2.

Let fe° be an arbitrary non-zero projection. Since I'(¢”) = I'(s), it follows
from what has just been shown that there exists a non-zero projection e € #°, e < f,
such that (3) holds. As above, we see that ue = eu and of = Ad(ue); and we deduce
inequality (5).

Using a standard argument it follows that for each ¢ > 0 there exist a family
{e;} of mutually orthogonal non-zero projections in .#° with Y e;=1 and a family

]

{4} _of unimodular complex numbers such that |jue; — A,e;]| < ¢, hence [ju —
— ¥ Aell < e. We conclude that u e.°,

Hence teinto.
A different proof of (1) is given in Section 21.6.
16.6. The second main result concerning the invariant I' is the following

Theorem. Let 0: G — Aut (#) be a continuous action of G on the factor #. For every
non-zero projection e € #° there exists a continuous action t:G — Aut (M) such
that © ~ ¢ and Spt c Spa°.

In particular,

0 F@)=N s
o~
By Proposition 14.6 and by the definition (16.1) of I'(s), the inclusion
) Fey)eM Spt

~o

is valid in general, for any W*-algebra. If # is a factor, then (1)
follows obviously from the first assertion of the Theorem and the definition of I'(s).

Note that (1) is trivially true if .#° is a factor (16.1.(3)). However, (1) is not
true for all }¥*-algebras, as can easily be seen by considering a direct sum (4, ¢) =
= ('Ill’ 0’1) @ (Jlb O'g)-

The proof of Theorem 16.6 will be given in Section 16.11, while in Sections
16.7—16.10 we present some auxiliary results which are of independent interest.
In fact, Propositions 16,7, 16.8 and 16.9 have stronger conclusions, but in special
situations.

16.7. Proposition. Let 6:G — Aut (#) be a continuous action of G on the W*-al-
gebra M. For every projection e € M° which is equivalent to 1 in M there exists a con-
tinuous action t:G — Aut(M) such that © ~ ¢ and Sp © = Sp o*.

Proof. Let u e/ with u*u = 1, uu* = e and put w, = u*s,(u), (tc R). It is
easy to check that the mapping ¢ +»w, is a unitary o-cocycle w € Z,(G; U(.#)) which
defines a continuous action t ~ ¢ where 7,(x) = wo (X)w?® = u*s,(uxu*)u
(xe.#, te R). Thus, the mapping x +> uxu* defines a s-automorphism (4, 1) =
= (efle, 0*) and Spt = Spo-.

:w»-i
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This Proposition already implies Theorem 16.6 for countably decomposable
type III factors.

16.8. Lemma. Let 0:G — Aut(.#) and t:G - Aut(.) be two continuous actions
of G on the W*-algebra .M. If there exists a projection e € M° 0 M* will Z 4(€) = ]
such that ¢ ~ t°, then ¢ ~ 1.

Proof. By assumption, there exists an s-continuous mapping f++v, of G into
U(e#e) such that v,,, = v,,(v,) and 1,0, '(x) = v,xv® for s, 1€ G, xcede. By
Proposition 17.1, for each 1€ G there exists a unique w, € U(#) such that we =
=vp,=ew, and 1,071 =Adw)(teG). Since 7,,070(x)= 11,07 %0 (x) =
= twot (W) = 1,07 (0,0v) x0,w?)) = wow) xow!w? (x €.A), and
w,a,w)e = 0,0,(v,) = 0,4, = ew,0,(w,), by uniqueness it follows that w,o,(w)=w,,
(s, t € G). Also, the mapping ¢+ w, is s-continuous (17.1.(2)). Hence t ~ 0.

Proposition. Let a: G — Aut (/) be a continuous action of G on the W*-algebra M.
If e € M° is a projection such that 1 — e is the sum of a SJamily of mutually orthogonal
projections in M, each equivalent 10 e, then there exists a continuous action t: G-
— Aut (M) such that T ~ o and Sp t = Sp o°.

Proof. By assumption it follows that there exist a type I factor &, a minimal
projection p in & and a s-isomorphism = of .4 onto (eMe) B F such that n(x) =
= x @ p for x € e.#le. We then define a continuous action 7: G -+ Aut () by put-
ting t,=n"1+(0fBis)* n (€ G). We have 1f=0{(t€G), hence t*~0c° and so
T ~ ¢ by the previous Lemma. Thus, Spt = Sp(¢° ® 15) = Sp o* (sec 16.16.(1)).

16.9. Lemma. Let G be a closed subgroup of the locally compact abelian group G’
and M4 a W*-algebra. Every s-continuous unitary representation u:G — U(H) can
be extended to an s-continuous unitary representation u': G' — U(H).

Proof. Without loss of generality, we may assume that the Wh*.algebra 4 is
generated by u(G). Then 4 is abelian and can be written as a direct sum of countably
decomposable W*-algebras ([L], 7.2), so we can also assume that .4 is countably
decomposable. Then ([L}, 10.15) we can realize 4 as a von Neumann algebra /4 <
< 9() with a cyclic and separating vector € . As we have seen in Section 14.10,

there exists a unique +-homomorphism 1:,:%((:') - ./ such that

0) )= (eLUG)
and there exists a unique positive measure y € .4(G) such that
@ (o)D)= Sm) ) (@ eE).

‘6’0(&) is a w-dense C*-subalgebra of the W*-algebra .‘2’“’(&, n, 1:,(%’,(&)) is a w-dense
C*-subalgebra of the W*-algebra .4 and, using (2), it is easy to check that the ¢-ho-
momorphism =, is nongal, i.e. w-continuous. The refore 7, can be extended to a
s-isomorphism 7,:£*(G, p) ~ 4. Using (1) and approximate units in £Y(G), it
is casy to check that

(n-‘(“(» = (’v 7) (teG, ve &).
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Thus, we can assume that .# = £*(G, 1) and u,(y) = {t, ¥) (t € G, y € G). Further-
more, by decomposing .# into a direct sum, we may assume that the measure u
has compact support (see, e.g. [71], Prop. 41, § 15).

Let p: G' = G be the dual homomorphism of the inclusion G — G’. There

exists a compact set K’ < G’ such that P(K’) = supp u. Let u’ be an extreme point
of the weakly compact convex set of all positive measures v’ on K’ such that p(v') =p.
Then ([161]) the mapping .

B: Ml = LG, y)3¢ > ope LG, 1)

is a x-isomorphism. For ¢’ € G’ we define v} € 2“(6’, w)by v (y)={t', ¥") (y'eGA’),
and u,, = ¢ 1(v;.). .Then u': G' - U(4) is an s-continuous unitary representation
and for £ € G, y' € G’ we have (2())(¥') = v (¥) = <1, ¥') = u(p(¥")) = (DUY)Y),
hence u; = u,.

16.10. Proposition. Let 6: G — Aut (/) be a continuous action of G on the Jactor A
If Z2(M°) contains a minimal projection, then there exists a continuous action tv: G —
— Aut (M) such that © ~ ¢ and Sp © = I'(z) = I'(0).

Proof. Let e € Z(A°) be a minimal projection. Then .#°° = e.#/% is a factor,
hence (16.1.(3)) Sp o* = I'(6*) and therefore (16.4.(3)) Ker o* = I'(o%)*. Since A
is a factor, we have I'(6°) = I'(s) (16.2. (3)). Thus, for every t € ['(c)! we have
of = 1€ Int(ele). Using Proposition 17.1 it follows that for every t € I'(6)* there
exists a unique u, € U() such that u,e = eu, = e and o, = Ad(y,); since, for any
s € G, the element a,(u,) satisfies the same conditions as u,, we have u, €.#°. Also,
by the uniqueness of u, and 17.1.(2) we see that the mapping u: I' (0)L 2 teru,clU(M°)
is an s-continuous unitary representation. By Lemma 16.9 there exists an s-conti-
nuous unitary representation v: G — U(.#°) such that v, = u, for t € I'(6)*. Then
v is a unitary g-cocycle; v defines a continuous action 1: G — Aut (A), T ~ o,
by the formula 7,= Ad(v*) -0, (t € G). If t € [ (1)* = I'(6)*, then T, = Ad (v2u,) =1,
i.e. t € Ker 1. Consequently, I'(t)!= Ker 7 and hence (16.4.(3)) Spt = I (t) = I'(0).

16.11. Proof of Theorem 16.6. If 4° has a minimal projection, then its central sup-
portin#° is a minimal projection in 2(.#°). Taking into account Propositions 16.10
and 16.7, we see that, in order to prove the Theorem, we may assume that .#°
has no minimal projections and that the non-zero projection e € M° is not equivalent
to 1 in A. In this case we shall show that there exists a non-zero projection f'€.#°,
J < e, such that 1 — f'is the sum of a family of mutually orthogonal projections
in A, each equivalent to f. According to Proposition 16.8, it will follow that there
exists T ~ o with Spt= Spo/ < Spo-.

Assume first that ./ is properly infinite. Since, by assumption, e is not equi-
valent to I, we can take in this case f = e.

Assume now that ./ is finite and let u be the n.s.f. trace on .# with (1) = 1.
By assumption, for every non-zero projection p €.4° and every ¢ > O there exists
a non-zero projection g € #° with u(q) < &. Let n € IN be such that 1/n < u(e) and
let {f;} be a maximal family of mutually orthogonal non-zero projections in .#°,
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majorized by e and such that ¥} p(f)) < 1/n. Then Y, pu(f)) = 1/n. Let f= Y
] [}

[] [}
Then 0 £f€.°, f < e and p(f) = 1/n, so that there exist (1 — 1) mutually orthogonal
projections in .#, cach cquivalent to f; with sum equalto !l — f.

16.12. Proposition. Let o: G — Aut () be a continuous action of G on the factor M.

If &/r(a) is compact, then there exists a continuous action t: G ~ Aut(A) such that
t ~ ¢ and Spt1 = I'(7) = I'(0).

Proof. Since G/I'(o) is compact, its dual I'(o)! is a discrete, hence closed, sub-
group of G. Moreover, by Theorem 16.5, we have ()t = Int o, Let k: Into —
— Into/Ker ¢ be the canonical quotient mapping.

Let U be the subgroup of U(Z(.#°)) consisting of those u € U(Z(.4°)) with
the property that there exists ¢ = 1(u) € Int o such that o, = Ad(u). Foreachue U
we put j(u) = k(t(u)) € Int 6/Ker o. Then the mapping j: U — Int o/Ker o is a well
defined surjective homomorphism. Let T= {1 € C; 4| = 1} and denote by i: T-U
the injective homomorphism defined by i(2) = 4-1.4 (A€ T). Since ./ is a factor we
have a short exact sequence

0- T4 UL Inta/Kero - 0,

which is split as T is a divisible group ([118], Thm. A.7). Hence there exists a homo-
morphism /i: Int ¢/Ker ¢ — U such that jo s = the identity mapping. Then u =
= hok: I'(6)L = Int ¢ = U c U(Z(A?)) is a unitary representation of the discrete
group I'()* in Z(./#°) such that o, = Ad (u,) for all te T (¢)t. By Lemma 16.9, v can
be extended to an s-continuous unitary representation u: G ~ U(Z(.4°)). Then u
is a unitary o-cocycle and the equation 7, = Ad(u?) e o, (1 € G) defines a continuous
action T ~ o such that I'(o)* = Ker 7. It follows (16.3, 16.4.(2)) that Ker t=rI(1)*
and hence (16.4.(3)) Sp t = I'(7)= I'(0).

In general, all the sets in the family

) {Ker 1; © ~ 0}

are contained in I'(0)* (16.3,16.4.(2)). If 4 is a factor and either &/l‘ (o) is compact
or Z(M°) has a minimal projection, then, by the above Proposition and by Pro-
position 16.10, family (1) has a greatest element, equal to I'(6)* (16.4.(3)).

16.13. We now give two applications of Theorem 16.5 to s-automorphisms of W*-
algebras.

Let .« be a W*-algebra and o € Aut(.#). Then the Inapping n ~» o defines
an action o: Z — Aut (.#). As usual, we identify the dual Z of Z with T in sucha
way that(n, i) = 1* (ne Z,AeT). By Proposition 14.6, the spectrum of
¢ € Aut (M)in B(H) is equal to the spectrum Sp oc T of the action o: Z— Aut(H).
) If 4 is a factor, then Theorem 16.5 can be applied to the action o since T=Z
is compact.
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Proposition 1. Let A be a faétor and o€ Aut(#). If A(Sp6) # Spo for every
2eT, A # 1, then o € Int(A).

Proof. By assumption and Proposition 16.1 it follows that I'(¢) = {1}, hence
I'(0)t = Z 5 1. By Theorem 16.5 we conclude that ¢ € Int (A).

Proposition 2. Let 4 be a factor and o € Aut(M). If Sp o # T, then there exists
neZ, n #0, such that c” € Int(A).

Proof. Since Sp 6 # T we have I'(6) # T and hence I'(6)! #{0}. If n € I'(0)*,
n # 0, then o” € Int(.#) by Theorem 16.5.

The requirement that # be a factor comes from Theorem 16.5, but Proposition2
is valid for any W*-algebra, as shown by Borchers ([16]) with rather similar methods.

16.14. We now give an example of two continuous actions o: G — Aut(#), t: G -
= Aut(A) such that 7,0;' € Int(M) for every t € G but o and 1 are not outer conjugate,

Let #= ¢(Z), M = B(H), G=7 X Z and o: G5t +> 14 Aut(M) be
the trivial action. There exists A € T such that the set {A"; n € Z} is dense in T. We
define the unitary operators u, ve Z(#) by

©8) (7)) = &(n — 1), (v€) (n) = A7(n) CelX(Z), neZ),

and for t = (p, q) € G we define 7, = Ad (u”9). Since vu = Auv, it follows that
T: Gotr>1,€ Aut(#) is an action.

By construction, we have 7,6, € Int(#) for all t € G.

On the other hand, it is clear that Ker t = {0}. Thus, if we can show that
A*= @, it will follow from 16.1.(1) that I'(r) = Sp 1, so that (16.4.3)) I'(v)+ =
= Ker t = {0} and I'(z) = T, while I'(c) = {0}, so that (16.3) the actions ¢ and t
cannot be outer conjugate.

Let us show that /% = C. Since v is the multiplication operator by the cha-
racter 2 € £*(Z) and since the set {i"; n € ZZ} is dense in T, the commutant of vis
just the von Neumann algebra /*(Z)c #(o#). Since the only translation invariant
functions are the constants, the commutant {u, v}’ = 2(#) = 4 reduces to scalar
operators, i.e. #* = C,

16.15. Let 4 be a W*-algebra and o, © € Aut(#). Consider also the corresponding
actions g: ZZ 3 n v t* € Aut(M), t: Z 3n > 1" € Aut(A). Then

n T ~ 0 <« 1 = o (mod Int(4)).
Indeed, if there exists # € U(.#) such that t = Ad(u) o g, then the equation
73] =1 and u, = uo(w) ... "), v, =0 u*)...c™u*), (n > 1)

defines a unitary o-cocycle with t* = Ad(v") - 6*(n € Z), and u, = u. Conversely,
any unitary o-cocycle is defined as in (2) by a unitary element of .#.




GROUPS OF AUTOMORPHISMS 231

16.16. Let /#, F be W*-algebras, a: G — Aut(4) a continuous action of G on .#
and 1: G —» Aut (#) the trivial action of G on #. Since for every f€ £*(G) we have

(c®1), =0, @1, it follows (14.5) that
Q) Sp(c®1) = Spo.

Also, using Corollary 9.9, we obtain Z(M D F)Y) = 2(M° ] F) = Z(M)®
® Z(%). By statement 16.1. (2) it follows that if & is a factor then

)] I'(c ®1) = (o).

16.17. The next group of results is concerned with periodic automorphisms, that
is with actions of finite cyclic groups.

Let .4 be a W*-algebra. A s-automorphism o € Aut(#) is called minimal
periodic if there exists ne Z, n > 2, such that

) o"=1andI'c) > e C;1*=1};

the number’ n is called the minimal period of o.
In this case, for every non-zero projection e €.4° we have

6)) Spot=r(e)={AeC; =1} ={Ln....7""}

where y = exp (2ni/n).

Indeed, if 2 € Sp o, then, by Proposition 14.5, there exists a net {x} =4,
[Ix,]l = 1, such that [|o*(x;) — A*x,l|~ 0 for all ke Z; in particular, for k = n
we have |l — A% = [Ix; — A%x,]| = 0,i.e. 1" = 1. Therefore Spo ={l e Cin=1)c
< I'(6) « Sp o, proving (2) for e = 1. For an arbitrary projection ¢ €.4°, the s-au-
tomorphism ¢* also satisfies (1) since (16.1.(4)) I'(e*) > I'(6); hence (2) is valid in
general,

From (2) and Proposition 16.4 it follows that

Q) Z(eM’) = e Z(H)*  (ec Proj(H°)).
In particular, for central supports we have
“) zae(e) = z.4(e) = 2(e) (e € Proj(A?)).

Let x € .4 and write

©) (k) = -": 'f;:-,-*lal(x) k=01,...,n—1).
J=
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Then || X(k)|| < ||x]l, X(k)* = $*n— k) k=0,,...,n—1), and

© x= "f;' 2(k) and $(k)ed (0;{y}) (=0, 1, ..., n—1).

J=0

Proposition. Let o € Aut () be a minimal periodic *-automorphism on the properly
infinite W*-algebra #{. Then the centralizer #° is also properly infinite.

Proof. For every non-zero projection p € Z(M°) = Z(#)°, 6? is also a minimal
periodic *-automorphism on the properly infinite W*-algebra .#p. Hence it is suffi-
cient just to prove that .#° is infinite.

By assumption, there exists n € ZZ, n > 2, such that (2) holds.

Let e, fe° be non-zero projections such that z(e) z(f) # 0. Then ([L], 4.5)
there exists x € .# with exf#0. By (6) there exist k € {0,1, ..., n — 1} and x, €4 (c;
iy"}) such that ex,f# 0. Let r=r(ex,f) <f and je{0,,..., n—1} with

+J =1 (mod n). Since 0 +# r € Proj(#°), there exists x; €4 (c; {'}) such that
0 # x;rx;r. Then y = ex,fx; €4 (c;{y}) and eyf = y # 0. If y = v|y| is the polar
decomposition of y, then ve.#(o;{y}) is a non-zero partial isometry such that
v*v < f, vv* <e.
Now let # be a maximal partial isometry such that

u e (o; {y}).

If z(1 — uu*) z(1 — u*u) # 0, the preceding argument shows that there exists a
non-zero partial isometry v e#(c;{y}) with v*v <1 — u*u, vv* <1 — uy* and
w=u-+ vesM(o;{y}) is a partial isometry, contradicting the maximality of u.
Consequently, z(1 — uu*) z(1 — u*u) = 0, and there exists a non-zero central pro-
jection p such that either u*up = p or uu*p = p. Replacing (#, o) by (Ap, a’) we
may assume that

either u*u =1 or uu* = 1.

If u*u = 1 but uu* # 1, then u" is a non unitary isometry in #(c; {y"}) = A°,
hence .#° is infinite. If uu* = 1 but u*u % 1, then (4*)" is a non unitary isometry in
A°, and #° is again infinite.

Finally, consider the case u*u = uu® = 1 and assume, to the contrary, that .#°
is finite. Then ([L], 7.23) the *-operation is s-continuous on the unit ball of .#°.
We shall show that the same property is valid for . ; it will follow that ./ is finite
(L], 7.23), a contradiction. :

So, consider xe.#, ||xll <1, and a net {x;},e; =4, |Ix;}| <1, such that

X T;_fx' For each k€ {0,1, ..., n — 1}, the elements X(k)u %, X,(k)u~* belong to the
closed unit ball of .#°, and :'E,(k)u"‘é;» X(k)uw* since ¢ is s-continuous. By our
last assumption ° is finite, so :?,(k)u"‘)'%,»(:? (k)u™)*, that is u* 5 (n — &)
= w3*n — k) and hence £P(n — k) 3 8@ — k). It follows that
xr Te'T x*,
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Corollary. Let o € Aut(.4) be a minimal s-autonorphism of the countably decompo-
sable W*-algebra M with minimal periodn >2. Let e, f€ Proj(#°), ve U(H) and

A€ Spa. Then

) e ~ fin M <> there exists w € M(a; {A)) with w*w = e, ww* =}
8) va(v) ...c" 1 (v) = 1 <> there exists u € U(A) with v = u*o(u).
In particular,

) e~findMl e ~fin M

(10) there exists u e U(#) with u* =1 and o(u) = u;

(11) there exists a non-zero projection p € M with a(p)p = 0.

Proof. We first prove (9). In view of (3) we can consider separately the cases ¢
finite and e properly infinite in /.

If e isfinite, then f and e v farc also finite, so that we may may assumc that .« is
finite. Let f: M4 — 2(A) be the canonical central trace on . Using (3) it is casy
to check that | .#%: .47 — 2(#°) is the canonical central trace on.#°. Since e ~f
in M, we have e = f4, hence ¢ ~ [ in J° also ((L], 7.11, 7.12).

If e is properly infinite in ., then so is f and, by the previous Proposition, e
and f are also properly infinite in #°. Since e ~ fin 4, we have z(e) = Z( f). There-
fore ({L), 4.13) e ~ fin.#°, since M is assumed countably decomposable.

We now prove (8). If v= u*o(u) with ue U(A), then ve(v). .. 0" t) =
=u*o(u)o(u*)o?(u) ... 6" (u)*a"(u) = u*a"(u) = u*u = 1. Converscly, assume that

w0() ...o™1 (5) = 1. Let @ = Mat() = 4 ® Mat@), V = ((') °) cU@)
v
and € = Ad(V) * (¢ ® 1) € Aut(®). Since 6" = 1and vo(0) ... 6" 1(v) = 1, we have

&" = 1. Also, using the results of Sections 16.3, 16.15, 16.16, we get r) = I‘(a@ 1)
= I'(0) = {we C; 0" = 1)}. Thus, S is a minimal periodic s-automorphism. On

the other hand, the projections (:) 3) and (g (: belong to #2 and are cqui-
valent in 2 so that, by (9), they are also equivalent in 2% A partial isometry imple-
menting this equivalence is nccessarily of the form (g g) with u € U(.#); the fact

0
that (0 ;) is G-invariant means that u = o(u)v®,i.c. v = u*o(u).

In particular, for v=2-14 with 2% =1 there exists u, € U(/) such that
o(uy) = Au,. Then u} € #°, and therc exists uo € U(.#°) a Borel function of 1} such
that ug*=u7. Since 1] commutes with u; and u, is a Borel function of uf, it follows
that u, commutes with u,. Then u = ueu, € U(A), o(u) = Juandu* = 1, proving (10)
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It is now easy to prove (7). If e ~ fin.#, then, by (9), there exists x €.#° with
x*x = e and xx* = f. Since ¢°is also minimal periodic with minimal period n
using (10) we obtain u € # with u*u = uu* = e and o) = Au. Thenw = xue.l’
o(w) = Aw and w*w = e, ww* = f,
Finally, we prove (11). Let y = exp (2zi/n). By (10) there exists u € U(#) with
u" =1 and o(u) = yu. Since u* = |, the spectral decomposition of u is of the form
n—1 n—1
u =Y, v*p, with p,, . .., p, ; mutually orthogonal projections in .4 and Y, p=1.
Keo k=0

n—-1 n—1

Then 3, y'o(p) = o(u) = yu =Y ¥**1p,. Thus, if p, #0, o(p) =p,, and
k=0 k=0

hence a(p)p, = 0.

16.18. Notes. The results in this Section are due to Connes {361, [41], [42].

For our exposition we have used [34), [36], and [41]. For the proofs of Proposition 16.17
and Corollary 17.24 (which are not explicit in the literature) the author has benefited from several
useful discussions with Apostol and Digernes.

We record the following related references: [121], [139], [175], [(179]), [180], [184], [186]).

§17. Outer automorphisms

In this Section we derive a canonical decomposition of a #-automorphism into an
inner part and a properly outer part. We give an important characterization of pro-
perly outer s-automorphisms and some applications.

17.1. Proposition. Let 4 be a W*-algebra, ¢ € Aut(#) and let e € M° be a projection
with central support p = z 4(e). If there exists u € Ule#te) such that 6*=Ad(u), then
there exists a unique v € U(AMp) such that ¢? = Ad(v) and ve = u = ev.

If ae Mp, ae = u = ea and ax = a(x)a Jor all x e Mp, then a = p.

Proof. Since e € #°, we also have 2 4(€) € 7. Thus, without loss of generality,
we may assume that p = z ,(¢) = 1.

Let # < 2(5¢) be realized as a von Neumann algebra. We recall ([L), 3.9)
that z.4(e)o =.#eXk. For x,, ..., x, €4 and &1 ooy E, €0F we have

I ;‘] o(xuisl® = Y, (u*olexpxe)ul; | &)
i
= Z, (expPxiel | &) = "Zk xSl
1,
Since z.(e) = 1, it follows that there exists a unique unitary operator v € #(X¥)

such that
) vxef = a(x)ue (xed, Eeor).
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It is easy to check that v e U(A') =4, and v| e’ = u. For every x, y e and
e we have vxyel = o(xy)ue§ = o(x)o(y)ueé = a(x)vyeé, hence vx = a(x)r,
i.e. o = Ad(v).

If ae#, ae = u = ea and ax = o(x)a for all x €./, then v*ae 2(.#) and
v*ae = e; hence v*a=1 and a=v.

With the same assumptions as in the Proposition, let {0,},e; < Aut(-A) and
{u}1es = U(ete) be two nets with of = Ad(u)), (i€ l). For each i € I let v, € U(4p)
be the unique element such that ¢ = Ad(v,) and vie = u; = ev;. Then:

) 0,(x) = o(x) for all x €./ and u, Susmp oo,

Indeed, arguing as above we may assume that p =1 and /4 < 3(xX). For
x e and & n e we have, by (1),

(vixeE | ) = (e i(x)uel | m) = (o(x)ue | n) = (vxel | 1),
hence v, = v.

17.2. Let .4 be a W*-algebra and o € Aut(#). Let {p.}1er < Z(H) be a maximal
family of mutually orthogonal projections with the property a’teln(Hp) (iel),
and put p(0) = Y, p; € Z(A). Then it is clear that o?® € Int (#p(0)) and from Pro-

1€7
position 17.1 it follows that p(c) is the greatest projection e e.#° such that
o* € Int(efe).

We call p(o) the inner part of ¢. If p(c) =0, then the s-automorphism o is
called properly outer.

Itisclear that p(a!—#®) = 0. We call 1 — p(0) the properly outer part of a.
Thus:

Corollary. Let ./ be a W*-algebra and o € Aut(4). There exist two central projec-
tions p, q € Z(M) with p + q = 1, such that o” is inner and o9 is properly outer. p
and q are uniquely determined by these conditions.

Since p(o) is a central projection, it is easy to se¢ that

M P(Ad() < 6) = p(6) = p(o » Ad(w)) (o € Aut(M), ue U(A)).
It follows that

1) if lheré exists 0 # e € Proj(#) and u € U(H) such that
o(x) = uxu* for all xceHe, then p(c) > z.a(e) # 0
Indeed, by assumption it follows that (Ad(u®)e 6) (x) = x for all x ee.#e, hence
p(6) = p(Ad(u®) <o) > c.
17.3. Let .4 be a W*-algebra and G < Aut(/) a subgroup. Let

(Gl = {o € Aut (A): V/ pig™0)=1}.
g€G
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Let o €[G] and denote by &(5,G) the set of all families of the form
{ps u, &i}ier such that

) {p; i € I} are mutually orthogonal non-zero projections in Z(# );
() u€ M, ufu;=uut = p;
) 8i€G, (8i7'0) (p) = p, and (g7 %6) (x) = upxu¥ for all x e.Mp,.

The set §(o, G) is inductively ordered by inclusion and hence there exists a maximal

element {p,, u;, g,}1e1 € §(o, G). Since o € [G), it follows that Yri=1 Forxeux
i€l
we have

@) x = Z xp; and o(x) = 8 (upxul).
i€l ierl

Thus, the maximal element {pi» u, 8}1e1 of F(6,G) determines completely the
*-automorphism ¢ € [G].

It is now easy to check that [G] is a subgroup of Aut(.#), G < [G] and
[[G]] = [G). The group [G] is called /e Jull group associated with G.

17.4. Proposition. Let 4 be a W*-algebra and o € Aut(#). Then
) aedl, ax = o(x)a for all x e M = a = ap(o).
In particular, o is properly outer if and only if

) acM, ax =a(x)a for all xe Ml =qa = 0,
and o is outer, i.e. o ¢ Int(A), if and only if

A3) aedl,ax = a(x)afor all x e M = z2(a) # 1.

Proof. Let ae.# be such that ax — o(x)a for all xed. If xed is
unitary, then x*a* = a*s(x)*, a*a = a*s(x)*o(x)a = x*a*ax, aa* = axx*a* —
= d(x)aa*o(x)*, hence a*ac 2 (), aa* € Z(M), r(a) = s(a*a) € 2(4), 1(a) =
= s(aa*) € Z(A). In particular, |a| € 2 () and r(a) = (@) = z(a) = peZ(M).
Also, pa = ap = a(p)a, hence (p — a(p)lp =0 and o(p) = p, i.e. pe Z(H)".

Let @ = u | a] be the polar decomposition of a. Then u*y = uu* = p and for
xe.lp we have wuxlal = ulajx = ax = o(x)a = a(x) u'al, hence ux = uxp =
= o(x)up = o(x)pu = a(xp)u = o(x)u, that is ¢? = Ad(u). Consequently, p < p(o)
and a = ap = ap(o).

If o is properly outer, i.c. p(o) = 0, the (2) follows from (1). Conversely, if
P=p(c) #0 and ve.#, utu = uu* =p, 0% = Ad(u), it follows from (2) that
u =0, a contradiction.
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If ¢ ¢ Int(A), then p(o) # 1 and (3) follows from (1). Conversely, if o € Int(./)
and u € U(A), o = Ad(u), it follows from (3)that 1 =2z(u) # 1, a contradiction.

The main assertion (1) is obviously equivalent to
) ple)= V{z(a) aed, ax = o(x)a for all xeM}.

An clement g €. such that ax = a(x)a for all x €.« will be called a o-de-

pendent element.
The above proof shows that if a €A is o-dependent and a = ula| is its polar

decomposition, then

(5) la] = |a*| € Z(#)°, 1(a) = r(a) = 2(a) € Z(A)’,

6) w*u = uu* = 2(a) and o(x) = uxu* (x €.Mz(a)).
It is easy to check that, for a €.#, we have

7 a is o-dependent <> a* is 6~*-dependent.

Note that all the above statements remain valid if we replace the conditions
of the form ax = o(x)a by xa = aa(x), the only change appearing in (6), where u
must be replaced by u*.

17.5. Let 2 be an abelian W*-algebra and ¢ € Aut(Z). In this case p(o) is the great-
est projection p €2 such that o? = 1 = the identity mapping on 2p. We shall
say that ¢ acts freely on Z if for cvery non-zero projection p € Z there exists a non-
zero projection g € 2, q < p, such that ga(g) = 0. The next Proposition shows, in
particular, that ¢ acts freely on 2 if and only if p(¢) = 0.

Proposition. Let .« be a W*-algebra and o € Aut(#). The following statements are
equivalent:

() plo|Z(a))=0;

(ii) o acts freely on Z(M);

(iii) ae.# and az = o(2)a for all z eZ(H)=>a=0.
In particular, if ¢ acts freely on Z (M), then o is properly outer.

Prodf. (i) = (ii). Let p € Z(.#) be a non-zero projection. We first show that
there exists a projection r € Z'(#4) with o(r) # r. Otherwise, for every projection
2€Z(M) we have pz = o(pz) = o(p)a(z) = po(z) = o(z)p and the identity pz =
== a(z)p holds for any z € Z(.#); this, by (i) and 17.4.(2), implics that p=0, a
contradiction. Thus, there exists a projection r € Z(.4) with r < p and o(r) # 1.
Ifg=r—ro(r) £0, then we have 0 £#g<r<p and gqo(g) = 0. If r = ro(r),
then r < o(r), 67}(r) < r, hence ¢’ =r — o7 }(r) #0, ¢ <r < p and g'o(g) =0.
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(ii) = (iii). Let a €. be such that az — a(z)a for all z e Z (), and suppose
that p = z(a) € 2(A). If a # 0, then, by (ii), there exists a non-zero projection
g€ Z(A#), g < p, with go(q) = 0; it follows that ag = o(q)a =0, hence 0 # g =
= gp = 0, a contradiction. Thus, a = 0.

(iif) = (i). Obvious.

17.6. Proposition. Let #, 4" be W*-algebras, o € Aut(M), © € Aut(A"). Then

) P ®7) = p(o) ® p(x).

In particular,

2) c®tis properly outer <> either ¢ or t is properly outer.
3) ¢ ® telnt(M @ &)< oelnt(H) and T € Int(¥).

Proof. It is clear that if c=Ad(u) and t =Ad (v) with u € U(#) and v e u(y),
then 0 ® 7 = Ad( ® v) with ¥ @ ve U(# @ 4°). Hence p(6 @ 1) > p(0)Qp(2).

Conversely, let a €./ ® 4" be such that az = (¢ @1)(z)a for allzel @ N.
Lety € 4", and x €.#. We have (9.8)

Ex(a)x = E%(a(x ® 1)) = E%((o(x) ® 1)a) = o(x)E%(a).

Using Proposition 17.4. (1), we infer that
0 = E%(a) — EX(a)p(0) = E%(a((l — p(0)) ® 1)).

Since s € 4", was arbitrary, it follows (9.8.(3)) that a = a( p(0) ® 1). Similarly, we
get a = a(l ® p(x)). Hence a = a(p(c) ® p(r)). Using 17.4.(4), we infer that
pe®1) < p(0) ® p(x). We have thus proved (1).

Equations (2) and (3) follow immediately from (1).

17.7. Leto: G — Aut(.#) be an action of the discrete group G on the W*-algebra /.
We shall say that the action o is properly outer if for every t€ G, t # the neutral
clement of G, the »-automorphism o, € Aut(4) is properly outer. We recall that
the action is called ergodic if #° = C-.1_,.

Every »-automorphism ¢ € Aut() defines an actiono: Z osn > o € Aur(M).
Clearly, the action o is ergodic if and only if the s-automorphism ¢ is ergodic.
We shall say that the s-automorphism is aperiodic if the action o is properly outer,
ie. if p(6®) =0 for all ne Z,n # 0.

Proposition. Let .# be a W*-algebra without minimal projections and o € Aut(M).
If ¢ is ergodic, then ¢ is aperiodic.
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Proof. The set of all states {p €.l y; ¢ >0, ¢(1)=1} on .« is a o(M*,.H)-
compact convex subset of .#*, invariant under the transformations @ —» @ * o*,
(neZ). By the Markov-Kakutani fixed point theorem ([L}], A.1) it follows that there
exists a state ¢ on . such that ¢ - = ¢.

Letne Z, n > 0, be such that p = p(6™) # 0. There exists u € .4, u*u = uu® =
=p such that ¢"(px) = upxu* (xe.#). Then v=u+ (I —p)eU(H) and
o"(px) = vpxv*(x €#). Let of be a maximal abelian »-subalgebra of .#
containing v. For every a € &f we have ¢"(pa) = pa.

It is easy to check that every minimal projection of & is also a minimal pro-
jection of 4 so that, by assumption, &/ has no minimal projections. Thus there
exists a2 non-zero projection g € &/, g < p, such that ¢(q) < 1/n. Since 6"(g) = g,
we have a = g + a(g) + . . . + 0™1(q) € A4°. Since o is ergodic, there exists 1€
witha = 1.1 4. We have a > ghence A > 1. On the other hand, 1 = ¢(a) = ¢(q) +
+ @(0(9)) + ...+ @(6"*(q) < n/n=1, a contradiction,

Hence p(¢") =0 for all ne Z, n £ 0.

17.8. Let .M be a W*-algebra and G Aut(4) an ergodic action of the discrete
group G on M. Then

m o € Aut(.H), ag = go for all g€ G = either p(6) = 0 or p(c) = 1

since it follows from the assumption that p(o) is G-invariant,

Assume moreover that G is commutative and let 1 € G be the neutral element
of G. Then from (1) it follows that

3] g Int(M) for all g G, g #1=>p(g) =0 for all geG, g # 1.
Also,

4  o€[G), og = go for all g G = there exists g€ G with g'o € Ini(M).
Indeed, we have (g'6) h = h(g™'o) for all g, e G so, by (I), cither p(g7lo) =0

for all ge G, or p(g~1o) = 1 for some g € G. Since o €[G], the desired conclusion
follows.

Finally, if the W#*-algebra # is commutative, it follows from (3) that

“) o6€[G), og =go for all g€ G >0 €QG,

i.e. Gis “maximal commutative” in [G].

17.9. The next Theorem is a remarkable non-commutative extension of the equi-~
valence (i) <= (ii) of Proposition 17.5.

Theorem. (A. Connes). Let #4 be a countably decomposable W*-algebra and
0 € Aut(M). Then p(o) is the smallest ceniral projection p in M with the following
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_property:
1 for every non-zero projection ec M, e <1 — p and every ¢ >0
) there exists a non-zero projection fe #, f < e, such that ||[fe(f)|l <.

In particular, o is properly outer if and only if

Q Jor every non-zero projection e € M and every ¢ > 0 there exists a
@ non-zero projection fe M, f<e, such that ||fo(f)l <e.

Also, if o ¢ Int(A), then
Jor every € > 0 there exists a non-zero projection fe€f such

A that |ifo(f)li <e.

The proof is contained in Sections 17.10—17.16, which are also of independent
interest. v

17.10. In this Section we show that if a@ central projection p € Z(A#) satisfies condi-
tion 17.9.(1), then p > p(o).

If p 2 p(o), then 0 # g = p(6) —p(6)p <1 — p and there exists ue.f,
u*u = uu* = q such that o(x) = uxu* for all x e.#q. There exists A C, |A| =1
and a non-zero spectral projection e €.4#g of u such that |jue — e} < 1/4. Since
ee°, it follows that ¢¢ = Ad(ue) € Aut(esle) and |o°— 1] < 1/2. Then for
«every projection fe, f < e, we have |lo(f) — fll < 1/2. For f # 0 we get

2llfe(HIl > Ifo(f) — oSNl = W6 (f) + 1) — ((f) — /Pl

> e + =) =N > N —lle(N—fiIE>1— %. - :31_

‘that is ||fa(f)]l > 3/8, contradicting 17.9.(1).

17.11. In order to complete the proof of Theorem 17.9, we still have to show that
_p(o) satisfies condition 17.9.(1). To this end we shall first prove (17.11—17.14) that
every outer »-automorphism o € Aut(#) satisfies condition 17.9.(3).

If ¢ does not act identically on Z'(#), i.e. if p(o] 2(A)) # 1, then 17.9.3)
follows obviously from Proposition 17.5.

Therefore, we shall assume that o acts identically on 2 (). Then a standard
maximality argument shows that for each n € Z, n > 1, there exists a greatest central
projection p,(c) € Z(#) such that the following statement concerning 0 # p €
€ Proj(2(#)) and | <keZZ:

1) there exists u € M°, u*u=uu*=p, such that o*(x)= uxu* for all x € Mp

is true for p = p.(6) when k = n, but false for every p < p.(0) whenk < n.
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The projections {p,(¢)},»1 are mutually orthogonal and -

@ 3 pue) =V oo,

More precisely, we shall show that

o) ple”) < :"z, ne  @> 0.
-1

Indeed, let p = p(c™) and let v €.#, v*v = vv* = p, such that o*(x) = vxv*,
(xe.4p). For xelp we have a(v)xo(v)* = a(vo (x)v*) = a(c*(c”}(x))) =
= g"(x) = vxv®*, hence v*a(v) = z€ 2(Mp). Since v=a"(v) = 2", it follows
that z* = p. Therefore o(t") = o(v)" = z"v" == v" and " (x) = (v*) x(v")* for all
x € #p. This proves (3) and hence also (2).

Note that o € Int(#) <> p,(0) = 1. So, in order to prove that o ¢ Int(H)=>
= 17.9.(3), we distinguish two cases: either

(a) there existsne Z, r > 2, such that p(0) = 1

or p(o) = 0 for all n > 1, that is, by (3),

(b) o € Aut( M) is aperiodic.

17.12. Ip each of the cases 17.11.(a) and 17.11.(b) we now compute the invariant

Fo)cZ =T ={reC; |y} =1} of the action ¢: Z 3n +»y" € Aut(4). Il 4

is a factor, it is easy to see, using Theorem 16.5, that

) in case 17.11.(a) we have I'(0) = nZ)* = {ye C; y" =1},

() in case 17.11.(b) we have I'(c) = {0}* = {ye ©; [yl = 1}.
Statements (1) and (2) are true in gencral, without the assumption that .4

is a factor. However, in proving the general case we shall use another characte-

rization of invariant I'(6) and some elementary results concerning crossed products

by discrete groups, which are given in Sections 21.1 and 22.6. .
ByAThcorcm 21.1, I'(0) is the kernel of the restriction of the dual action o

of T=2Z to the centre 2(R(4, o)) of the crossed product #(-#, o). An arbitrary
clement X e R(A, o) is of the form (22.1)

3 X =“§ 7,(a(k)) (1 ® MK))
with a(k) € 4 (k € Z), and for every y€ T we have (19.3)
) o,(X) = é{"‘ﬂ. a(k)) (1 ® MKk)).

16707
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By Theorem 22.6 we have X € Z(R(A, 0)) if and only if for every k € Z.
©) a(k)e#° and a(k) o*(x) = xa(k) for xe M.

In case 17.11.(b) we have p(¢¥) = 0 for all k 3 0 so, using (5) and 17.4.(2),
it follows that a(k) = 0 for all k # 0 and a(0) € Z(A)°. Thus, in this case we have
Z(R(AH, 0)) = n,(Z(H)°) and so the restriction of the dual action to Z(%(A, o))

is just the trivial action, that is its kernel is the whole dual group ZZ =TI ; hence
Ire)={yeC; py|=1}.

Consider now case 17.11.(a). For each k€ Z, a(k)* € # is a o*-dependent
element, so that (17.4.(5), 17.4.(6)) the partial isometry appearing in the polar decom-
position of a(k)* is o-invariant and implements the restriction of ¢* to the (central)
support of a(k)*. It follows from condition 17.11.(a) that

a(k) #£ 0 =k enZ.

From 17.11.(a) it also follows that there exists a unitary element u €.#° such that
6" = Ad(u). Then Z(%#(A, o)) consists of all elements of the form

X= 1S
mgzﬂa(zm" ) (1 @ A(nm))
with z,, € 2(#) (me Z), and for every y € T we have
3,(X) = mgzv’""na(zmu_"')(l ® A(nm)).

Consequently, ¢,(X) =X for Xe Z(®(H,0)) if and only if y"=1, that is
@ ={yeC; y»=1}. :

17.13. We show that 17.9.(3) holds true in case 17.11.(b). In this case, by 16.1.(1)
and 17.12.(2), we have Spo = I'(6) = {ye C; |y| = 1}, so that it is sufficient to
prove the following

Lemma. Let o € Aut(#) be such that — 1€ Spo. Then, for every € >0 there
exists a-non-zero projection fed such that ||fo(f)| < e.

Proof. Since — 1 € Sp o, there exists, by Proposition 14.5, xe 4, ||x|| =1,
such that [lo(x) + x|l < ¢/4 = 6. Write x = b + ic with b=b*e M, c = c* e .M.
Then ||b]l + Jicll > 1, flo(®) + bll < 6, |lo(c) + cll < 8. Therefore we may assume
that {|bll > 1/2 and then, putting a = - /||b}l, we have

a=a*ed, |lal| =1, 1 € Sp(a), llo(a) + all < 24.

Since 1 € Sp(a), we have f= y;;_g1)(a) # 0 and af > (1 — 5)/.
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Consider .# « 2()X) realized as a standard von Neumann algebra; then
([L}, 10.15) there exists a unitary operator v € () such that ¢ = Ad(v)|.#. For
every £ efof, lI¢ll = 1, we have

lag -- Eli* = li(af — ) ¢t = ol(af — )?) = ola’f — 2af + f)
S olaf = 2af +f) = off — of) S0 f — (1 = 8)f) = 4.
Then o(f)# = ofc*# = ofof and, for n = v € o(f)#, we have
llo(a) n — nll = |jeav*n — nll = llva — vl = lai — &l < 6,
llan + nil = |i(an + a(a) ) + (1 — o(a) )|l
< lla + @l Inll + lin — o(@) nll < 36.
Conscquently, for & € /o, ||E]l = 1, and n € a(f) X, {inll = 1, we get
(€l ) — (@Gl ml <6, I(Elan) + EIml < 39,

and hence |(Z| )] < 49 = ¢. Therefore ||fo(NIl < e.

17.14. Let us show that statement 17.9.(3) holds also in case 17.11.(a). In this
case we have (17.11, 17.12)

(o) = {ye€; y" =1} and ¢" = Ad(u) with ue U(/°).

Since u € U(.#°), there exists v € U(#) such that v* = u. Then t = Ad(v*) o o€
€ Aut(.#) and, since v €.#° and v = u, we have 1" = Ad(v*)" o 0" = 1. Note that
the corresponding actions ¢ and t of Z on .4 arc outer conjugate (16.15) and
hence, by Proposition 16.3, I'(a) = I'(7).

Let ¢ > 0. There exist e @, 4] = I, and a non-zcro spectral projection
ec.®° n .4*° of v such that |jve — Ze|| < ¢/2. Then

mn flor —zll S e

On the other hand, it is clear that (1) =t and (16.1.(4)) I'(x) > I'(z) =
= [(6) = {ye €; y* = 1}, so that t* is minimal periodic. By Corollary 16.17.(11)
there exists a non-zero projection fe.#, f < e, such that fr(f) = 0.

Finally, using (1), we obtain j|fo(f)ll < e.

17.15. Before completing the proof of Theorem 17.9 we shall review some elemen-
tary facts about the “‘relative position” of two projections.
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Let ¥ be a Hilbert space, e and ftwo projections in #(¢), # = R#{e,f}
< 2(5) the von Neumann algebra generated by e, f, and let

se,f)=le—fledk, cle,f)=levf—e—fled.
It is clear that

4] e and f are abelian projections in M#

since efle = A{e, efe} and flf = R{f, fef }.

Also,
p=enf+Q—Aften(l—f+U—e Al —f)is the
2 ~ greatest projection q € Z (M) such that #q is abelian and 4(1 — p)
o is of type I,

Indeed, p is clearly a projection, p is central since it commutes with e and f, and
Ap = R{ep, fp} is abelian as epfp = e A f= fpep. If g €# is a central projection
and q is abelian, then eq commutes with fg and it follows that pg = g, i.e. ¢ < p.
Ifp=0,thenevf=(0—¢e vf=ev({(—-f=(1—ev(l —f)=1 and,
using the parallelogram law ([L], 4.4), we deduce thate = 1 — (1—e)=( — ) v f—
—(l—e~f—(—-e)Af=f and l1l—e=evf—e~f—eAf=F;
hence e and 1 — e are equivalent abelian projections in ., which means that in
this case . is of type I;.

On the other hand, we have s(e, f): = e+ f—ef — fe,cle,f ) =e vf—e—
— f -+ ef + fe, hence

(€) sef)+cle.f)}=ev /[

We have ec(e, )t = efe = c(e, f)*e, hence c(e, f) commutes with e and f:

@) s(e, e Z(M), c(e,f)e Z(M).
Since e v fe Z(4#), we have

&) za(e) vV za(f)=e v f.
Also,

© sx(c(e,f)) < z.ale) z.a(f).

Indeed, let g € Z( /) be a projection such that ge=e. Thenevf — faqle vf—f)~
~qgle—enf)=e—eAf~evf—f, hence qlevf—f)=ev f—f
since by (2)  is finite, Therefore, gele,f)*=¢qle v f—f— e+ ef 4 fe) =
=e v f—f—e+ef+ fe=ce[)},s0 that g c(e, f) = c(e, f). Thus, sa(c(e, f)) <
< z 4(e) and, similarly, s.a(c(e,f)) < z.a(f).
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We now prove that

if salcle,.N) =e v fande v f— (e +[) = uc(e,f) is the polar
) decomposition, then

u=u*, ut=-e v f, ueu=f, ufu=ce.

Indeed, e vf— (e + f)is self-adjoint, hence u = u*. Also, ut = utu = s 4(c{e,)) =
=e v/ Since e v f=sulclef) =Sl vf—e—[), we have salefe)=e,
sa(fef) =1, for if geM is a projection with g < e, efeq = 0,theng<ge v/,
eq=ce, fg=0,s0that(e v f—e—f)g=0and hence g=0. We havee v f—
—ueu—ufu=ule vf—e—fu=uucle,f)u=ev f—e—f hence wueu-+
+ ufu = e + f. Finally, ueu > uecle,f)eu= (e v f—e—f)ele vf—e—[f)=
= fef, hence ueu > s.(fef) =f. Similarly, ufu > e. Thus ueu =f and ufu=e,
Note that

The first identity is obvious. Since ec(e, /)* ¢ = efe, we have |lec(e, /)| = llefll. Using
(6) and the fact that any induction by a projection with central support equal to |
is a s-isomorphism ([L], 3.14), it follows that |ic(e, /)l = [le c(e, /)Il = li¢f1.

For A > 0 we show that )

if for every non-zero projections ¢',f" €M, ec'<e, <[, we
) have j|e'fll > A and ||ef’'|| > 4, then

ce.f) > Me v /)

We first prove that c(e,f) > Az.«(e). Otherwise, using the Gelfand representation,

we find 0<p < Aand a non-zero projection g € Z(4) such that gc(e, f) < uqz.ale) #0.

Then ge # 0 and ge < e, hence ¢(ge,f) = |lgevf—ge —fl=glevf—e—f|+

+ (1 —q)|f—f]=qcle,f) < pgzale). Thus, by (8) and the assumption,

we get 4 < {lgefll = lIc(ge, NI < lngza(@)ll < p, a contradiction. Therefore, cle, /) >

>z 4(e) and, similarly, (e, /) > Az« (f), so the desired inequality follows using (5).
In connection with the first equation in (8) we note that

(10) ‘ |]e-—ﬂl<1=»e=l,,(ef)~r,(ef)=jl

Indeed, if g €.# is a projection such that g < e and gef =0, then ge = g, gf =0,

hence ||| = [|g(e — f)il< 1 and g = 0. Thus, e = | «(¢f) and, similarly, f = r «(ef).
Finally, in connection with the sccond equation in (8), we note that

an  Jfi<l=f=evf—e~fievf=et+f,f=SlI=]l

Indeed, [le A f1=[(e A f)efll <1, hencee A f=0,50 that ' = e vf—e~ f—
— eAf=f. Then, using (8), we obtain [|f — f'll=]levf—e—fl = lic(e, N)Ni=1llef1L.
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17.16. End of the proof of Theorem 11.9. To prove that p(c) satisfies condition
17.9.(1) we may assume that p(o) == 0.

Let e € 4 be a non-zero projection and suppose that
0 A= inf {|fo(f)l; f< Proj(Ar), 0 #f < &} > 0.

Choose £ > 0 with (1 +1)¢ <A and a non-zero projection fe.# such that
If/6(f)ll < A + &. For every non-zero projection f* < f we have ||f'a(f")l| > A, hence
We(f) > 4, Iif'a(f)ll > 4. From 17.15.(9), we deduce that o(f, a(f)) > Afv o(f)).
Using 17.15.(8), it follows from the choice of f that c(f, o(f)) < (A + &) (f v a(f)).

. On the other hand, let u be the partial isometry appearing in the polar decom-
position of £ v a(f) — f — o(f). Using 17.15.(7), we obtain u = u*, = f va(f),
ufu = o(f), uo(f)u = f and ||Au — ue(f, s(fPI (XS v a(N)— e(f, o())i|< ¢, that is

(93] lAdu—(f v o(f)—f—o(fPll <e.

The equation 1(x) = uo(x)u*(x€f M f) defines a  =*-automorphism
T € Aut(fAf). Since p(6)=0, we obtain using 17.2.(2), © ¢ Int(f4f). By the last state-
ment in Theorem 17.9, which has already been proved (17.11—17.14), there exists
a non-zero projection h €, It < f, such that [|ht(h)]| < e.

Then we have |hua(h)|| = \huo(h) u*|| = ||ht(h)|| < e. Using (2) we infer
that |h(f v o(f) — S — o(f)) s(M)|| < &(4 + 1). Since h < f, we have h(fvo (f)—
— f—a(f)) a(h) = — ha(h), hence [[ha(h)]| < (2 + 1) < A, contradicting (1).

We conclude that A =0, and this completes the proof of Theorem17.9.

17.17. Let A/ be a finite W*-algebra and u a faithful normal trace on . with
#(1) = 1. For xe# we consider the norms |x|l, = p(jx}) and |jx|l; = p(x*x)1/2.
It is easy to see that ||x{l; < ||xll, [|x1E < || x| [x],; (x €A).

Recall that the closed unit ball .#, of .# endowed with s-topology is a complete
metrizable space; in fact the metric {|x — y|l, defines the s-topology on.#,([236], 8.12).

A family of mutually orthogonal non-zero projections in .# wtih sum equal
to 1 will be called, briefly, a partition of unity in A.

Theorem 17.9 is the main technical instrument in proving the following
important result:

Theorem (V. Rokhlin, A. Connes). Let # be a finite W*-algbera, pu a faithful
normal trace on M with u(1) =1 and o € Aut(#) an aperiodic =-automorphism
such that p - o = p.

For each ne Z,n> 1, and ¢ > 0, there exists a partition of unity {e,,. .., e,}
in M such that

lla(e) — eslly < &, .., [|0(esy) — &,lls < &, [lo(e,) — e;lls < &

The proof is given in Sections 17.20—17.23, where we use Lemmas 17.18,
17.19. In the present Section we divide the proof into three distinct cases.
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There exists a partition of unity {p,}s»0 in Z(A) such that, if k > 1, we have
(o] Z(A) p)* =1 and (o] Z(A)pY # 1 for every central projection 0 % p < py
and every 1 < j < k; then we have (o] 2'(#) p) # 1 for every central projection
0 # p < po and every j > 1. Thus, in proving Theorem 17.17, we can consider
separately the cases p, = 1, p, = 1 with k > 2, and p, = 1, i.c.

() o acts identically on Z(H);

(IT) there exists k > 2 such that (o| Z(A))* =1, but (o| Z(H) pY %1 for
every central projection p #0 and every 1 <j <k;
(II1) o| Z(4) is aperiodic.

17.18. Lemma. Let # be a W*-algebra, let ne Z, n»1, and choose & > 0 so
that n'e < 1. If {fi...,fu} = is a family of projections with [ffill S ¢ Jor
j # k, then there exists a family {ey,. .., e,} = # of mutually orthogonal projections

such that ¥, ey = \/ fy and ey ~ fu llex — fill < nlefor 1 <k <n.
kel ket

Proof. For n = 1 the Lemma is obvious. Assume the Lemma is true for nn — 1
projections. Then there exists a family {ey,..., s.1} < A of mutually orthogonal

n— n—1
projections such that e= Y, &= V /i and e, ~fi, llaa—AllS(n-—1le
k=1 ket
for 1 Sk <n—1. Then [legf, —fifall S (n — Dl (l <k <n—1), hence

Il < 3 lefe —Afill+ 3 Ahl < (1= Da— Die+ (= Dle
k=1 Kul

that is, [lef.ll < n'e < 1. Using 17.15.(11) we obtain a projection e, €.4 such that
the family {e,,. .., €,_;, €,} satisfies the requirements of the Lemma.

17.19. Lemma. Let 4 < B(X¥) be a countably decomposable von Neumann algebra,
e @ and e, fe.# projections. Put € = ||e§ — fEIl.

If fe = wa is the polar decomposition of fe, i.e. a = (efe)'2, w*w = s(efe), then
(1) 110w — ) &Nl < e, [Iw — ) &Nl < 3e, [|w — )%l < 3¢, [I(w — )N < 4e.

If € ~ f, then there exists u€.# such that u*u = e, wu® = f and
@ i — &Il < Be, iw —f)*N < Te.

Proof. Wehavea®* =¢efe < e, a* <a<e, 50 that

l(w — fe) &l = fiwle — a) &Il < li(e — a®) &ll = [le(e —Netl <lite—fe) &l

lie — fo) &l < e =N &I+ IAS— ) &l < 26,
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hence ||(w — &) &Il < [|[(w — fe) &Il + lI(e — fe) &Il < 42 and [j(w —NEl < ll(w—~
= f&) §ll + ||(fe — f) €|l < 3e. This proves the first two inequalities in (1), The
last two inequalities in (1) then follow since ¢f = w*(waw*) is the polar decompo-
sition of ef. ,

Assume now that e ~ f and let § > 0. There exists a projection p € Z(4)
such that the projections e, = pe, f; = pf are finite while the projections e, = (I —
—Dp)e, fo= (1 — p)f are properly infinite.

©0 -]
Since e, f, are properly infinite, we can write e, = Y, €, fo = Y, & with
: k=1 k=1

e ~ ey~ fo ~ fk. Let ¢ = Y, &, fo= Zﬂ{‘withﬁsolargethat
kw1l .

=1

‘”(eo — e ¢l < 8, II(fo—fo) Ell < 6.
Clearly, e, — ey ~ ¢, ~Jfo~fo—fs. We define

el=e e, fl=1f,+f¢and et = r(fle), f2 = I(fleY).

Then elfle! < e? < e, flelf1 < f2 < f1, s0 that
&) (€' — ) £l < (i — elfed) &Il < 2]i(et — f) &)
< 2(e =N &N + liCeo — €2) &Nl + I1(fo — f3) ) < 2¢ + 48,

and hence ||(e! — €?) &I} < 2& + 43, [|(f1 — f?) £]| < 2¢ -+ 45. Also, we have e? ~ f?2,
more precisely e* = w*w, f2 = ww* where w is the partial isometry appearing
in the polar decomposition of e, Using (1) and (3) we deduce that Jw—sfHE| <
< 3+ 29), ||(w —= fH)*¢EI < 4e + 29). ,

On the other hand, we have ¢, ~ f; and ¢, > pe* ~ pf? < f;, hence ([L], E.4.9)
e, — pe* ~ fy — pf*. Also, we have e, — (I —peSe—e, fo—(1—p)fis
> fo—fo; hence e, — (1 — p) e? and f, — (I — p)f* are countably decomposable
properly infinite projections having equal central supports so that ([L], 4.13) they
are equivalent: e, — (1 —p)et ~ f, — (1 — p) St It follows that e — 2 ~f—r
and there exists v €./ with v*v = ¢ — ¢?, pp* =f—f3

Let u=w+ v. Clearly, u*u=e, uu* = f- Then ‘

Hogll = llov*odll < [[v*ofll = fi(e — €%) Il < lI(e* — ) &Il + fi(eo — &) &]l <
< 2¢ + 56,
No*¢l = N1o*o0*¢ll < Nlov*8ll = IF = /D EN < NP =D EN+ 1o — £ Ell <
< 2e + 55,
N =) EN < Nw =/ EN+ 1o — £3) Ell < 3e + 76,
Nw — NN < Uw — Y0+ [1(fy — f2) &Nl < 4e + 95,

so (2) follows on choosing & < g/9.
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17.20. Lemma. Let .# be a finite W*-algebra, o € Aut(H) an aperiodic s-auto-
morphism acting identically on Z' (M) and p a faithful normal o-invariant trace on M

with u(1) = L.
For each neZ, n > 2, and & > 0 there exists a unitary element ve M and
a family {fi,-..,fu} = of mutually orthogonal non-zero projections such that

M lo— 1l <op(fi+ ...+ /)

(2) AdD) e (N =Ffsx U=leo0sn)

where fo+1 = f1.

Proof. Let y = 6/12(n + 1), m = nr with 2m V2 < y/2 and 0 <e < l/m!
with 2mm! ¢ < y/2.

Since ¢ is aperiodic, using Theorem 17.9 we find projections py > ps 2 ...
ee. > Pm# 0in 4 such that Ipo*(p)ll < e(1 Sk < m). Let p = p,.. Since
p <Py it follows that |jpo“(p)ll <e (1 <k <m), so that le'(p) d(p)ll < ¢
foristj, 1 <i,j<m.

Let e = \’; a*(p). Using Lemma 17.18 we find a family e ru} =M

k-l

m
of mutually orthogonal projections such that e= Yy, & and e, ~ o*(p),
kel

ey — a*(p)ll < mlc < y/dm (1 < k < m). It follows that
Q) lole) — exall Sy2m  (k=1,...,m—1).

Since ¢ acts identically on 2(4), the canonical central trace h:tt - Z (M4
is g-invariant. By ([L], 7.12) it follows that 6*(p) ~ p(l < k < m), hence

(4) ex~e=~.-.~e".
Define
) f= ’g tusy (1 SjEN).
=0

Cl&l’ly. iﬁ=eandﬁ~ﬁ~°"~.’;'
1 .

So
Let f—e v a(e) = e v a™*}(p) and N =[fAf. Then e, 0(a)eN( €
<k <m), and fj, o(f)e ¥ (1 <j<n). Then p'= (ul M)u(f) is a faithfuk
normal trace on 4" with g'(f) = 1 and for xe 4" = .4 we have

© Il = p (e x)2 = p(f) PRu(x*x) = p(f) Tl

Using (3), (4) and (6) we obtain
o)) = frali <m2m<y (1 gj<n—1).
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‘On the other hand, from (4) it follows that K'(e) < 1/m, hence p'(o(e)) < 1/m
(since e, ~ o(e,)) for 1 < k < m. Thus, |le,|l; < m™2, ||o(e,,)|ls < m ™32 and, using
(5), (3) and (6), we deduce that

lo(f) — fills < (0 — 1) y/2m + 2m™12 < y,

For 1 <j < n we have o(f)) ~ J; ~ fj41 s0, by Lemma 17.19, there exists
w; €4 such that

wiwy = a(f)), ww* = f,1 and ||w; — £l < 67.
Since f — a(e) ~ f— e, there exists wy € A" such that
Wowe = f — a(e), wow¥ = f — e.
Then w=wy+ w, + ...+ w,e .4 is unitary and
® wo(fpw*=fa (A <j<gn).

Since p'(f — e) < p'(6™*}(p)) = u'(p) < 1/m, we obtain

w—fllz = ljwe — (f — )l + 121 w; — frsalle

< |Iwollz + IIf — ells + ’Zl 1w, = fi4ll2

< 2m 2 4 6ny = 6(n + 1)y = §/2.

Finally, v = w - (1 — f) €4 is unitary, satisfies condition 2)and ||lv — 1|, =
= p(lv = 1) = p(w— 1) = p(f)p'(w =1 < 2u(H)lw—fl; < 2u(f) 52 =
=L+ ...+ 1)

17.21. Proof of Theorem 17.17 in case 17.17.(I). We assume that o acts identically
on Z(#A). LetneZ,n > 1, and § = ¢/4 > O be fixed.

Let & be the set of all n + l-tuples (ey,. .., e,; u) where {ev...,e} =M
<consists of mutually orthogonal equivalent projections and u € .4 is a unitary ele-
ment such that [ju — 1|}, < du(e, + ... + ¢,) and uo(e)u* =e;,, for1 <j<n.

We define an order relation **<” on 8 writing (e, ..., e u) <(e,...
-.oseu) if and only if ¢, <¢ (1 <j<n), and [u— u'lly < ou((ey — e) +
+ ...+ (€ — e))
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The set § is then inductively ordered. Indeed, let § < & be a totally ordered
set. Since the mapping

ga(elv ey €5 u)'—’”(el—*. cee C,,)G[O,l]

is an order isomorphism of & onto a subset of [0,1], we may assume that F={(¢%,.. .,

e%; u) sy is an increasing sequence. Then, for each 1< j < n, the increasing se-

quence of projections {e}},», is s-convergent to the projection ¢; = \/ ef. Therefore,
k>

the projections {e,, ..., ¢,} are mutually orthogonal and equivalent, and & < e,
for all j and k. On the other hand, we have

fle — tppally < Op ( 2": (&+' — &) ),

=1

hence ¥ lluy — uy,4l <& < +o0o. By the remarks made at the beginning of

k31
Section 17.17, it follows that there exists a unitary operator ue.# such that
llug — ully = 0 and u, <> u. It is now easy to check that (ey, .. .,e,; u) € & is an upper
bound for &. .

By Zorn's lemma, there exists a maximal element (ey, ..., ¢,; #)in 8. Assume
that

f=1=(e,+ ... +¢) #0.

Let & = fdf, w = @u|A¥)u(f) and ¢’ = (Ad(u) o 6)|#". Then o' € Aut(N) is
aperiodic, acts identically on 2/(#") and p’ o ¢’ = y’. By Lemma 17.20, therc exists
an n + l-tuple (f}, ..., fn;v) where {f;, ..., fo} © A" is a set of mutually orthogonal
and equivalent projections and v €./ is a unitary element such that {jv — f]j <
SO(fi+ ... +£)#0 and va'(f)v* =fj,1 for 1 <j<n We now define
ej=e;+f, (1 <j<n),and v =v+ (1 —f)u. Then {e], ..., e;} =.# consists
ou mutually orthogonal and equivalent projections, u €.# is a unitary element,
f'o(ej)u'* = ¢j,, for 1 <j<n and we have

10+ =) = 1l = llo = = Dl = f1§ < S4PWCT, 1) = 3T 1
I~ all <l o+ (L =) — 11 < (33 /) =3 (% (6 — &),
o — 1, < ' — ully + fu— 1 < 6;4(; ),

hence (e}, ..., e); u’) €8 is strictly greater than (e, ..., &; 1), a contradiction.
__ Thus, if (e, ..., €,; u) is a maximal element in 8, then {e;, ..., 6} is a par-
tition of unity in #, ue U(A), lju— 1], <éand uo(eu® = e;44, (1 <7 < n).
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Therefore
”“(ej) - "j+1”§ = ”0(91) - ua(ej)u*llé
<2 |la(e) —uoleu*ly <4 jju— 1}, <46 =e.
17.22. Proof of Theorem 11.17 in case 17.17. (II). We assume that there exists k > 2
such that (g | Z(H)* =1, but (¢ | Z(A)p) 1 for any central projection p # 0
and j suchthat1 <j < k. If p € Z(#) is a maximal projection such that p,o(p), ...,

6*Y(p) are mutually orthogonal, then p+a(p)+ ... +6*(p) = 1. Thus, there
exists a partition of unity {p,, ..., p,} in Z(4) such that

; : o(P) = Pia (I <i<k)
where py,1 = p;. )

. Let neZ, n>1, and d=¢/k > 0 be fixed. The »-automorphism
o’ = o* | Mp, € Autl(Mp,) is aperiodic, acts identically on Z(.#p,) and preserves
the faithful normal trace u’ = (i | Ap,)/u(py) = ku | #p,. By Section 17.21, there
exists a partition of unity {f,, ...,f,_,} in.#p, such that (with f, = Jo)

') =fialz<d  O<s<n—1).

The family {6/(f,); 1 <i<k, 0<s<n— 1} is a partition of unity
{hy, ..., hy} in A, where

hpsi=0d'(f) (<i<kO0<s<n-—1).
For 1 < r < nk we have (with I, = &)
llo(h) — hyyr lla < k72 6 < 6.

Indeed, if r=sk+i with 0<s<n—1 and 1<i<k, then r+1=sk+
+ (i + 1), hence a(h,) = h,,,; if r = sk + k, then r4+1=(s+ 1)k + 1, hence

llo(h,) - hysally = lo(e*(f)) — o(f;4) s = “ak(fs) —Jisalls
=k 6'(f) — foaallz < k7125

Finally, the projections
g=ly+ b+ ... +ham (<j<n)

constitute a partition of unity in.# and we have (with f, n=rMn

lloe)) — ejalls < kS =& (I1<j<n).
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17.23. Proof of Theorem 11.17 in case 17.17. (III). In this case we may assume that.#
is abelian. So, in this Section we give essentially the proof of the classical Rokhlin

theorem.
Let neZ, n> 1, and & > 0. Choose r € Z, r>1, such that 1/r< ¢/16, and

write m = nr.
Let p €.# be a maximal projection such that

) p, o(p), ..., 6™ (p) are mutually orthogonal and define
2 =0 (pe*p) (A <k<m).

Then py, . . ., P, are mutually orthogonal projections and the maximal choice of p
with property (1) implies that

©)] o (p)=p1+ ... + Pmi

indeed, ifg = o7! (a‘"'“(p) - f; pk) # 0, then p + g contradicts the maxima-
k-l

lity of p.
Consider the projections
o7 (ps)
0)) 0'—_1(1’3) o7*(ps)
61 (pn) O Hpm) .- 67 H(Pm)
&) al(p) o p) ...op) P

All the projections appearing in (4) and (5) are mutually orthogonal. Indeed,
all the projections in (5) are mutually orthogonal, by (1). Moreover the projections
appearing in the same column of (4) are mutually orthogonal, by (2), and two pro-
jections appearing in different columns of (4) are orthogonal, by (3) and (1); hence
all the projections in (4) are mutually orthogonal. Finally, using (2) and (1) it fol-
lows that 67(p;) c™*(p) = O for all 1 < <jgsmO0O<k<sm—1

Let g be the sum of all the projections in (4) and (5). We claim that ¢ = 1.
To prove this it is sufficient to show that g is g-invariant since, as ¢ is aperiodic, the
assumption 1 — g # 0 would then contradict the choice of p maximal with property
(). Furthermore, to show that a™(g) = qitis sufficient to show just that 67}(q) < g,
since p is a g-invariant faithful state on 4. Looking at (4) and (5) we see that the
only projections from the sum defining 67'(q) which do not appear explicitly in
the sum defining g are o™™(p), a"(p), - - -+ 6" "(Pm)- By (3) we have ¢"(p) =
=0 (p, + ps+ ... + pm) S 0 }py) v g and from (2) it follows that a*(p,) <
<p<gqforalll <k <m Henceo'(q9) <9 and, consequently, ¢ = 1.
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We now define the projection

r—1 m s(k)
©) e=Y o™ @+ ¥ Y o=ri(p,)
§=0 k=n+1 s=0

where s(k) is the greatest s€ Z, s > 0, such that sn +1l<k-—n
Looking at (4) and (5) we see that

0] e, 67(e), ...,07""(e) are mutually orthogonal.

We have
(®) lle —6™(e) |} < ¢/4.

Indeed, if we compute 0™"(e) using (6) and compare with (6), we obtain

H(le — ™) |) < u(p + o7 (p) +k Zm o7 (p) + o=CRrIn-1(py

=41
< 2u(p) + ZLZ‘. H(p) < 4u(p) < 4[m < 4)r < /4
C=a ]

since p is g-invariant and we have (3).
We also have

+)) ” 11— ”2—;1 a7i(e)

| =0

<¢gf4.
1

n-—1

Indeed, the sum ¢ = Y o7i(e) contains all the projections in (5) and the projections

{=0
in (4) except for at most n projections from each row of (4). Since the sum of the
projections in (4) and (5) is 1, we obtain

w(l—g) < § mu(py) < np ( f‘, pk) = np(p) < nfm < ¢/4,
k=2 k=1

using (3) again, and the o-invariance of p.
From (7), (8) and (9) it follows that the projections

¢g=0"e)(l <j<n—1),and e, =e + (l _Ela-:(e))

=0
satisfy the requirements of Theorem 17.17.
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17.24. Finally, we note a useful consequence of Theorem 17.9.

Corollary. Let a: G — Aut(A4) be a properly outer action of the finite group G on
the countably decomposable infinite W*-algebra . Then the centralizer #° is
infinite.

Proof. Let ¢ > 0 be such that ¢ (card G)! (card G)® < 1.

Since every o, (e¥g € G) is properly outer, afamiliar maximality argument
based on Theorem 17.9 shows that there exists a projection pe.# such that
o (p)ow(p)ll<e for g, h € G(g#h) and V o (p) = 1. Since A is properly infinite and

€G

1 4
G s finite, it follows that some o ,(p)is properly infinite and we may therefore assume
that p is properly infinite. Thus, there exists a partial isometry v € p.#p with v*v = p
and vo* # p. Let u = Y, o, (v) €.4°. From the choice of £ > 0 it is easy to check

€G
that r(u) = 1 while l(u)gaé 1. Hence 4° is infinite.

Note that a particular case of this result (16.17) has been used (17.14) in prov-
ing Theorem 17.9.

17.25. Notes. Propositions 17.4—17.7 are due to Kallman [132], [133). The results in Section 17.8
are from [22), [23], [250]. The main results, Theorems 17.9 and 17.17, are due to Connes [42].
For our exposition we have used [23], [34], [42], and [132].
Recently, an interesting extension of Theorem 17.17 for several commuting s-automorphisms
has been obtained by Ocneanu {174). The notion of a full group was introduced in the commu-
tative case by Dye [80] and in the general case by Haga and Takeda [108) and Connes [36).



Chapter IV
Crossed products

§18. Hopf—vbn Neumann algebras

In this Section we consider a category of objects called Hopf—von Neumann alge-
bras, which in a certain sense generalize locally compact groups, and also their ac-
tions on W*-algebras. The main interest of these objects consists in their giving a
natural framework for the duality theory of locally compact groups.

18.1. We first introduce certain notation and conventions which will be used fre-
quently in what follows.

Let 5,5 be Hilbert spaces and # < BGY), ¥ <= B(X) von Neumann
algebras. There exists a unique unitary operator

~ QA N RN
such that ~ ({ ® n) =n @ £ for all £ e#, n . The mapping
Y MBNIX X =~ Xeme N BM

is then a s-isomorphism, uniquely determined, such that x®y) " =y &®x for
XEM, yeN.
by ¢ The) value ¢(x) of a linear form ¢ €.4* on a vector x € # will also be denoted
Y (X% @).

Let G be a locally compact group. The elements of the Hilbert space
H Q@LYG) = LG, #) will be identified with vector-valued functions on G. Also, the
linear operators T on £*G, o#) will usually be defined by specifying the elements
(T)(g) (& € £XG, #), g € G). The formal versions of these procedures are standard
and well known.

The identity mapping on .# will be denoted by 1 ,, or by 1,, where & indicates a
position in tensor products. The same convention will be used for the unit ele-
ment 1 .

18.2. A Hopf—von Neumann algebra is a pair (&, d.4), where o is a W*-algebra and
Su: s = of & is an injective unital normal *-homomorphism, called comulti-
plication, which is coassociative, i.e.

) (0t BOu) * 0t = (0 D 1) * 6.
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The Hopf—von Neumann algebra (&7, d.») is said to be commutative if the algebra o
is commutative and is called cocommutative if

(2) oy °5d=6d.

A coinvolutive Hopf—von Neumann algebra is a triple (., 8.4, j.s) Where (=, 5 )
isa Hopf—von Neumann algebra and j: &/ — & is aninvolutive s-antiautomorphism
(ic. ju °ju = ‘u), called coinvolution, such that

3 - . o Bju) 0=~ 04 °jua.

An action of the Hopf—von Neumann algebra (&7, é.») on the W*-algebra A
is an injective unital normal s-homomorphism é:.# — .# @ & such that

@ ' (1, B0u) 5= 1) 0.

In this case we also say that .4 is an f-comodule via 6.
Note that J« is an action of (&, é.4) on .
The centralizer of the action 6: A4 — # @ < is the set

M= {xeM; 5(x) =x @ la}.

Clearly, .#° is a unital W*-subalgebra of 4.

Let #,, M, be of-comodules via the actions &,: o — M, B o, 6y: f —
— M, o, respectively. We shall say that a normal completely positive linear map-
ping a: M, — M, intertwines the actions 8,, 5, or that ¢ is an &f-comodule mapping if

) 8300 =(0 B1a) by

In particular, if there exists a s-isomorphism o:.#, — .#, intertwining J;, 8y, then
we say that the actions 6,, d, are isomorphic.

If 6: 4 — 4 & o is an action of &f on # and 4" c .4 is a unital W*-sub-
algebra such that §(4) c & & , then § | ¥ : N — # @ is an action of of
on " and the canonical injection 4" <> . is an &/-comodule mapping. In this case
we shall say that 4" is an &f-subcomodule of #.

Let of,, o/, be Hopf—von Neumann ‘algebras and 5,: 4 —~ .# & o, 6y: M —
— M @ of , actions of &7, 5 on the same W*-algebra 4. We shall say that §, and
8y commute if

(6) (6l§'d‘).6’=(l‘@ ?).(62-@"‘)'61.
Finally, we remark that if 6:.# — .# ® & is an action of the Hopf—von
Neumann algebra (o, 5.4) on the W*-algebra .# and 4" is an arbitrary W*-algebra,

then
C 1, RN DM A NBAD A

17 - 207 32
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is an action of (&7, 64) on .V & A and we have

0 W B =4 B,

Indeed, the inclusion “>” is obvious. Conversely, let x €4 ® .# be such that
r®)x)=x® ly. For y Ny, oMy, kest,, we have

CO(ER(X)), ¢ k) = (E%(x), (9 B k) <8y = (x, Y & (e k) - 6))
=W ReBL) (L BND=CGl,y BBk
= <x9 '// @ (P> <ldr k) = <E_%(x) @ 1a, @ ®k>’

hence EY%(x) € 4#°. By Proposition 9.8 it follows that x e# & 4°.

18.3. Let (&, d.v) be a Hopf—von Neumann algebra. It is easy to check that the
predual &, with its Banach space structure and multiplication &, X & 3 (h, k) -
> h-k € sf, defined by

M @, h-ky = ou(a), h®Kk) (acs)

is a Banach algebra. Note that
(2) ’ (h-k)* = h*.k* (h, kest,).

The Banach algebra &/, is commutative if and only if the Hopf—von Neumann
algebra (&, d.4) is cocommutative,

If (o, 0.1, ju) is a coinvolutive Hopf—von Neumann algebra, then the Banach
algebra of with the involution of , 3k 1 k® = k* ¢ jye ot ,, i.e.

(3) <a’ k0> = <jd(a.)’ k) (aed),
is an involutive Banach algebra. Note that
O} (k°)* = (k*)° (ked).

Let 6: .4 — # & s be an action of the Hopf—von Neumann algebra (<, 6.4)
on the W*-algebra .#. For every k € of, we consider the Fubini mapping (9.8)
EX: # @ of - 4 and define

k.x = EX(5(x)) (x e,
ie.

(5) Ckeox, @) = (5(x), @ B k) (xedl,kest,, pel,).

I
I
!
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It is easy to check that

©) the mapping (k, x) = k.x is bilinear;

) the mappings x v k.x are w-continuous (kesty);
® le-xll < lklllixll (xed, kest,);

9 k-x)* = k*.x* (xed, kesty);

(10) xelt, kedtl =k-xed*;

(an he(k-x)=(h-k)-x (xedl, h, kest,).

In particular, the mapping &, X.# 5 (k, x) = k.x determines the structure
of a left Banach sf -module on A.
On the other hand, the mapping #, X ¢ 3 (@, k) = ¢.k €4, , defined by

(12) {(x, 9-k) =(3(x), p ®k) = (k-x, @) (x e M),

determines the structure of a right Banach o/ ,-module on M#4; definition (1) is just
a particular case of this definition. Note that

(13) lo-kll < @ikl (p ety kesty),
(14) (@-k)* = @*-k*  (peMy, kest,).

flince d is injective and ./ = (#,)*, it follows using the Hahn —Banach theorem
at

(15) the set {@-k; @ €My, k €t} is total in M.

" If & and 4 are two sf-comodules and o: & — ./ is an &f-comodule mapping,
then .

(16) ak-y)=k-a(y) (e, kesd,).
In particular, if 4 is an &/-subcomodule of .#, then
a7 yeN c M, kedy=>k-yeN.

18.4. Let G be a locally compact group with neutral element e € G, left Haar
measure dg = d'g and modular function 4 = 4. Recall that 4: G - R*\{0}
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is a continuous group homomorphism and we have for k e 2YG), te G

) Sk(rg) dg = Sk(g) de,
@ Sk(gr) dg= A(t)-ISk(g) de,
®) Sk(g-l) dg=Sk<g)A(g)-1 d.

In particular, d’g = A(g)™ dg is the right Haar measure.
Let X'(G) be the set of all continuous functions on G of compact support.
The set ' (G) endowed with the scalar product from Z*G) and with the ope-
rations of multiplication and complex conjugation:

@ En)(s) = &(s)n(s) &(s) = &(s)
is a commutative Hilbert algebra. It is easy to check that the associated maximal

Hilbert algebra is #*(G) n £*G)< £*G) with the same operations. The associated
modular operator V¢ and canonical conjugation K are given by

) Vet =¢& K& =¢.

The associated left and right von Neumann algebras both coincide with the
von Neumann algebra £*(G) acting by multiplication on £%(G):

©) (fS)s) = f(5)&(s)-

By the commutation theorem ([L], 10.4.(2)) it follows that Z*(G) is maximal com-
mutative in B(L*G)):

) ZL2(G) = £=(G).

The natural weight on £*(G) associated with this Hilbert algebra ([L], 10.16) is
denoted by ug and is called the Haar weight on Z°(G). We have

@® 1lf) = Sﬂg) i (feLG)").

On the other hand, the set X#'(G) endowed with the scalar product from £¥G)
and with the operations of convolution and involution

) (& * 1)) =Sf(g)rl(g"-f) dg, %) = A5G
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is a left Hilbert algebra. The associated modular operator 4; and canonical conju-
gation J; are given by

(10) (A60)(s) = A()E(s)  (Jad)s) = A(s)'PE(s™).

The associated left von Neumann algebra, denoted by £(G), is generated by the left
regular representation A:G > g +> A(g) € Z(L*(G)),

an (M&)E)s) = &(g™%s)

while the associated right von Neumann algebra, denoted by &(G), is generated by
the right regular representation p: G 3 g > p(g) € Z(Z*(G)),

(12) (p(2)E)(s) = 4(g)"*(s8)-
Thus, '
(13) £G) = R{Mg); g€G}  &(G) = R{p(g); g€ G}

and, by the commutation theorem ([L], 10.4.(2)), we have
(14) £G)' = &(G).

The natural weight on £(G) associated with this left Hilbert algebra ([L], 10.16)
is denoted by wg and is called the Plancherel weight on £(G). The properties of the
Plancherel weight will be studied later (18.17).

Using the commutation relations (7) and (14) as well as the fact that the only
translation invariant functions on G are the constant functions, we obtain

15 B(L(G)) = R{L™(G), UG} = R{L>(G), &(G)}.
We define a unitary operator W; on £%G) & £*G) by
(16) (Wel)s, 1) = is, s1)

({ € £*(G X G); s, t € G). Consider also the unitary operator Vg = W8 = ~oW8o~,
a”n L (WD =, 1)

Using the commutation relations we get

(18) We € 2°(G) B &G), Vg€ &G) & £=(G).

18.5. We now consider the first example of a coinvolutive Hopf—von Neumann
algebra associated with a locally compact group G, namely the triple

G = (£%(G), 1, kg)
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consisting of the von Neumann algebra £%°(G) < B(L¥G)) with comultiplicétion
Tg: L%(G) » £*(G) ® £°(G) defined by

) n6(f) = Ve(f & 16)V;,
i.e. 7g(f) is the multiblication operator on £*G X G) given by the function
2 (ma(N)(s, t) = fU1s),

and coinvolution kg: £*(G) > £*(G) defined by

3) ke(f) = JofTs,

i.e. kg(f) is the multiplication operator on £%(G) given by the function

@ (kc(/)s) = fs™).

It is easy to check that requirements 18.2. (1), 18.2.(3) are satisfied.
The predual £°(G), of the von Neumann algebra £°(G) = B(LX(G)) is
identified with the Banach space #Y(G) in the usual way:

) o k)=Sf(g)k(g) dg  (f € 2°(G), ke £YG)).

Indeed, since L2(G)=B(L*G)) is in standard form, every element k € £%(G), is
of the form w,,, With &, n € £%(G), hence k will correspond to the function ¢ € £Y(G).
By definitions 18.3.(1), 18.3.(3), £'(G) becomes an involutive Banach algebra. It
is easy to check that for &, k € ZY(G) we have

) hk=kash,
) Ko = k*,

the convolution “«* and the involution “3” being defined by 18.4.(9). )
The definition of ng can be extended to an action of G on B(L¥G)), still
denoted by

gt B(LXG)) - B(LXG) @ £=G),
namely

® 7(x) =Vex B Ig)Vs  (xe H(LG)).
Note that

® R(LG))e = &(G).
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Indeed, if x € B(L*G)) and 75(x) = x ® g, then Vo(x ® 15) = (x @ 16)Vs. By
applying this to a vector of the form § ® n with ¢, n €#'(G) and then taking the
scalar product with another vector of the same form, it follows that xA(r) = A(f)x
(t € G). Hence x € £G) = &(G).

More generally, for any W*-algebra .#, the mapping

; 1, @i M B BLAG) — M B B(L*G)) B £7(G)

1 determines an action of G on # B B(L*G)),

(10) (1, B X)) =(1,BVHXB)1,BVe) (XeMTB ALG))
1 and, by (9) and 18.2.(7), we have

{an A B HLGN " = 4 B AG).

1 18.6. In this Section we show that the actions of the Hopf—von Neumann algebra
{ G on the W*-algebra 4 actually correspond to the continuous actions of the locally
4 compact group G on M.

Consider first a continuous action ¢: G 3 g + o, € Aut(#) of G on A. For
{ cach x e, the function Ga g > o;7'(x) € # is w-continuous and bounded by [x{],
§ hence (Lemma 1/13.1) it defines a unique element m,(x) €.# ® £*(G) such that

) (no(x), @ BE) = Scp(a;'(x»k(g) dg

for pet, and ke LYG). If M < B(X) and # @ ¥*(G) c B(L¥G, X)) are
realized as von Neumann algebras, then

@ (. (x)E)g) = o7 '(X)i(e) (€ LG, #) geC).
Using (1) or (2), it is easy to check that
R M = M QLG

is an injective unital normal s-homomorphism. We show that #, is an action of G
on .4, i.e.

) (B 70) 7= (1, B 1) * 7o
Indeed, for x € #, ¢ €.#, and h, k € £Y(G) we have
((ta B o)), @ Bh BE) = (nu(x), @ B EK) 7o)
= (r), 9 B (1K) = (n(), @ B (ko )

- Sq»(a;'(x»(k o h)(g) dg = SSw(o;‘(x»k(t)h(r'g) drdg
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and )
<(nc @ 'G)(“a(x))s @ @ h @ k> = <7T,(X), (((0 -®. h) ° 7!,) @ k>

- S<n.,(a:’<x», o & hYk() dt = SS (05 (o CIh(S)k(e) ds d

= Sscp(a,;‘(x»/«s)k(r) dsdr = SS Doz RWA('g) dg
and Fubini’s theorem insures that the two integrals are equal.
We now show that
@) M= M,
i.e. that for x e.# we have
7 (x) = x Q1 <> 0,(x) = x for all geG.
Indeed, if 6 (x) = x for all ge G, then for e, and ke LYG) we have
() @ B k) =\ 0(k(g) dg = (x, ) (lg, k) = (x B 1g, @ k), hence

o(x) = x ® 15. Conversely, if 7,(X) = x ® 15, then for ¢ €.#, and k e £Y(G)
we have

S 0(07 (Ik(g) dg = Stp(x)k(g) dg.

It follows that the continuous function G > g = ¢(0;}(x)) coincides almost every-
where with the constant function ¢(x). Consequently, ¢(c;(x)) = @(x) for all
g€CGand p et ,, ie. x e’

Note that

®) To(0,(x) = (La B M ()1 B ML)*  (xel, g€G).

Indeed, for k e £Y(G) = Z*(G)y, the element k < Ad(A(g)) € Z£*(G),, considered
as an % -function on G, can be written

(k- AdM@N®) =k(gr)  (teG).
Consequently, for ¢ e A, k € ZLY(G), we have

(1 B M) BMEN", 0 B LY = (m,(0), ¢ & (& » Ad(Me))
= Sqa(c,'-‘(x»k(gr) de = Sqo(c,-'a,(x))k(t)dt

- S«p(a:'(a.(x»)k(r) dt = (m (o, @ B ).
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Recall that for every k € £*(G) and every x €4 we have defined an element
(13.2)

oi(x) = Sa,(x)k(g) i
and also an element (18.3.(5))

k-x = E&(n(x)).
We have:

©) k-x= al—“(x) (x €4, k € £YG)).
Indeed, for every ¢ €4, we obtain

(kox, @) = (mo(x), ¢ B kY = S«p(a;*(x»k(g) dg

_ <S 5, -+((g) de, ¢> - <S o (IKE A dg, ¢>

= (@ 85, 0) = <oz, 0)

Note also that, writing k'(g) = k(gt), we have
Y] o(k-x) = A()(k"-x) (t€QC),
the verification being similar to the above computation.

. Using 15.1.(2), we infer from (6) that for any norm-bounded approximate
unit {k;},e; of £XG) and any x €.# we have

(8) k‘-x :' Xo
Moreover, using (7), from (8) we also obtain
9) CAOKx) S o(x)  (teG).

Conversely, we have the following

Proposition. Let n: 4 — M4 @ £*(G) be an action of G on 4. There exists a con-
tinuous action o: G — Aut(M) of G on M, uniquely determined such that n = =,

Proof. (I) Consider first the action

7 = ng: B(LHG)) » B(LHG) B L)
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of G on B(£*(G)). There exists a continuous action
o = Ad(A): G - Aut(B(LXG))

of G on #B(£*G)), defined by the left regular representation. Since B(¥*G)) =
= R{L(G), &(G)}, in order to establish that & — 7w, it is sufficient to show that
n(x) = 7n,(x) separately for x e &(G) and for x € £%(G). If x € &(G), then it is clear
that n(x) = x @ 1 = = (x). Also, for x = fe #°(G) it is easy to check that
T,(x) = n(x) is the multiplication operator on Z*G X G) given by the function
(s, 1) = f(ts). Hence n = =,

(II) Consider next the action

n =14 @ ng: M B B(LG)) ~ M B B(LAG) & £(G)
of G on # @ B(£*G)) and the continuous action
6 =1Ly @ AdQ): G > Aut(/ B B(L*(G))
of G on M B(LXG)), i.e.
o(X) = (lLaBr)X(Lu BMR)* (2€G, Xl § B(L*G))).

Using the result proved in step (D), it is easy to see that in the present situation also,
we have n = 7,

(IIT) It is clear that if the action 7 of G on 4 is isomorphic to an action of
the type =,, then = is also of the form Ty

(IV) Now let 6: G — Aut(#) be a continuous action of G on 4 and let
A" < M be a unital W*-subalgebra such that (NN @ L(G). Then n = Tl N
is an action of G on 4" and 4" with the G-comodule structure defined by n is a G-sub-
comodule of the G-comodule .# defined by. m,. Consequently, for y eV < 4 we
have (sec 18.3.(17))

k-yet (k e 2YG))

and if {k;},¢, is a norm-bounded approximate unit of ZY(G), then, according to (9),

N 34()ki-y) S0 (y)  (teG).

It follows that 6 (#") =4 (t€G), and 7 = ol N = Topar.

(V) Finally, let n: ./ — .# & £(G) be any action of G on .. By the co-
associativity condition (1x & 7g) e 1 = (1 ® 1) ° 7 it follows that n(.#) is a G-sub-
comodule of the G-comodule # & B(£*G)) which is isomorphic to the G-co-
module .#. Thus, the existence assertion of the statement follows from (II), (IHI)
and (IV).

(V) The uniqueness assertion follows easily using (9).
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18.7. We now consider the second example of a coinvolutive Hopf—von Neumann
algebra associated with a locally compact group G, namely the triple

G = (26), b Jo)

consisting of the von Neumann algebra £(G) = #(£*G)) with comultiplication
85 &(G) = £(G) B £(G) defined by

1)) og(x) = We(x ® 16)Ws,
so that, in particular,

) 5c(Mg)) = M) ® Ma),
and coinvolution jg: £(G) = £(G) defined by

A Je(x) = Ksx*Kg

so that, in particular,

“) JeM(g)) = Mg™).

It is easy to check that 18.2.(1), 18.2.(3) are satisfied.

Let &/(G) = £(G), be the predual of £(G) endowed with the corresponding
involutive Banach algebra structure (18.3.(1), 18.3.(3)). For every k € o(G) we con-
sider the function k(.) defined by

©) Kg) = (Me) k)  (g€G).
Then k(-) is a continuous function in #*(G) and
k(oo < k-
Actually, the mapping s#(G)3 k v k(-) € £*(G) is an injective s-homomor-

phism. Indeed, this mapping is clearly linear and injective and, for h, k € 4(G)
and geG, we have

(h-k)(g) = (M), h-k) = (8c(M&)), h B k)

©)
= (Mg) B Mg), 1 & k) = h(g)k(g),
@ k9(g) = (M(g), k% = (JoMe)), k*) = (A& k)

= {Mg), k) = k(g).

Since £(G) =« B(LHG)) is in standard form, every kest(G) is of fgrm W,y
with & ne £%G). In this case it is easy to check that k(.) = =&, where

$@)=¢(z™") (g€0).
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The involutive Banach algebfa & (G) is called the Eymard algebra.
The definition of d; can be extended with the aid of equality (1) to an action

of G on B(£*G)) still denoted by

8) 856: B(LAG)) » B(LG)) B £(G).
Note that

©) B(L¥G))'s = £(G),

the proof being similar to the proof of 18.5.(9).
More generally, for any W*-algebra .#, the mapping

u ® M B B(LHG)) » M B B(LG)) B UG)
determines an action of G on /# & B(LXG)),
(10) (u B 3)X) = (1a B WHX B 10)1.a B Wg) (X el B B(L*G))),
and, by (9) and 18.2.(7), we have
(11) (4 B BLYC)) % — 4 § 2%(G).
Also, there exists another action of G on #(£*(G)),

6G: B(LXG)) —~ B(L*G) B L0),

defined by

(12) 55x) = Welx ® L9WE  (xe B(LYG)),
with centralizer .

(13 B(LYG))C = £=(G)

and, correspondingly, an action 1.4 & 6% of G on /4 & B(Z£*(G)) with centralizer

(14) A B BLHC)*C = 4 § 2°).

18.8. Assume now that the locally  compact group G is abelian and consider the dual

locally compact abelian group G of all continuous characters on G, endowed
wnth the compact-open topology. We choose the Haar measures dg on G and dy

on G such that the inversion theorem for the Fourier transform holds.
By the Pontryagin duality theorcm, G can be identified with the dual group

* of G. For g€ G = G*" and y € G, we shall denote by {g, y) the value of y at
(or the value of g at 7).
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By the Plancherel theorem, the restriction of the Fourier transform to
£Y(G) n £*G) can be extended to a unitary operator

F: 9%G) » 2%0)

called the Fourier-Plancherel isomorphism, whose inverse is obtained similarly
from the inverse Fourier transform.

Recall that if we denote by #2(G) the linear span of continuous positive definite
functions on G, then 2(G) = X(G) n #(G) is a dense translation invariant linear
subspace of £%G) and for every £ € 2(G) we have

o) (Fo) = £0) = Sc(gxg, N @eb).

G

Also, F(2(G)) is a dense linear subspace of .‘2”(&), invariant under multiplication
by characters, and for every n € F(2(G)) we have

@ (FH(g) = H(e) = Sn(r)(g. Ddy  (g€G).
G

The characters g€ G = G*" on G are #*-functions. For the sake’ of clanty,
the umtary operator given by the multiplication with the function ge.‘t’“(G) on
.Sf”(G) will be denoted by m(g):

©) (mEnG) = &) (e L¥G), yeb).

Since the trigonometric polynomials (i.c. the linear combinations of characters)
are dense in X (G) with respect to the topology of uniform convergence on compact
subsets, it follows that the von Neumann algebra 3’°°(G) c Q(.Q”(G)) is generated
by the operators m(g) (geG).

We recall that the von Neumann algebra £(G) = #(£*(G)) is generated by
the left translation operators A(g), (g€0).

Proposition. The Fourier-Plancherel isomorphism establishes an zsomorplzi:m be-
tween the coinvolutive Hopf—von Neumann algebras (£(G),5¢;, Jo)and (.Y"(G), 20 73).

Proof. We define a s-isomorphism &: B(L*G)) - Q(Q’(G)) by
“) O(x)=FexF' (xe B(ZLYG))

and show that $(£(G)) = L%G), (@ B P) *dg=rng *+ P, & +jg =k * ®.
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For ge G, ¢ € 2(G), yeé we have

@@ FI() = <& YF() = (g, 7) Sé(t)(t, y) dt

- Sé(txgt, y)de = Sé(g“sxs, y) ds

— S(ug)ﬁxsxs, 7) ds = (FMR)O0),

that is m(g)F = Fi(g), and hence

) 2(Mg)=m(g) (geG),

so that &(8(G)) = £=(5).
For g € G, the operator na

2(m(g)) is (by 18.5.(2)) the multiplication operator
by the function

GXG> (@, f) (g, aB) = (g, a)(z, B
on .?2(& xé), that is, 75 (m(g)) = m(g) ® m(g). According to (5) and 18.7.Q2)
we get
(@ & D)(56(Mg)) = P(M(g)) B B(M(g)) = m(g) & m(g) = n5(P(A(g))),

so that (¢ & &) *g=my P
Finally, using (5), 18.5.(4) and 18.7.(4), it is easy to see that

P(j(M(g)) = P(M&™) = m(g™) = ka(m(g)) = ka@(’-(g)),
so that ¢ °Jo=kg - P.

Thus, if G is abelian, the notation G introduced with two different meanings
in Sections 18.5 and 18.7, designates the same coinvolutive Hopf—von Neumann
algebra. .

. Also, according to Proposition 18.6, every action &:.4 —» .4 B £(G) of
G = (£(G), 8¢, Jc) on a HW*-algebra # corresponds to a continuous action
0:G = Aut(#) of G on .#, uniquely determined, such that n, = (1, & ®) « .

18.9; We continue to assume that the locally compact group G is abelian. For

7 € G we denote by m(y) € £°(G) < 2(Z£*(G)) the unitary operator of multiplication
with the function y € £*(G) on £L¥G). Then

G5y > m(y) e B(LG))

is an so-continuous unitary representation of G on £YG).
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It is easy to check that
() Mm(y) = (g, HmMg)  (g€G, y€G).

We define a continuous action 0: G — Aut(B(L*G))) by
@ 0,(x) = m(r)*xm(y)  (xe B(L*G)), y€G)
and the corresponding action m,: B(LXG)) - B(LHG)) & £™(G) of G=(£>(G),

ng, kz) on B(L*G)).
It is clear that 0,(f) = f for every fe £*(G) (y € G), hence

©) ()=r®ls (feL=0)).

On the other hand, using the definition 18.6.(1) of 7, and the commutation relations
(1), it is easy to check that

@ To(Mg)) = Mg) @ m(g)  (g€G)

Let 1; be the identity mapping on B(£*G)) and ¢: Z(L*G)) — Q(.Z”(GA.))
the Fourier—Plancherel isomorphism. Using (3), (4), 18.7.(2) and 18.8.(4) we obtain

Ty(16(x)) = (16 ® )(65(x)),

valid for x = fe #*(G) and for x = A(g) € £G) and hence (18.4.(15)) for all
x € B(LYG)).
We thus get the following

Proposition. Let G be a locally compact abelian group and M a W*-algebra.
The action

1 B6G: M B BLHG)) » M B B(LG) B XG)

of G= (£(G), 8¢, j;) on M corresponds, via the Fourier— Plancherel isomorphism,
o the continuous action n
0: G - Aut(A @ B(LHG)))

of G on 4 @ B(LYG)) defined by
0,(X) = (1« Bme)*X( LB my) Xel T BLIG), 7€),
Let 0: G — Aut(4) be a continuous action of the locally compact group G

on the W+.algebra A, n,:.# —.# & £2(G) the corresponding action of G
on .# and ¢ a normal weight on /4.
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Recall that ¢ is called o-invariant if ¢ °a,= ¢ (geG). This condition
is equivalent to the following condition:

(10,0 Bk =(xBle, e BE)  (xelt*, ke LG,

In what follows we consider a convenient notion of invariance of weights
‘with respect to the action of a coinvolutive Hopf—von Neumann algebra.

18.10. Let 6: .4 — # ® & be an action of the coinvolutive Hopf—von Neumann
algebra (o, 6., j2) on the W*-algebra # and let ¢ be a normal semifinite weight
on A.

We shall say that ¢ is d-invariant if

A (o Bk)=(xBLly,o Bk) (xed*, kesd]).

Lemma. Let ¢ be a d-invariant normal semifinite weight on the sf-comodule M.
Then

@) s(p) e A#°,
Jor every xe N, and k e o, we have k-x € N, and

(3) "(k'x)qvup < “k” ”x¢”¢ ’

and for every x,y €N, and k e ¢ we have (y* @ 1.4)5(x) € My, y*(k-x) € m,
and

“ (O* @ 1)4(x), ¢ B k) = (y*k-x), ¢).

Proof. Let xeN,, ke, with polar decomposition k = [k|(v-), ve.#,
and let fe#t, f < . We have

((kxy*(k-x), £} = {((k-x)* B 1u)ou(x), fB k)
= {((k-x)* & v)3(x), f B lkI)
< (k- x)* (k- %), SOVEIEIN2(S(x*x), [ & k)12
< {(k-x)* (k- x), LYV O(xx), @ B [KIY2

' = ((k-x)*(k-x), LYV k|2 x*x, )V k|2
hence
k- x)*(k-x), SOV2 < (KXl -

Since fe.#}, f < ¢ was arbitrary, (3) follows.
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Consider now x, y € R, and k e . From (3) it follows that y*(k-x) e M,.
Since {6(x)*3(x), ¢ ® k) = {x*x, @) {1, k) < +00, we have 5(x) € R,5y, hence
(* ® lu)o(x) € Mg, . Let

(5) O ® 10)d(x) = a, — a; + iay — ia; with @, M5, 3, > 0 (1 <j < 4).
Using 9.8.(5) we get
® (E:@), @) =(a, o Bky <+oo (1<j<4),

hence 0 < EX(a)) € M,. Thus,
yHk-x) = E4((* ® 10)0(x)) = Ely(a)) — Efy(ar) + iEly(as) — iE4(ay)
and, using (5) and (6), we obtain (4). .
Finally, we prove assertion (2). Clearly, (1.« — s(¢)), = 0 and, by (3), this
implies that (k-(1.4 — s(¢)), = 0, hence (k-(1.x — 5(¢)))s(¢) = O for all k e of,.

Consequently, for k € o, and f€#,, we have {5(1.« — $(9))(s(¢) ® 1), [B k) =
= {(k-(1« — s(@))s(p), ) =0, i.e. 5(l.a — 5(@))(s(¢) @l) = 0. Thus,

5((p) <s(9) B 1.

On the other hand, let e = (s(p) ® 1) — 5(s(p)). Since (5(1.« — s(9)), p B k) =
=(a—5(¢) Blu, ¢ @k)=0 (keot}), we have (e,0 ®k)=0, so
e(s(¢) @ s(k)) = 0 for all ke, and hence e = e(s(p) @ lg)e =0.

From (3) it follows that the mappings E%: x +» k-x define bounded linear
operators n(k) € 2(¥,),

U mBk)x, = (k-x), (xe€ 9!,, kest,)

@®) Ine()l < Ikl (keoy)
and the mapping
e g — B(KH,)

is a contractive representation of the Banach algebra &f,.
We shall say that the weight ¢ is (8, J.)-invariant if @ is é-invariant and

® (0" & 1.5)8(x), 9 B k) = (50*)(x & 1.0), 0 B (k *j))

for all x,ye 9N, and ke Af. L
Using (4) we see that both sides of (9) are well defined and that (9) is equivalent

to the equation:
(10) ((k-X)glyp)e = (X(K2-3)y)e (X, yER,, keSA),

that is,
wk)* = nd(k)  (ke,).

18 - 707
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Consequently, if ¢ is (3, ,,);invariant, then 7}, is a contractive *-representation
of the involutive Banach algebra A . :

18.11. Consider again an action &:.4 — 4 ® o of the coinvolutive Hopf—

von Neumann algebra (&, 6., j) on the W*-algebra # and a normal semifinite
weight ¢ on ..

If there exists A > 0 such that
) xeN,, kest, > k-xe N, 1(k-x),ll, < Akl Ilx,

llp »
(2) X, Y€ mcpa ke d* = ((k'x)qa'yqt)qu = (x¢l(k0 'y)¢)¢ ’
then we shall say that 7l is a bounded ¥-representation of the involutive Banach

algebra sof,, .

In this case, we can indeed define by 18.10.(7) a bounded *-representation
ity - () with |2 < A.
Also, with the same arguments as in the proof of 18.10.(2), we can show that

&) o(s(p)As(p)) < s(p)-#s(p) ® .

Lemma. If 7’ is a bounded *-representation of the involutive Banach algebra o ,,
then the action & commutes with the modular automorphism group {0?},er of ¢:

0°0 =0 Q@lu) 6 (tcR).

Proof. Taking into account (3) we See that, without loss of generality but

disregarding the assumption 6(14) = 14 ® 1., we may assume that ¢ is an n.s.f.
weight on /.

By assumption it follows that for every kest, and every x, € U, we have
Semg(k)x, = Sy(k-x), = ((k-x)*) = (k*-x*), = n5(k*)S,x,. Since S, = S,l U,

we obtain
$eD(S,) =>ndk)t e D(S,), S mik) = n:(k‘)S,C.

Letne D(4,) and ¢€D(S,). Then n €D(S,), S,ne D(S3) and (S,n‘?,(k)r]lS,é),=
= (n3(k*)S 1| S,¢), = (Sening(k*®)S,8)e = (Syn)S,me(k0)E), = (na(kO)EISES )=
= (§lng(k)4,n), . Therefore, S,k e D(S;) and S} S, =5(k)n = ny(k)4,n. Thus,

neD(d,) = ad(k)y e D(4,), A4 ad(k) = 73(k)d,n,

i.e. 74(k) commutes with 4. i

It follows that for x e ¢, k € o/,, r€ R, we have ©@9(k-x)), = A¥(k-x), =
= dgn(k)x, = nd(k)4ix, = (k-07(x))e. Consequently, oP(k-x)= k-6?(x) for
all xe#, kest,, te R and, for every fe.#,, we deduce that

(), f B k) = Ck-0f(x), [y = {opk-x), ) = (kx, f *aF)
={0(x), (f o) B k) = (67 B 1)(5(x)), S B k),

thus proving the Lemma.
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18.12. Theorem. Let 6:.#4 — .# @ of be an action of the coinvolutive Hopf—von
Neumann algebra (sf,0.4,j4) on the W*-algebra M and ¢ a normal semifinite
weight on M. The following statements are equivalent:
() ¢ is (0, jw)-invariant,
(ii) nd is a bounded =-representation of the involutive Banach algebra sf .
(iii) n{ is a contractive =-representation of the involutive Banach algebra o o.
(iv) The following conditions are satisfied:

a) s(p) e A%;
b) 8(6?(x)) = (67 B 14)(5(x)) for all x €s(p).Ms(¢), te[R;

C) there exists a a®-invariant x-subalgebra # of M,, w-dense in s(p)Hs(®),
such that

Gx), e @A) =(xBlu, 9 BL)  (xe B0M*, keA});

d) there exist a ||-||,-densc subset @ of N, and a norm-dense subset F
of ot such that for every x,y € @ and every k € F we have §(x), 5(y) € Nyqy and

(O* B 12)5(x), ¢ B k) = (50*)(x B 10), 0 B k).

Proof. (i) = (iii). By Section 18.10.
(iii) = (ii). Obvious.
(i) = (i). We have to show just that ¢ is é-invariant, i.e.

m @@k -do=C{uk)p (ket}),

since then condition 18.10.(9) will follow from 18.11.(2) using 18.10.(4).

Let ke sf}. From (ii) it follows that (k-(l.x — s(p)))s(¢) =0 and then,
using 9.8.(5), we deduce that (5(1a — s(9)), @ ® k) = (k-(l« — 5(9)), 9 =0,
i.c. s((@ & k) » 8) < s(¢), and therefore s((@ @ k) < ) = s((p & k) * is(p).#s(p)).
On the other hand, it is clear that s({1., k)¢) = 5({1.4, k)@Is(@)#5(p)). Thus, we
may assume that ¢ is an n.s.f. weight on /.

Then # =32 is a w-dense o%-invariant s-subalgebra of 4 and
B =lin(@n.4*) c M,

Let xe #n.#* and kesfy. Then k-xeM n.A*. Indeed, for every
yeRN, we have (18.11.(2)) (3*(k-x), @) = {(k°-y)*x, @), so that the asscrtion
follows using 2.13.(3). Consequently, there exist a, b €9, n.#* such that

x = at, k-x = bt
By Proposition 2.16 there exists a net {r;} € T, such that

o?(v) % 1.4 for all ae C.
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Using Lemma 18.11 we obtain (here‘ y €4 is identified with 7,(y) € B(H,)):
@B+ 8) = (36x), 0 B kY = (k-x,0) = (5%, ) = (b,1b,),

= (Bl S,by), = (B,1,4¥%,), = im (5,102 1a(0)43%,

e

= i @ullod07,), = Bim (B4l (57),), = lim 5,0, ),

= 1 el @0y = lim (5l k75,0, = lm (o) ek ),
= im (@,15,((4*2)a)y), = lim (2, (G 0)a),),

= lim (@,1/,02n(k°- v)4"a,), = lim (2, J,(k°- 02 1n(0)) 41,

= (@, |/, (k°- L)d3ka,) = (a,18,a,),( 1, k) = (@pla,)e(1 ., )
=4 9) (la, k) = (x, L, kD).

Consequently, the two weights appearing in (1) are equal on . In particular,
(@ ® k) -5 is semifinite.

Again using Lemma 18.11, we see that (¢ ® k) 6 commutes with (la, K)o,
hence (1) follows from Theorem 6.2. ‘

If the equivalent conditions (i), (ii), (iii) are satisfied, then statement (iv) results
as follows: a) by 18.10.(2), b) by Lemma 18.11, c) is clear with & — M, and
d) is clear with @ = N, and F = o}

(iv) = (iii). From condition a) it follows that we may assume that ¢ is an
n.s.f. weight. Using conditions b) and c) and Theorem 6.2, we obtain (1), hence ¢
is é-invariant. Then 72 is defined and contractive and, using condition d), we obtain
ng(k)* = nd(k?), first for k € F and then, by passing to the limit, for every kest].

Note that in Sections 18.10—~18.12 we have not used all the conditions which
define a coinvolutive Hopf—von Neumann algebra and its action on a W' *.algebra,
but only the following: # and sf are W*-algebras, 5: 4 — .4 ®  is a unital
normal »-homomorphism and ju: of — s isa *-antiautomorphism with juy © jo = 1,,.
The comultiplication 64 of «f appeared only in considering the multiplicative
structure on A4,, but this structure has not been used.

18.13. Corollary. Let 5: .M — .4 @ of be an action of the coinvolutive Hopf—von
Neumann algebra (54, 6,4, j4) on the W*-algebra W and let @, Y be (8, ju)-invariant
n.s.f. weights on M. Then

[DY: Do), c.4®* (teR).
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Proof. The mapping 6, =1, ® 4 is an action of o on the W*.algebra
Maty (M) = Mat(C) & 4. Since ¢ and V¥ are (3, ju)-invariant, the balanced weight

0 = 0(p, ¥) is (ds, ju)-invariant. By Theorem 18.12 it follows that d, commutes
with ¢? (1€ R).

Let u, = [Dy: Do), (€ R). Then

s =502 9-54((. 3)
s (a((, ))-wa(, o)., 2

hence 6(u,) = u, @ 1., ie. u, e,

18.14. Proposition. Let (o, 5, J) be a coinvolutive Hopf—von Neumann algebra,
If there exists a non-zero -invariant normal semifinite weight on X, then this weight
is faithful, o#® = C.14 and any two non-zero (8, j)-invariant normal semifinite
weights w,t on st are proportional: t = Jw 4 >0).

Proof. Let  be a non-zero S-invariant normal semifinite weight on «f.

Let ec of® be a projection. Then (18.2.3)) 6(j(@) = ~ ( B j)(o(e)) = 1 o Sje),
hence for every xeM,nt* and ke oA} we obtain

((E)xj(e), @) {14, kY = (S(j(e)xj(e)), © & k)
= {(ls B j(E)é(x)(14 & j(e)), 0 F k)

= (5(x), @ & k(je)-j(e)))
= (x, w) (i), k>-

Since  # 0, we have s(w) #0, so that there exists kest}, k40, with
({lu = s(w)), k) = 0. By 18.10.(2) we have s(w) € o/° 50 that, replacing e by
14 — s(w) in (1), we get

(Gl — 8(0))xj(lu ~ s(@)), 0) =0 (xe M, nor*),
It follows that j(l., — s(w))s(w) = 0, that is
@ 8(w) = j(s(w))s(w).

Assume now that s(w) # 1,. Then there exists ke, k#£0, with
is(w)), k) = 0 and, again using (1), we obtain :

(j(s(w))xj(s(w)), (D) =0 (xe gn- nof ’)’

ie. j(s(w))s(w) = 0. This, together with (2), implies that @ = 0, a contradiction.
Hence o is faithful.

)
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Ifec s, e # 14, there exists k e #§, k #0, with {j(e), k) = 0 and using (1)
we obtain {j(e)xj(e), w) =0 for all xe 9Jt n&t, ie. jle) = jle)s(w) = 0, hence

e = 0. Consequently, &#® = C.1,.
Consider now two non-zero (J, j)-invariant normal semifinite weights » and ¢

on &.Then o and rare faithful and, by Corollary 18.13, we have [Dt: D), € o/°=
=C.14 (teR). It follows that there exists A >0 with [Dr: Do}, = A*

(teR), and hence T = lw.
18.15. A Kac algebra is a_quadruple (#, 9, j, w) where (o, 6, j) is a coinvolutive

Hopf—von Neumann algebra and @ is a (6, j)-invariant n.s.f, weight on & such
that o2/ = o? (t € R), that is

O) of ej=Jjeo2, (telR).

By Proposition 18.14, the invariant weight @ appearing in the definition of
a Kac algebra is unique up to a positive multiplicative constant. The weight
will be called the left Haar weight on the Kac algebra .

There exists a canonical way to associate with every Kac algebra (&, 8, j, w)

a dual Kac algebra (dA, 5, f, o), a procedure which we now describe without proof.
The von Neumann algebra & is defined by

o = R{l(A,)} < BH).

Using the é-invariance of w one shows that the mapping x @ y = 5(x)(1 ® y)
defines an isometry on 5, ® #,, and, moreover, the adjoint W of this isometry
is agam an isometry, that is, We 2(#, ®,) is a unitary operator. We have

West ® o and
(x)= W*x@ DWW (xed).

One then considers the unitary operator W=n eWronesd @dﬂ and one
defines by R . R N
ox) = W*(x ® HW (xe o)

A
a coassociative comultiplication 0 on &.
On the other hand, the equation

) =Tx*, (xesd)

defines a coinvolution j on o whlch is compatible with 5.
In order to define the weight & one constructs a #-subalgebra D of < which

is contained in 2 and which, regarded as a subset of &, via Proposition 2.13, is

an involutive subalgebra of the involutive Banach algebra &, ; moreover, S,|D=S,,.
With the involutive algebra structure inherited from &/, and the scalar product
of #,, D becomes a left Hilbert algebra whose assocnated von Neumann

algebra is equal to &, The natural welght assocxatcd with the left Hilbert algebra D
isa (6 j)—mvanant n.s.f. weight @ on o.
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Of course, D, with the #-algebra structure inherited from «f and the scalar
product of J,, is also a left Hilbert algebra, & is the associated von Neumann
algebra and w is the corresponding natural weight.

This structure of a “Tomita bi-algebra” on D is at the heart of the duality
theory for Kac algebras, the fundamental result being that (,;a?. 3,}, w) is isomorphic
to (#,9,], ).

We now return to the examples considered above.

18.16. Let 0: G — Aut(.#) be a continuous action of the locally compact group G
on the W*-algebra A and n,: M — M G £(G) the corresponding action of
G = (£*(G), ng, kg) on . For any normal semifinite weight @ on ./ it is easy
to check that

@ is m,invariant = @ is g-invariant
Q) = ¢ is (r,, kg)-invariant
= @ is m,-invariant

hence all meaningful notions of invariance coincide.

In particular, since the left Haar measure dg is invariant under left transla-
tion and mg = maqgy, it follows that the left Haar weight u; on £%(G) is (ng, kg)-
invariant and G = (£%(G), ng, kg, i) is a Kac algebra.

With the notation introduced in 18.10.(7), 13.2, 18.4.(9), it is easy to check that
@ el =2k XG) © LG (ke LYG) = L(G),).

18.17. Consider now the coinvolutive Hopf—von Neumann algebra G=(£(G), 6, j¢)
associated with the locally compact group G and the Plancherel weight wg on £(G).
Recall (18.4) that wg is the natural weight associated with the left Hilbert
algebra A =H'(G) « £*G) with the operations of convolution and involution.
We shall use the notation %', A", L,, R,, etc. associated with the left Hilbert
algebra A = H(G) (see 2.12 and [L], 10.1—10.4). Note that " = A,
By definition, for £ € & = X(G) we have

(1) Ln=¢%sn=0an (ne2%G)).

Consequently, for ne £%G), the operator R} is defined by RE =Ly =&y
(§ €A = X'(G)). If R, is bounded, it follows that

@ RE=Ean  (c2%G).
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Indeed, if ¢, € X(G) and &, - & in #%G), then R, — R, in £%G) and &, xn—
= {*n uniformly. In particular, (2) holds whenever 5 €9’ Consequently, for
§ € £%G), the operator L? is defined by Lin=R¢=¢(xn (neW). If L,
is bounded, we obtain similarly v

€)) Ln=¢xn  (ne2%0)).
It follows that
) § € £YG) N ¥%(G) = L, is bounded and L, = A().

Using 2.12.(2) we see that for every ¢, neLY G NLHG) we have
M), M) € Ny, and o (M(m)*ME)) = (Eln), i.e. .

6 ocn® + &) = Sf(gﬁ(?) dg=(*+)&) (& neLYG) n 2G)).

Recall that the convolution of two #*-functions is equal almost everywhere to a
continuous function.

Moreover, for every function f'e ZY(G) we have A(f* * f) € £(G)* and
© ocA(f* * )= Slf(g)l’ dg="(f**f)e)" (fe2LYG))

where the last equation is just formal. Indeed, if fe £YG) n £*G), then (6) follows

from (5). If ws(A(f* * f)) < +o0, then AMNHeN, c and so there exists ¢ € £%G)

with L, = A(f), i.e. Exp = f# 1 for all n € %G), which means that f = ¢ € FYG).
In computations involving wg; we shall often use the following

Proposition. For x € £(G)* we have wg(x) < +co if and only if there exists a
continuous function f € L¥G) with x = L;; in this case,

O] ‘Dc(Lf) = fle).

In particular, if fe $NG) and Af) >0, then wg(Mf)) < +oo if and only if
S€ LNG)nLXG); in this case S is (equal almost everywhere t0) a continuous
Junction and

® (M) = f(e).

Proof. Let fe #£*G) be a continuous function such that the operator L,
is bounded and positive. Then ¢ = Jof € £%G) is also a continuous function and
the operator R, = JoLyJg (see 2.12.(4)) is bounded and positive:
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Since for every [e€X(G) we have (RLID={*0l)=(p|{**+{=
= Sgo(g)(c" = {)(g) dg, it follows that the continuous function ¢ is positive definite

and

Sqo(gxc' 0@ g <ALE  (CeX©G)).

Let u,: G — #(¢,) be the so-continuous cyclic unitary representation of G, with
cyclic vector &, €, associated with @ (see 13.4.5). The corresponding s-represen-
tation of the involutive Banach algebra #}(G) is just the GN S-representation defined
by the positive form ¢ € £°(G) = £*(G)* and will also be denoted by u,. For
{ € X(G) we have

N, I = %+ {, @) = Sw(gxc' « 0(e) dg < ALIE.

Thus, there exists a bounded linear operator T: £%G) — M, ||T|| < 4, such that
T, = u ()¢, ({€H(G)). The range of T is dense in ¥, since {, € X, is
a cyclic vector and

TMg) = u,(8)T  (g€G).

If T = V|T| is the polar decomposition of T, then V: £%G) — ), is a coisometry,
i.e. Y¥V* =1, and

Vag) =u,(e)V (g€G).

Let n = V*;, € £%G). For every {e€ X (G) we have

C* n={_(*if= MOV‘{, = V‘u,(()f, = V*T{ = ITK.

hence the operator R, is bounded and positive. On the other hand,
o®) = w20 = A =i ar  @eo

ie. @ =nanP®, where n°(s) = n(s?)(s€G).

It follows that & = Jgne £*G) has the property that the operator
Ly=JgRJ; is bounded and positive and f=Jop = Jo(nen®) =¢*+¢.
Consequently, wg(Ly) = ag(LEL,) = [IE1F = (£* * §)(e) = fle) < +o00.
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Consider now x € £(G)* with wg(x) < +o0. By the definition of the natural
weight wy it follows that there exists & € Z%(G) such that x1/2 = L; and wg(x) = ||£]2
Then f= {*x¢e %%G) is a continuous function with x= L¥L, =L, and
wg(x) = fle). In particular, if x = A(h) with h e ZYG), then AM(h) = L;, hence h = f
almost everywhere.

Thus, the Proposition is completely proved.

We have

© kM) =Mk())  (fe 2YG6), ke #(G)).

o Indeed, for every heol(G), we get (k-Mf), kY = (55(M)) h Sk) =
i = <Sf(g)l(g) BMe) dg,h ® k> - <Sf(g)<l(g), kY(g) dg, h> = (MK()), B).
From (9) it follows that
(10) nf,f;(k) = k(-_) EL¥G) c B(LG) (keA(G) = £0),).
Indeed, for every ¢eX(G) we have n’G(k) = n:z(k)(l(ﬁ)),,c = (k-ME)og =

; = MK(Iay = K. °

We are now able to show that

1un the n.s.f. weight wg on £(G) is (0, jg)-invariant

; by checking conditions (iv), a)—d), of Theorem 18.12.
' a) s(wg) = 15 € £G)%.
b) The modular operator associated with ®g is the multiplication operator
defined by the modular function 4g; hence it is affiliated to #*(G) which is the

entralizer B(L*(G))’e of the action 5 (18.7.(9)). Consequently, 70 = Ail. 45
commutes with ;.
¢) For{ € #'(G) with A(§) > Oand k € $/(G)* we have A(k(+)¢) = k-0 >0
and, using (8), we get (5.(A(&)), wg ® k) = (Mk(+)E), wg) = k(e)(e) =
= (M}) & 16, wg B k).
d) This condition amounts to showing that the representation 7::% is a

*-representation, and this follows obviously from (10) as ko) = IT)
We also have E

12) g *Jjg = wg.
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Indeed, it is easy to see thz}t 676 (M(3)) = 4iMg)Ag" = 44(2)"Mg) (geG, te R),
50 Jj(676 (M(g))) = 45(8)" j(M)) = 4c(g™)  Mg™) = 675(M(g™)) = 675 (jo(M(8))
(g€G, teR), and hence the two weights appearing in (12) commute. On the

other hand, for &€ #(G) with A(€) >0 we have 0 < jo(M(¢)) = Sé(g) Mg )dg =

= Sé(g“) 4,(2)\(g) dg = M), where n(g) = &(g™*) 44(8)™, (g € G), and using (8)

we get {A(8), g o Joy = (M), @) = nle) = &(e) =(A(), wg). Conscquently, (12)
follows using Theorem 6.2.
From (11) agd (12) it follows that G = (£(G), 8¢, j¢» wg) is a Kac algebra.

Actually, G and G are dual Kac algebras.
Finally, we show that

13 wg * Ad(Mg)) = 4¢(8) wg; £€G.

Indeed, the two weights appearing in this equation commute becausc Ad(A(g))
commutes with o%6 (teR). For ¢&eX(G) with () >0 we have
0 < (A(M(2))) (ME)) = MME(E™) = Aln), where n(s) = Ag(g)<{(gsz™) (5€G),
and using (8) we get (A(E), @ « Ad(M(g))y = (Mn), w) = n(e) = 4g(g)i(e) =
= (M¢&), 45(g) wg). Thus, (13) follows by Theorem 6.2.

18.18. The invariance property of a weight with respect to an action can be extended
to a similar property of the tensor product of the weight with a normal positive
form, namely:

Proposition. Let 5: .4 — # & o be an action of the coinvolutive Hopf—von Neu-
mann algebra (f,0u,ja) on the W*-algebra M and let @ be a (8, ja)-invariant
n.s.f. weight on 4. For any W*-algebra A" and any f€ (s R AN)E we have

a) (X @BN R =XBlu,(@BN) (e ® ~ o))
Xe(H BN)).

Proof. We consider the normal weight ¥ = (@ &N 6 Q1) on MBN
and the normal positive form & = f{l« @ -) on A, that is, (y, = .00f)
(y €X). Using the d-invariance of @, we obtain, for xe R, = .# and y eV

(x*x By, ) = (O(x*x) By 0 BS) = (5(x*x), (0 BN (- By*¥))
= (5(x*x), e B (- By =(x*x Bl e BUT-B M)

= (x*x, ) (lu By*0.S) = (%, 0) (P B) = (x*x B y*y, 0 B h).
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In particular, ¥ is semifinite. On the other hand, for everyte R, 6? commutes with
0 (Lemma 18.] 1), hence

Vo8 =(0&f) (6 °0?) ® 1r)
= (p @f)"(a}’@u@lm)°(5®'lm)=((¢°U?)®'f)°(5@u)=¢-

If #isatype I factor, then, using Proposition 8.10, we infer that V=0 ®h,
which is equivalent to ).

In the general case we can represent 4" as a von Neumann algebra /' B(5#)
and extend fto a normal positive form on & @w(x’) so that the general case of )}
follows by restriction from the case 4 = #(5#), which has already been proved.

Note that (1) for 4 = C. Ly just expresses the d-invariance of .

18.19. We now show that the action & of a Kac algebra on a W*-algebra .«
defines a canonical #valued weight on .,

Proposition. Let 5: ¢ — M oA be an action of the Kac algebra (o, Oty joty 0 .o4)
on the W*-algebra 4. The formula

) - RO=EF6)  (xewr)
defines a normal Jaithful M°-valyeq weight on /.

Proof. Let x e .+, () defines an element m=Pyx)eM*. We shall show

that o = (71"3*. By the uniqueness of the spectral decomposition of e (11.3.2)),
it is sufficient to show that () = o & 1., that is

@ Ceon)of ) = on B L1 for all fe(u G )¢,

Letfe( ® &) We have_(é(m), ) = (m,f-.é) = (&(x), (f é) @_(au-j,))=
= (% ([ (0w *ju)) * (5 ®lw) < 0) = (X, (/B (0w *ju)) * (14 Bou) +8) =
= (3(x), (f & (Wwju)) (14 D Ow)) and (m @ Lo ) = {on, (- Qly)) = {(x),
(- B1L))BD (wu oja)). Consequently, (2) is equivalent to the following equality
of weights on ./« &

3 (/B (0w *ju)) * (1 Bo)=((-B 14)) @ (@ * ju).

As in the last part of the proof of Proposition 18.18 we see that it is sufficient
to check (3) only when is a type I factor. In this case there exists an involutive
*-automorphism j: .« M jej= 14 Let h =L ®ja) - T aE(S QM.

By composing the weights in (3) with the *-antiautomorphism ot a (u®
BN A Bl = 4 ® of and using 18.2.3), we sec that (3) js equivalent to the
following equality

@4 Bh) * (0 B 1.0) = [(0r BN (B vad)(- lv)

of normal weights on of ® .4, which isan obvious consequence of Proposition 18.18.
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Thus, P,(x) € (#%)* for every x e.#*. Taking into account the properties
of the Fubini mappings (9.8, 12.18), it is now easy to check that Pyt — (M%)
is a normal faithful operator valued weight.

Note that if &/ < # is an «/-subcomodule of the /-comodule .# via &,
then for the action 8|4 of o on A we have

@ : Pyy = P)\N¥

as () c A ®L and, clearly, E;’,"”": Ejl-"""‘l./f" Q.

Also, if 6:.# — # & of is an action of « on .# and 4 is any other IW*-
algebra, then for the action 1, @6:N QM >N B A TS of & oOn N M
we have

(5) P:J-;d =y @PJ
ofot - of
as E;‘%A‘ =1y @ ES¥4.
If 5 = 6.4 is the action of the Kac algebra o on itself, then A =C.1,4
(18.14) and P, coincides with the weight w.x ° ja«.

The action 6: A — M @  is called integrable if the operator valued weight P,
is semifinite.

18.20. Consider, in particular, a continuous action o: G — Aut(#) of the locally
compact group G on the W*-algebra # and the corresponding action m,:.# —
- M Q L*(G) of the Kac algebra G = (¥=(G), ng, k¢, t1g) on . We recal]
that #° = 4" (18.6.(4)) and put P, = P, x,+ We shall show that in this case the

operator valued weight P,: M* — (—./717)+ is given by
¢)) P, (x) = Sa,(x)dg (xef).

Let xel*, pe A} and he LYG) = L(G),. Then the element h < kg€
€ £°(G),, regarded as an Lfunction, has the expression (4 <kg)(g) =
= h(g1) 45(g™") (g€G) sece (18.5.(5)). Thus,

(ke E gy @l By = (no(x)y @ B (h = k) D

- Sw(a.-'(x» Hg™) 44(8™) dg

f

S #(0,()) g)dg
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hence the element kG(E’_,,w(G) (n,(x))) € £(G) is the function G>g > o(o,(x))-
Consequently

<P,(X), ‘P) = <7Z,(X), 4 @ (”G°kG)> = <kG(E;°°(G) (N,(X))), I‘G)

- S«p(o,(x» dg = <Sag(x) dg, o > :
proving (1).

Equation (1) justifies the notion of an integrable action (18.19).

Note that if G is compact, then P, is finite, i.e. P, is a normal faithful condi-
tional expectation of 4 onto 4°.

Using (1) and 18.4.(2) we see that

2 Po(0(x)) = 46(t)'Po(x)  (xeM*, t€G).

In particular, if G is unimodular, e.g. abelian or compact, then P,° g, = P,(t € G).

18.21. Consider now the continuous action
c @Ad(p): G —» Au( M B B(LYG)))

where 6: G - Aut(.#) is any continuous action of G on 4 and p: G —» B(LYG))
is the right regular representation of G.
We shall assume .# < #(#) realized as a von Neumann algebra and hence

M B(LG) < 2(ZL*G,x)). Moreover, we may assume (2.24) that there
eXists an so-continuous unitary representation Gog > t(g) € B(H) such that
g, = Ad(t(g)) (g€ G). On the other hand we put u@) =1.QMe)elt B
® Z(ZL%G))(geG), and recall (18.6.(5)) that 7,(0,(x)) = u(g) n,(x) u(g)*
(xe.l, geG).

, Every compactly supported w-continuous function [:G— # defines an
“element

) T = Sn,(](l)) u(t) dt e M @ B(LYG)).

On the other hand, every compactly supported s*-continuous function
G X Ga(s,r) > X(s,r)e.# defines an element Xe./ ® 2(£%G)) uniquely
dctermined such that v

@ X Eln) = SS(X(s. NN drds (£ n e £XG, )).

It is casy to check that if the operator X is positive, then X(g,g) > O forallgeG.

e YR R
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We shall show that if the operator X just defined is positive, then

(3) Pa;Ad(p) (X) = T}, )

where the compactiy supported w-continuous function f: G — M is defined by

@ ) = Sa,,(xar, M) delr)dr (€ G).

Indeed, for & € %G, ) and g, s € G we have
(o, ® Ad(p(g)) (X)) &) (5) =
= ((v(g) B p(g)) X(v(2) ® p(g))*¢) %)

= A4(8)"20(g) (X(v(2) ® p(g))*¢) (2)

= 4o(@)"1() S X(sz, ) (0(2)* B ple™) &) (1) dr

— o) SX(sg, ) olg)*E(re™) dr

— 46(2) S o(g) X(sg, rg) o(g)*4(r) dr

— 44(8) Sa,(X(sg. r8)) &) dr
and, using 18.20.(1), we obtain

(PisnagX) €1 = SSS"“‘” (0,(X(sg, 7)) €)1 £(5) drdsd.

On the other hand, for the function f defined by (4) we have

e &) = S(n.(m» u(t) &1 &) dt

- SS“"-“"” u(e) &) ()] &(s)) dsdt
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- SS(o:*(f(r» w(t) &) (5)] &(s)) ds d

Conscquently, the clement P oaap (X) is bounded and (3) holds.

18.22. Finally, we consider the action § = 1.4 ® d; of the Kac algebra G = (£(G),
96, Jje» ) on M @ B(LXG)), where # = B(H#) is a von Neumann algebra,
and compute the values of the operator valued weight P, on two types of elements.

Recall that wgeje=wg (18.17.(12)) and u(g)=1.,B(g) € M RB(L*G)) (g€G).
Let f: G — M be a compactly supported w-continuous function.

We first consider the operator A, = S( fg) ® Mg))dg e @ £(G) and show
that if A, >0, then

M E%5 (4)) = flo).

Indeed, for ¢ e# ¢} and k € #(G) we have

(ERafAp) kY = (A 0 B k) = S«P(ﬂg)) k(g) dg

~

= <S¢p(f(g)) Ag) dg, k> = (Mo 1) k)

hence EZic)(A4;) = M@ *f) > 0 and, using 18.17.(8), we obtain

(E..‘O (A])v ¢> = <Ez(c) (AJ)’ wc) = (K(Q .D! 0’0) = <ﬂe), ¢>
which proves (1).
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Next, we consider a continuous action o: G — Aut(#), we define the operator
(18.21.()) T7= Sn,( f(2)) u(g) dg e M @ B(£*(G)) and show that

o) P, 52, T ="f(@)).

Indeed, we have n(H) c A B LG)=(# T B(LYG))° and S(u(g)) =
= u(g) ® A(g), hence §(TH) = S((n,(f(g))u(g)) ®X(g)dg so that, using (1), we obtain

P(T7) = E_G(6(TH) = mo(f(e))-
Given the compactly supported w-continuous functions f,fy, f2:G - .4,
we define the functions f*, fi % f,: G — A by

F4@) = do(8) e Ui+ /(@)= an(t)fz(t“g) & (g<G).

It is easy to check that

3) (Af)' = A,t AI‘;AI. = Afltfn
@ TP =Te TRTL=T,,

and from (1) and (2), using the polarization relation, we infer that

® ES5(A7As) = ([T 5 15) (o),
©) P, 50, (TRNT7) = n((f2 %12 (€]

Consider now a compactly supported w-continuous function G X G 3 (s, r)
+ X(s, r) €4, the corresponding operator X € M ® R(L*(G)) uniquely determined
by equalities 18.21.(2) and the operator FxyM & £*(G) defined by the compacily
supported w-continuous function

) ' Fe(g) = 45(8) X(8,8) (g€0).
If the operator X is positive, then
® P, 54, () = Fx.

19707 32
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Indeed, we first compute the element (14 ® 5g) (X) e @ B(£YG) B
® £G) = B(LHG X G,H)). For {eL* G X G,»#) we have

(2 B5) L ID) = (LB W) (X T 10) (e B W) 1)
— (X 1) (1 B We) U1 B W) O
- SSS(X(s, N (1 B We) O (1) (L & We) ) (s, 1) drdsd

= SS S (XG5, 7) 87, 7 10Cs, ) drdsdt
= S SS(X(s, P) 8r, )] 4G5, 1)) drdsde
= SSS(X (s, r ) {(r s, r'¥) IC(S, 1)) A¢(r~s) drdsds.

Let @ =o€ @ B(LHG)¢ with EeX(G,#) and ke (G). There
exists n € £*(G) such that k = @, i.c.

k() = (), @) = (u(r) in) = Sn(r"t)th)dt-

Then @ Bk = w; with { = ¢ & n, that is {(s, 1) = &(s) n(t), and by the above
computation it follows that ‘

(E2a(6(X)), k) = {(1x B 85) (X), @ B k)
= Sk(r) (S A4(r71s) (X(s, r7%5) E25)] €60 ds)dr = (MK
where fe€ X(G) is defined by
©® fi)= Sda(r-*s) X6, 19 I N ds (e,
Consequently, 0 < Efic) (5(X)) = A(f) and, using 18.17.(8), it follows that
(PsX) &1 &) = CEL% aiancy G0, @) = (5(X), 0 B )

= (EZ (600, @6) = (M), 06) = 0
= Sdc(-") (X(s, ) EON & dr = (Fot 1 .
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Therefore, the operator Py(X) is bounded and P(X) = Fy.

18.23. Notes. The extension of the Pontryagin and Tannaka duality theories (see [118]) to a
duality in the category of Kac algebras has been developed in a long series of papers by several
different mathematicians: [213), [217), [125], [90], [251)}, {891, [246), [260), [87]), [138], etc.
The actions of Hopf—von Neumann algebras on W/*-algebras have been considered in [152],
{153), (165}, [166), [232], [233). The notion of (4, / Ji,)-invariam:e, Theorem 18.12, and Propo-
sition 18.14, and also the computations given in Sections 18.21, 18.22, are from [233). Propo-
sition 18.19 was proved in several special cases in [104), [152], [233] and the gencral case

was asserted and used in [85), but the complete proof of it in the general case has only appeared
in [269].
For our exposition we have used: [104], 2331, [246), and [269].

§19. Crossed products

In this Section we introduce the crossed product of a W*-algebra by the continuous
action of a locally compact group as a particular case of crossed products by actions
of Kac algebras. The main properties of crossed products, including the duality
theory, are described.

19.1. Let 5: .4 — 4 & o be an action of the Kac algebra (&, 3, jw, ww) o0 the
W*-algebra . Consider the W*-algebra & realized as a von Neumann algebra

o c B(H# ) in the standard representation associated with the wEig\ht W As
we have seen in Section 18.15, one can construct a dual Kac algebra (A, 0ty juty Du)
where & < #(.) is a von Neumann algebra also acting on M «.

We define the crossed product of the W*-algebra M by the action & of the
Kac algebra sf on A to be the W*-algebra

R(H,8) c M B(Ha)

generated by () and 1. ® .

In particular, let G bea locally compact groupand let G = (£*(G), 7 ke, Hg)
and G = (&G), 8, jc» @) be the two associated Kac algebras which are dual to
one another (18.16, 18.17).

If o: G = Aut(.4) is a continuous action of G on the W*-algebra .#, then
7, M - M Q £L(G)is an action of G on.# (18.6) and, according to the general
definition above, the crossed product of the W*-algebra 4 by the continuous action ¢
of G on # is the W*-algebra

R(H, 0) c 4 T B(LG))
generated by =,(K) and 1.4 & £0), i-c.
mn R(M, 0) = R(=,(x), 1.4 B Mg); x€4, g€ G).
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Recall (18.6.(5)) that
@ e(0,(x)) = (La B M) 7,(x) 1 BMR)* (x€4, g€G),
which constitutes another proof of the fact (2.24) that there exists a realization

M = B(X) of A as a von Neumann algebra and an so-continuous unitary repre-
sentation G2 g > v(g) € B(o¢) with

(&) og(x) = v(g) xv(g)*  (xeH, ge@).
If6: M > M & £(G)is an action of the Kac algebra G on A, then the corres-

ponding crossed product is the W*-algebra
R(M, 8) < M B B(LHG))

generated by 6(#) and 1.4 ® £*(G), i.c.
@ R(M, 5) = R{5(x), 1Lu BSf; x M, fc L2G)).

In what follows we are interested only in crossed products by continuous
actions of groups. However, the appearance of certain important duality phenomena
ncccssitatfs the consideration also of crossed products by actions of Kac algebras

of type G.
Throughout this Section, G will denote a locally compact group.

19.2. Lemma. Let 0: G — Aut(A#) be a continuous action of G on the W*-algebra
M. Then:

()} M B L2(G) = R{n (M), 1.4 ® L2(G)}
() A B B(LG)) = R(n (M), 1.4 @ B(LHG))} = R{A(M, 0), ) &« B L¥(G)}
.3 (M B L(G))y*AY® = 1 (M).

Proof. We may assume 4 < B() realized as a von Neumann algebra
such that there exists an so-continuous unitary representation v: G — #(o¥) with
o, = Ad(v(g)) (g€ G). Let V be the unitary operator on ¥ & £*G) defined
by the bounded so-continuous function g +» t(g), i.c.

V) () =1rv(@) e ((eZL*G,X), geq).

It is casy to check that the s-automorphism 0 = Ad(V'*) = V* .V leaves
invariant the von Neumann algebra # @ £%°(G) ¢ B(F @ £XG)); in fact
@ 0(x @ 1g) = n,(x) (xed)
) 00a®N)=1.8f (feL=(G)).
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Consequently, # & £(G) = 6(H & L2(G)) = 0R(M B 15, 1.4 B L2G))) =
= R{n (M), 1.4 ® L=(G)}, proving (1). (2) follows from (1) because B(LNG)) =
= R{&(G), £*°(G)} and, by definition, R(M, 6) = R{n (M), 1.4 ® £G)}.

On the other hand, it is easy to check that

(6) (0, B Ad(p(e))) 0 =0 (1« B Ad(p(g))) (g€0)

as x-automorphisms on % ® £>(G). Consequently, for X e # & £*(G) we have
X e( M B L=(G))roAiP (o, BAAPENX =X (g€G) <> (1« B Ad(p())) 07X =
— 01X, (g € G)=> 07X € M B oo X € M B15)=1 (M), since (A B L2(G))- 844 =
= ® lg. This proves (3).

Similarly, one can show that for X € ./# @ #*(G) we have
O] ‘ X €t (M) <> (1, B 16) (X) = (L B 76) (X)
and that if 4 < . is a unital W*-subalgebra, then for x € ./ we have
@®) T(x) €N Q@ L2(G) = x€eN.

19.3. Let R( A, 0) = . ® B(L*G)) be the crossed product of the W*-algebra.#
by the continuous action ¢: G — Aut(.#) of G on /.

Consider also the action 6 = ta @ 6; of G on M ® B(L*G)). Since, by
18.7.(11), its centralizer is .# ® £°(G) and since n,(H) = M & £*(G), we bave
(1) 8(mo(x)) = 7,(x) B 1 € R(M, 0) B £G)  (x€.M).

On the other hand (18.7.(2)),
(2) (la D) =1a BML) B Me)eR(M,0) ® £G) (g€C).
Thus (19.1.(1)), 5(R(H, 0)) = R(HA,0) @ £G) and hence A(H,0) is a G-sub-
comodule of the G-comodule .# ® B(L*G)) via § = 1.4 & 5¢. The restriction of
the action 1.4 @ 85 to R(A, o) is denoted by

o: R(M,0) - R(H, 0) B £G)

and is called the dual action of G on R(M, ).

If G is commutative, then, according to Proposition 18.9, the dual action is
determined by the continuous action '

5:G — Aul(R(H, o))
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defined by
&%) = (1« B mG)* X1« B m(y)) (XeR(A,0),7€0)

and equalities (1), (2) can be reformulated as follows (see 18.9.(1)):
® G m()) = 7o)  (xed, yeG)

@ 5(14BAU) =& BAE)  (5G,1€0).

In the general case, we also consider the continuous action ¢ & Ad(p) of G
on A ® Z(ZL*¥G)). Using 19.2.(3), 18.4.(14) and the definition 19.1.(1) of the
crossed product, we see that

® R(M, 0) (M B B(LHG))) oAD,

In_the sequel we shall write N = R(H,0), P =M & B(¥*G)) and
B = o ® Ad(p); recall also the notation 6 = 14 & J;.

The identity J6(Ad(p(1)) (x)) = (Ad(p(?)) ® 15) (95(x)) (t€G), is easily
verified for x = f€ #*(G) and for x = A(g) € £&G), and so it remains valid for any
x € B(L*(G)) (seec 18.4.(15)). Consequently,

6) 0B=0B,B®1)°6 (geG)

that is, the actions 6 and B on 2 commute. It follows that
XeP =B (X)eP® and Xe P8 = 5(X) e PP Q £G)

hence, by restriction, we obtain:

.D a continuous action f: G — Aut(9°) of G on 2,
®) an action 3: P# —» P2 G £(G) of G on #°.

Proposition. For every continuous action o: G — Aut(K) of G on the W*-algebra N
we have

® (M) = R(A, o)}
where & is the dual action.

Proof. With the above notation we have =, (4) = A (by (1)), ¥/ < P#
(by (5)) and 2 = .« & £*(G) (by 18.7.(11)). Since B and & commute, using

Lemma 19.2.(3) we obtain n (W) c A c (PF)? = (P°)# = (A B L¥(G))Y=rn(A)
and hence n,(4) =4
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This proof also showed that
(10) (#5)? = n (A).

Finally, note that the mapping x: £*(G) 3/ 1« ® f€ 2 is a unital injective
normal #-homomorphism and that

(1) B((N) = A (f))  (fe £7(0G), g€0).

19.4. Consider now the crossed product 9?(./{,66) c M Q B(LHG)) of the W*-
algebra 4 by the action 6: .# — .# @ £(G) of G on A.

Consider also the continuous action o = 1.4 @ Ad(p) of G on.# & B(LG)).
Since, by 18.4.(14), the centralizer of this action is # ® £(G) and since 6(H) =
c 4 ® £(G), we have

n 0,(6(x)) = &(x) e A(H, ) (xetH, ge@C).
On the other hand,
@ 0,(1a Bf) = 1 B (Adp@) (N eR(H,0) (fe £(G), g€C).

Thus (19.1.(4)), 0,(R(H, 5)) = R(H, 5) (g€ C). The restriction of the continuous
action o = 14 @ Ad(p) to R(A, ) is denoted by

%: G~ Aut(R( A, 5))

and is called the dual action of G on R(H, 6).

If G is commutative, then the method of defining the dual action given in
the present Section leads to the same result as the procedure of Section 19.3. This
can easily be verified using the Fourier— Plancherel isomorphism (18.8.(4); a corlti-

nuous action of G can be regarded also as an action of the dual object of the group G).

19.5. Let 0: G —» Aut(.4) be a continuous action of G on .#. We then have a dual
action G: R(H, 6) - R(H, ) @ £G) of G on the crossed product (4, o) (19.3)
and also a second dual action &: G — Aut(R(R(H, ¢), 3)) of G on the second
crossed product R(R(-#, o) ¢) (19.4).

Theorem. Let o: G — Aut(.K) be a continuous action of the locally compact
group G on the W*-algebra .A. There exists a s-isomorphism

P: M B B(LHG)) —» R(R(A, 0), )
such that

5, c0=0+0,BAE) <G
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Briefly, we shall write
M (R (R(A, 0),0)); 5) = (M B B(LHG)); 0 ® Ad(p)).
Proof. We shall use the notation introduced in Section 19.3, i.e. .4"=A92(.//, 0), a
P=uM @ BLG)), B=0c® Ad(p) and § = 14 & 6g; recall that ¢ = 5|4 |

For each X € 2 we consider the element ¥(X) € 2 @ £*(G) defined by the
function g = B,(X), that is,

e (P(X), 0 & kY = Srp(ﬁ,(X)) kK@) dg (0 Py ke LUG).

It is casy to check that ¥: 23X ¥(X)e P ® B(LXG)) is a unital injective
normal *-homomorphism. We define another unital injective normal #-homo-
morphism ¢: 2 —» P @ B(L*G)) by

(€) PX)=(4@WHYX) 1k B Wg) (Xe2).

If Xe # = 27 (19.3.(5)), then from (2) it follows that ¥(X) =X @ l; and
from (3) and 18.7.(10) we obtain (

@ P(X) =6X)=a(X) (Xen).
Since 6(¥) < RN, 8)° (19.4.(1)) and & = P# (19.3.(5)), it follows that
© 50(0) = SX) = VBX) (XeH,geG).

On the other hand, if f€ £(G), then it is easy to check that (1.4 & f) is
- the element Fe#/ R L™(G) @ L=(G)) c P & B(ZL¥G,) defined by the function
F:G X Go(s, 1)~ f(st)-1a€M. For every &€ £%G X G,#) we have

(1a ® WE) F(l.a @ We) &) (s, ) = (F(1.a ® W5){) (s, 5)

=Fs55)((1a @ Wo) &) (5, =) ) = (1 B 16 8) (5 0)
hence
©) PaBDf)=1e®f ([eZ£™@)). i
Using 19.4.(2) we obtain i

() 51BN = 1s B Adple) () = Phla®S) (fe£2(G),geC). 1
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Thus, using Lemma 19.2.(2), the definition of R(N, 6) (19.1.(4)) and (4) and (6),
we get

B(P) = PR, La ® Z2G)}) = R{G(N), 1sB L)} = AN, &),

and from (5) and (7) it follows that g, ® = & ° f,.
The above Theorem is usually called “‘the Takesaki duality theorem”.

19.6. In this Section we summarize the essential facts concerning crossed products
by continuous group actions.

Thus, let o: G — Aut(.#) be a continuous action of G on the W*-algebra ./
and /"= &(A, o). Using the s-isomorphism 7,: M — (M) = N We shall identify
_# with a unital W*-subalgebra of 4", hence /# < N

There exist an s-continuous unitary representation

O Gogrrul@) =1 Mg)eN
and a dual action of G on A4 (19.3)

) S=o0:N4 - N LG),
such that (19.3.(2))

A Suig)=u@) ® M) (g€0),

which characterize the W *-subalgebra # of A4~ (Proposition 19.3)

“) M= N,
and the continuous action ¢ of G on « (19.1.(2)),
) o (x) = u(g)xu(g)* (x€.#, g€G).
In particular,
©) & = R{N?, u(G)}.
IfGis commutative, then the dual action is a continuous action of the dual
group G :
2" 0=6:G— Aut(¥)
such that (19.3.(4))
@) 0,ue) = Zr)ule) (8€G,7€C)
@) M= N

) & = RN, u(G)}.
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We shall show that, conversely, the existence of a unitary representation (1)
and an action (2) (resp. (2')) which satisfy the commutation relations (3) (resp. (3°))
implies the fact that 4" is a crossed product #(#, c), where .# and o are deter-
mined by (4) (resp. (4')) and (5), in particular the generation relation (6) (resp. (6))
holds.

To this end we need some preliminary results which are of independent interest
and will also be used in other situations.

19.7. Proposition. Let A be a W *-algebra with the property that there exist an
S-continuous unitary representation u:G — A" and an action N>R LG

of G on A" such that
Q) Su@)=u@)@Mg) (g0

Then the faithful normal operator valued weight Py: &+ — (40)*,

03] Py(x) = EJS(6(x)) (xeH™)
is semifinite and
3 Py(u(g)xu(g)*) = Aq(g) u(g)Py(x)u(g)* - (xes, geq).

For every k € H(G) with u(k) > 0 we have

) Py(u(k)) = k(e)-1g .

For all h,k € X (G) we have u(h), u(k) e RNp, and

©) Pyu(h)*u(k)) = (h* + k) () 1.

Proof. Recall (18.17.(12)) that wg *j; = wg. Thus, using the definition (2)
(or 18.19.(1)) of P,, (1) and 18.17.(8), for k € X (G) with u(k)>0 and vensd
we have

(PRI, ¥ = (BN, ¥ & we) = <6 ( Sk(g) u(g) dg), v wo>

- <Sk(g) &) & Ae) dg, ¥ & mo> - <Sk<g) V() Me) de, 0’0>

= CMEC) V(- )), @) = k(e) Y(u(e)) = Ck(e)- 1, ¥,
which proves (4).
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For every k€ X (G) we have k*xke X'(G) and u(k* * k) = u(k)*u(k) >0,
hence we infer from (4) that u(k) € Ne, and Py(u(k)*u(k)) = (k* = k) (e)-lr. Thus
(5) follows on applying the polarization relation.

If {k,} is a net in X'(G) such that u(k,) 2, 1, then for every x € 4" we have
xu(ky) € Np, and xu(ky) 2 x. Hence P; is semifinite.

Finally, using 18.17.(13), we obtain for x € .¥' t,geGandyeN{

(P(u(@)xu(g)*), ¥) = (Su(g)xu(®)*), ¥ & we)
= ((ulg) B Me)) 5(x) (u() & M), ¥ B wo)
= (5(x), (¥ * Ad(u(2))) B (@6 * Ad(M2))
= 44(g) (5(x), (¥ * Ad(u(2))) & @)
= A(8) (P00, ¥ + Ad(u(2)))

= AG(g) (u(g)PJ(x)"(g)', ¢>
which proves (3).

If G is commutative, then it is more convenient to state the above Proposition
as follows:

Let A be a W*-algebra with the property that there exift an s-continuous
unitary representation u:G — N and a continuous action 0:G — Aut(X) of G
on A such that

() 0,ue) = & 7yuE) (<G red).

Then the faithful normal operator valued weight Py: ¥+ — ™t

@) P =SO,(x)d7 xeH)
is semifinite and
®) Puu(®)") = HEPLE)®  (xeN*, g€C).

Also, identities similar to (4) and (5) hold.

. In this case, the main part of the proof reduces to an application of the Fourier
inversion theorem. Indeed, for any positive definite function k € X (G) and every
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VeN$ we have

(PN, ¥y = <S 0y ( Sk(g) u(g) dg) ar, w>

- S<e, v ( S &) ke) Yu(e) dg) dy = k(e) Y (u(e)) = <k(©)- 1., ¥,

19.8. In particular, for every continuous action ¢: G — Aut(#), the dual action
G: R(M, 6) > R(M, 0) ® £(G) defines an n.s.f, operator valued weight

Py R(M, 0)* - 1 (M)+

Thus, if ¢ is an ns.f. weight on ., then, according to Proposition 11.6,

b= 5t P,

is an n.s.f. weight on (4, o), called the dual weight of ¢.

The Theorem in this Section will characterize the dual weight of a given ¢
and also the set of all dual weights on %#(.#, o). In order to obtain such characteri-
zations, it is necessary to know the values of # on a wide class of elements of
A(A, o). For this reason we begin by defining and studying this class. As usual,
we put u(g) = 14 ® Mg) (g€G).

Every compactly supported w-continuous function f: G — 4 defines an
element

Ty = S mJ(f18)) u(g) dg € R{z, (M), u(G)} = R(A, ).
We recall (18.21, 18.22) that the mapping f+> T¥ is linear and
M (TP* = T}, where f*(g) = 45(e) figD)* (ge G)
@ TATj=T..,, where (f;ef;) () = Sf.(t)fz(t‘ 5, (z<G).

We also recall (18.3) that the action & of Gon R(#, c) defines a right S£(G)-module

structure on R(.4, o). In this connection it js casy to check that for every k € /(G)
we have

3 k-T} = T3, where (kf) (g) = k(g) fig), (g € G).
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Finally, if fe 2(G) and if we put (fx) (g) = f(g)x, (xeH, g€ G), then

“@ T7. = m (x) u(f).
Consequently,

& = {T%; f: G — # w-continuous with compact support}

is an s*-dense *-subalgebra of #(#, o). .
On the other hand, from the definition (19.3) of the dual action ¢ and 18.22.(2)
it follows that if T¢ > O (in particular if f is of the form f* xf), then

) Py(T) = m,(f(e))-

Theorem. Let o: G — Aut(A) be a continuous action of G on the W*-algebra MA.
For any n.s.f. weight ¢ on A, the dual weight @ = @° ;e Py is the unique

n.s.f. weight on ®(M, o) with the properties:
() if f: G = A is a compactly supported w-continuous function and T} >0,

then
©) (TP = o(f(e);
(ii) for all xef, g€G, te R we have
) (o (x)) = 7,07 ()
®) o?(1.a B Mg)) = 45(8)" (La & Mg) 7D (9 * 7,): DY))-

Moreover, the dual weights are exactly those weights which are invariant
with respect to the dual action, i.e. the mapping @ v @ establishes a bijection be-
tween the sets {@; @ n.s.f. weight on M} and {¥: ¥ (6, jg)-invariant n.s.f. weight
on A(H, 0)}.

Proof. Let ¢ be an n.s.f. weight on .. (6) follows obviously from (5). On
the other hand, using Theorem 11.9, we obtain (7) and

[D(g + ,)": D3], = n(D(@  0,): Del)  (g€G, teR),
so that, by 3.10,

oP(u(g)) = o+ () 7.(D(@ * 0,): Dol)  (g€G, 1),

and (8) will follow once we show that

©) PP (u(g)) = Ac(e)'ulg) (g€G, teR).
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By 3.15.(1), (9) is equivalent to
(10) @ = 0)"(X) = 46(8)  p(u(g)Xu(g)*) (X eR(H,0)*, geG)

and, since (¢ *0,)"(X) = (¢ ° 27 )UEPNX) u(@)*), Ae(g) P(u(g)Xu(g)*) =
= (@° n;) (P4(u(g)Xu(g)*)), (10) follows using 19.7.(3).

Equations (7) and (8) determine the modular automorphism group of ¢
uniquely and permit an imAmediate verification of the fact that the s*-dense #-sub-
algebra @ of A(H, o) is o®-invariant. On the other hand, (6) determines the values
P(X*X) for Xe B. Consequently, according to Theorem 6.2, conditions (@) and (ii)
determine the dual weight ¢ uniquely. .

We now show that the dual weight ¢ is (&, jo)-invariant by checking condi-
tions a)—d) from Theorem 18.12. Since Qs faithfulx condition a) is trivially satisfied.
The commutation condition b), i.e. & *o? = (0f & 15) * 5, follows immediately
using e’gualitie;\s (7), (8) and 19.6’:(3), 19.6.(42\. For 0 < Tfe # and ked(G)t we
have (a(T7), § ® k) = (k- T}, $) = (T%, ¢) = k(e) 9(J(©)) = (1¢, k) (T $)=
= (T} ® lg, ¢ & k), hence condition c) is satisfied. Consider now X = T} € @,
Y=T7 e # and k € o(G). Using (3) and 18.7.(7) we see that k-X e # is deter-
mined by the function f;(g) = k(g) fi(g), and k°. Y € & is determined by the function
Jd8) = k(g) fi(g). From (1),(2) and (6) it follows that (?)((T}’)‘(T})) = (f*xf) (e);
this equality, together with the usual polarization relation, Justifies the following
computations:

(Y B 16) 33, B kY = (k- XDyl Yy = BY*(-XD) = (i 2£) @),
GIYX B 1), 6 Bk oy = (K| (K -Y))a = $(k*- Y)*)X) = (1 1) (©).

Since (f3 »f3)(e) = (f& » [ (e), condition d) is also satisfied.

Finally, let ¥ be a (g, jg)-invariant n.s.f. weight on 9?(;4?, o) and ¢ any n.s.f.
weight on .#. By Corollary 18.13, [D¥: D{), € R(H, 0)° = ,(#), hence, by
Theorem 5.1, there exists an n.s.f. weight ¥ on .# such that n,([Dy'::D¢],)=
= [D¥: Dg], (t€[R). Then, using Theorem 11.9, we deduce that [Dy: Dg), =
= n,([Dy: Dp),) = [D¥: Dp), (tc[R), and hence, by Corollary 3.6, ¥ = .

If § = §, then =,(IDy: Dp),) = [DY: D], =1 (teR), and hence ¥ = o.

The proof of the Theorem is complete.

19.9. The following important Theorem characterizes those W*-algebras which
are crossed products by a continuous action of G.

Theorem (M. Landstad). Let 4 be a W*-algebra with the property that there exist
an s-continuous unitary representation u: G - A and an action §: ¥ - & & &(G)

of G on & such that
S(ug) =u@)BMg) (g€C).
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Then A" is generated by A° and u(G),
m K = R{AN° uG)},
and u(g) N Su(g)* = N for every g€G.

Consider the W*-algebra K = A and the continuous action o: G — Aut(HK)
of G on K defined by o, = Ad(u(g))|-#, (g€ G). There exists a #-isomorphism

G: N — R(H, o)

such that

@ | O() = 1,(x) (x€M)

® PuE) = 1.Bre) (2€6)
) @Bi1g)6=0°9
Briefly,

®) W, 6) = (R(H, 0), 5).

If G is abelian, then it is more convenient to state the Theorem as follows:

Let & be a W*-algebra with the property that there exist an s-commuous
unitary representationu: G = A and a continuous action 0: G~ Aut(N) of Gon AN

such that
0,u(e) = (e, 7yug) (g€G, 7€),
Then A" is generated by ¥ and u(G),
® & = R(¥*, uG)),
and u(g) #'u(g)* = N for every g€G.

Consider the W*-algebra & = & and the continuous action o: G — Aut(4)
of G on K defined by o, = Ad(u(g))l.# (g€G). There exists a s-isomorphism

S N - R(H,0)
such that
@) P(x) = n,(x) (xeA)
39 Pug) =1.BMg) (g€G)

CY) $+0,=56,°¢ (g€0).
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Briefly,
) (A, 0) =~ (A(A, 0), 5).

Of course, if G is abelian, then the above two statements are equivalent
(see 18.6, 18.8, 18.9).

The proof of the Theorem is contained in Sections 19.10—19.12.

19.10. The main result contained in Theorem 19.9 is the assertion that
N"=R{N"?, u(G)}, which will be proved in the next Section. In this Section we assume
that & = R{N", u(G)}; we prove the other assertions in Theorem 19.9. We shall
use the notation of the statement of Theorem 19.9 and assume 4" « () realized
as a von Neumann algebra. .

Assume first that G is abelian. Then, for every xe# = A%, geG and ye G
we have 0,(u(g)xu(g)*) = 0,(uig)) 0,(x) 0,(u(s™) = (g, ) <&, ) ul(g)xu(g™) =
= u(g)xu(g)*, hence u(g) xu(g)* e N° = M.

Consider now the general case. For every x €M = A and g€ G we have
0(u(g)xu(g)*) = 3(u(g)) 6(x) 5(u(g)*) = (u(g) ® Mg)) (x & 1¢) (u(g)* ® Mg)*) =
= (u(g)xu(g)*) ® lg, hence u(g)xu(g)* € ¥ = M.

Let Ue ¥ @ £%(G) c B(ZL*(G,#)) be the unitary operator defined by
the bounded s-continuous function G>g+>u(g), that is, Uo @) =u(g) &(g)
(§ € £%G, ), g € G). We define a unital injective normal *-homomorphism

DN > N QB B(LUG))

by the equality ®(y) = U*S(»)U (y € #"). _
. For xes = 4% we have 5(x) =x® lg, hence (P(x)¢)(g) = (U*x®
® L) US) () = u(g)*xug) &(g) = 0;'(x) {(g) = (m.(x)¢) (g); this proves 19.9.(2).
_. For s€ G we have 6(u(s)) = u(s) ® A(s), hence @u(s)E) (8 =U *u(s) @
@ Ms)) US) (8) = u(g)*u(s) (UE) (s7'g) = u(g)*u(s)u(s™g) &(s7g) = (IBMS)) &) (2);
this proves 19.9.(3).

Thus, since A = R{H¥7, u(G)}, we get D(N) = D(R{A, u(G))) = R{rn (A),
1 @ £G)} =AM, o). ’
’ Finally, 19.9.(4) is obvious when applied to elements xe.# or u(g) (g€ G),
and so remains valid also when applied to an arbitrary element of A" = R{M, u(G)}.

Note that in the commutative case this part of the proof is more complicated,
as in this case J does not appear explicitly in the statement, but has to be defined,
starting from 0, as the Fourier-Plancherel transform of the action Tg: N —
- N £*(G).

19.11. Assume 4" = @(#) realized as a von Neumann algebra. To show that
A" = R{.M, u(G)} it is necessary and sufficient to prove that §(4) < R{A & Ig,
SW(G)} « B(X¥ @ L%(G)) or, equivalently, to prove the reverse inclusion for
the commutants, i.e. (4 ® 1) n Su(G)) = (). Since there exist nets
{ki} = H(G) with u(k;) > 1., it is sufficient to prove that

) (4 B 15) n Su(G)) = {S(u(k)y*xu(k); k € X(G), xe N My
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Before starting the proof of (1) we need some preparation. Consider the n.s.f.
operator valued weights

E=E%: (¥ BLG) > N, P=Py=E-6:/" N

and the unitary operator U on & ® £*G) — .‘?’(G, ) defined by the function
Gagwu(g), ie. (UL (g) = ulg)l(g)(eL*G,¥), g€0).

We show that for Xe ¥/ ® £(G), h,ke X (G), e, g€ G,
2 EG(u()X3u()u(g)*)) u(g) & = A(g) BuBNXUE S L) (g).

Indeed, it is easy to check that S(u(H¥(G))) = Ne (see 19.7.(5), hence
S(u(h) X8(u(k) u(g)*) e My and E(B(u(h)Xo(u(k) u(g)*)) depends w-continuously
on X (see Proposition 1.14). Consequently, it is sufficient to check (2) just for X

in a w-dense subset of #* & £(G). So, we can assume that X = x @ A(f) with xe &
and fe X'(G). Then. '

E(3(u(h)) (x ® Mf) S(u(k) u(g)*)) u(g) &
= E(5(u(h) (x @ Mf)) 6(u(k) (1 @ Me)*N ¢

=F ((Sh(s) ©E)® l(s))ds)(x ® Sﬂr) ar) dr)(gk(t) w(OBM)) dt) a @Mg)t))c
=E ( SSS h(s) f(r) k(t) (u(s)xu(t) & M(srtg™)) dsdrde ) &

(via t = ris7lg)

= 44(8) E (S( (SS h(s) fr) u(s) xk(ris7g) u(r~is™g) dsdr ) @Ml)) dl) £
(using 18.22.(1))

= 44(z) (SS Hs) ) u(s) x k(r-1s7'g) u(r's™Ig) dmr) ¢
= de(z) SS H8) ftr) u(s) xk(r's™1g) u(rs7'g) & dsdr

= 4a(g) SS o) fir) (s) x [UE B Rr-1ss) ddr
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= 4,0 Sh(s) ) x( Sﬂr) (0 B4 UEBRN ) o
= 44® Sh(s) u(s) x[(Lr B M) UE B K] (s7'g) ds
= 40 Sh(s) u(s) [ B M) UG B K)] (57%g) ds
= 4 Sh(s) () B M) (x B M) UE R (g) ds

= 4¢(g) [S h(s) () (x BAN) UK @ k) dS] (8
= 45(8) [6(u(h)) (x B M) U @ K)] (g).
We show that for x e &', h, k € X (G), £ € ¥, g € G, we have
3 Pu(h)*xu(k)u(g)*) u(g) § = Aq(g) [6(u(h)*x) UE @ k)] (g)
“) u(g)* P(u(g)u(h)*xu(k)) § = [S(u(h)*x) UE B k)] (g™)

Indeed, (3) follows from (2) replacing X by 5(x) and A by h*, since u(h)*=
= u(h*) and P = E- 4, while (4) follows from (3) using 19.7.(3) and replacing g
by g™

For fe A (G) we consider the operator

®) Ry = Sda(x)""ﬂg“) (Le B ple)) dg € (4T LG
For { € £%G, o) we have

® R0 = Sﬂg")t(sx) &g (s€0).

It is easy to check that for f; k € X°(G) and & € o we have

0 RUR @ k) = 8(u(k) € BN.
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We now prove inclusion (1). Let X € (A4 & 1g)' 0 5(u(G))' and h, k € X(G),
x €A, Consider also &, n € and @, Y € X(G). Using (3)—(7) we obtain

(Xo(u(hy*xu(k) ¢ B @) | (1 B¥)
= (XS(u(hy*x)5k) € B ) | (1 BY)
= (X3(u(h)*)R,UCE BK) | (1 B ¥))

- S([R, SR UE B K] () | [X*( B ¥)] () ds
= SS o(e) (B DUE B k) (s2) | [X*(1 B¥)1 () dodg
. (via gr>s57g)
- SS (&) (B HUE B 1] (@) | 1X*(n B ¥)] (s)) dsdg
- SSAc(g“)q»(g"s)(P(u(h)'x"(k)"(g)')“(g)f | [X*(n B ¥)}(s)) dsdg
- Sgdc(g") (Pt sulku(z)*u(@)BrE)) (¢ B @))s) | [X*(1 B ¥)) (5)) dadg

- deg-') Py ulkyuE)(E) € B 9) | X*(n B V) dg
(since X e (4 ® 1) n 6u(G)))

- Sacur') (XE B 9) | 5(ule) Plulg)ulk)x*u(h) (n B ¥)) dg
= SS (™) (IXE B 9 () | [le)* Plulutk)*x*u(h)) B Me)*)n B¥)] ()dsdg

- SS () (IXE B @)e) | $(gshu(e)* Pulg)u(k)*x*u(hn) dsdg
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= (|4 €x¢ B 0 01 eI B 1 e asty
(via g > (sg) ! = g1 57

- SS (IXE & @)1 () | e [5uk)*x*) Uty & hy) (sg))dsdg

= S (X B )] () | [RSk)*x*) UM h]} (s)) ds

= (X¢ B ¢) | 5(u(k)*x*)R,U(n ® h))
= (XC B ¢) | (u(k)*>*)5(u(h) (1 B ¥))

= @) xuk) X C B o) | (1 B ¥)),

hence Xé(u(h)*xu(k)) = S(u(h)*xu(k)) X.
This completes the proof of Theorem 19.9.

19.12. From the first half of the sequence of equations in the final part of Section
19.11 it follows that for xe4" and h, k € A’ (G) we have S(u(h)*xu(k)) =

= SAc(8")5(P(U(h)'XU(k)U(g)‘)u(g))dg=5( S P(u(hy*xu(k) u(g)u(g)* dg ) » hence

) u(hy*xu(k) = SP(u(h)*xu(k)u(g»u(g-l) d.

This relation is also sufficient to conclude the proof of Theorem 19.9. Moreover,
it contains the main idea of the proof, by showing that for a wide class of elements
acN we have

@ a= SPcau(g» u(g™) dg

with P(au(g)) € M = A4"* and u(g™) € u(G).
If G is abelian, then (1) is casily reduced to the Fouricr;invcrsion theorem.
Indeed, let a = u(h)*xu(k) and consider the function J:G & defined by

¥)=0,(a) (yefv'). Recall (19.7) that in this case we have P= P, = SO,(-)dy.
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Since a € M (see 19.7) it follows that the function f is integrable. Then

f)= ( Sh*(sw,(u(s» ds)tr,(x) ( Sk(rw,(u(r»dr)

= SS {st, y) h*()k(t)u(s)0,(x)u(r) dsdt
(via t > s~

= S () ( Sh’(;) k(s t ™) u(s) 0,(x)u(s2 1) ds ) dt

and

SS |h* (s) k(s72 £ ))u(s)0,(x) u(s™2 £77)|| dsd¢

<||xll SS | h*(s) k(s t7Y) | dsdt < + o0

hence f is the Fourier transform of an integrable function. Consequently, we can
apply the Fourier inversion theorem to get

SP(au(g» u(g™) dg = S(S 0,(a)0,(u(g) dr) u(g™) dg

- S (SGTW) dr) u(g) u(g™)dg = Sf(x) dg =fe) = 0fa) = a

A A
where ¢ € G denotes the neutral element of G.

19.13. As a first application of Theorem 19.9, we show that in 19.3.(5) we actually
have an equality. :

Corollary. (M. Takesaki, T. Digernes). Let o: G — Aut(.#) be a continuous action
of G on the W*-algebra M. Then
R(M, 0) = (M B B(LHG)))y*A4P,

Proof. We shall use the notation N = R(M, 0), P = M4 @ B(LXG)),
B=0c®Ad(p), 6=14®5; as in Section 19.3 and u(g)=1.BMg)€
€N < P2 (g € G). As we have seen in Section 19.3, g~+»u(g) is an s-continuous
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unitary representation of G in 27 and §: ¥ — 2# & £(G) is an action of G on
25 such that 5(u(g) = u(g) ® Mg) (¢ € G), and (#5)° = n,(#). By Theorem 19.9
it follows that 28 = R{r,(H), u(G)} = A" :

19.14. The previous Corollary enables us to compute the commutant of the crossed
product.

Corollary (M. Takesaki, T. Digernes). Let a: G — Aut(#) be a continuous action
of G on the von Neumann algebra # < B(#) and assume that there exists an so-con-
tinuous unitary representation v: G — B(¥) such that ¢, = Ad(v(g))l # (ge€G).
Then the commutant of the von Neumann algebra R(AM, o) = B(H Q@ L*G)) is
given by

m R(M, o) = R{x' B lg, v(g) B p(g); x' e A’, g G}.
Proof. By the von Neumann double commutant theorem, (1) is equivalent to
R(M, 0) = R{x' B l¢, v(g) B plg); x' €A’, g G},

which is an obvious consequence of Corollary 19.13.

The so-continuous unitary representation v: G — #(o) in the statement of
the Corollary also defines a continuous action o¢': G — Aut(.#’) where
oy = Ad(v(g)) | #’ (g€ G). We show that

P3) R(AM, 0) is spatially isomorphic to R(M', 6').

To this end, recall that the regular representations A and p of G are unitarily
equivalent. Indeed, the operator U e 2(£%G)) defined by (UE)(s) = Ag(s)12&(s™)
(¢ € £%(G), s€G), is unitary and for g€ G we have (UA(g)E)(s) = Ag(s) 2 X
X §(g71s™Y) = Ag(g)246(sg) ™ *((s8) ") = (p(8)US) (), i.e. U*p(g)U = Mg).

On the other hand, let Ve 2(o# @ £2(G)) be the unitary operator defined by
the function s = v(s), i.e. (V{) (s) = v(s){(s) ({ € LG, K#), s € G).

Then W = (10 ® U) Ve B(#® £LG)) is a unitary operator and, as easily
verified, we have

(&) W (x' @ IgW = n(x) (' e,
Q) W @) @ pE)W =1.B L) (g€G),
proving (2).

19.15. Landstad’s thcorem 19.9 enables us to prove a result for actions of G on .4
similar to Proposition 19.3.

Proposition. For every action5: M — M @ £(G) of G on the W*-algebra A we have

m S(H) = R(H, 5)°
where & is the dual action,
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Proof. Let 4 < B(#) and 4 @ B(LHG)) = B(XF @ Z%G)) be realized
as von Neumann algebras. We consider the action (18.7.(12)

e B 5&: B(X)® B(LHG) ~ B(X) B B(LHEG) B £0)
of G on #(# ® £*G)) and show that
(1 & 08) (3(-H)) = 5(H) B £(G).
Indeed, if X € 5(H) = B(H# B £*G)) and x .4, then
(1 ® 58) (X)) (5(x) B 14)
=(le ® Wo) X B 16) (le B WE) (5(x) B lg) (1e ® W5) (10 & WS)
= (Le @ Wo) (X B 15) (e B 55) (5(x)) (1e ® W)
= (Le ® Wo) (X 8 1) (6 B 1) (5(x))) (L ® W§)
= (le & Wo) (6 & 15) (6(x))) (X B 16) (1 & W§)
= (L @ Wg) ((1r B 56) (3(x))) (X B 15) (1x ® W)
= (L 8 W) (Le @ WE) (5(x) ® 16) (1r © Wo) (X B 1) (12 B WE)
= (3(x) & 1¢) (1e B 53) (X))

Consequently, 10 ® 53 restricts to an action 8': 5(.4)" — 5(4)’ ® £06) of G on
6(.11) On the other hand, there exists an s-continuous unitary representation

1Gogr @)=l ® p(g)e&(.ll) and it is easy to check that 8'(’(g))=¥'(g)&
@ Mg) (g €G). By Theorem 19.9 it follows that

&) 6(,()' = R{(6(4))*, v’ (G)}.
Recall (19.4) that the dual action 6 G — Aut (R(HK,5)) is 6 =04

© Ad(p))|R(.#, 5) and that 5(H) < R(H, 6) To prove the reverse inclusion
we note that

®) R(H,5) < (AT B(LYG)) A4 = .4 B £(G)
and that for every X € R(.#, 5) we have
4) (1.2 B 85) (X) = (6 B 1) (X).
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Indeed, for X = 8(x) (x e A), (4) follows from the fact thatd isan action of G
on.# (18.2.(4)), while for X =1,Q f (fe ZL*(G)), (4) is immediate (18.7.(9)).
Since R(H, 6) = R{5(M), 1.4 B Z£*(G)}, (4) is valid for every X € R(A, J).

Consider now X € #(A, 6)" Then X e # ® £(G) and X satisfies (4). Since
Xed @ £G), itis clear that Xu'(g) = u'(g)X for all g€ G. Let Y € (6(#))", that
is Yed() and (lx @ We) (Y ® lg) (I @ W2) = Y @ 1. Then

XY®le=X®15) (Y& 15)
=(lr @ Wo) (lxr B WE (X B 1) (1 B W5) (Y B 1) (1 B W)
= (lr ® W) (1 8 55) (X)) (Y B 15)(1x & W)
=(r@ W) (B 1) XN (XY B 1) (xS WY
= (1 @ W5) (Y ® 1) (0 & 1) (X)) (1r & W)
= (1 ® Wo) (Y ® 1¢) ((lu B 36) (X)) (1r ® W§)
= (Le @ Wo) (Y B 16) (1 B W) (X & 15) (l.r B Wo) (1 B W)

= (Y§ la)(X®lc)= YX® lg,
hence XY = YX. From (2) it follows that X € 6(.#)" = 6(#).
For X e #/ @ £(G) we have also obtained
&) Xed (M) <> (1a B 35) (X) = (6 B 1) (X).

19.16. We now prove a result similar to Proposition 19.7.

. Proposition. Let o: G - Aut(A") be a continuous action of G on the W*-algebra N".
If there exists a unital injective normal *-homomorphism y: £°(G) = A& such that

O] o, (X(f)) = x(Adlp(e)) (f))  (fe £%(G), g€ G)
then the faithful normal operator valued weight P,: 4+ — (¥°)*,
@ P = So,(x)dg Ay

is semifinite. For f€ .9’V°"(G)+ we have

) ) = ( Sf(g) dg) Lo
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For xe At and s € G we have
) P,(0,(x)) = Ag(s) Po(x).

Proof. For f€ #*(G)* and k € Z%(G)¢ = £*(G) we have
S(Ad(p(g)) (), k) dg = SSﬂsg) k(s)dsdg = ( Sf(g)dg)< 16, k).
Thus, for every Y €47 we obtain

S(U,(x(f», ¥)dg = S CHAd(p(E) (1), g

= S(Ad(p(g)) (f), Yo 2 )dg = (Sf(g)dg) (w¥)

which proves (3) and the semifiniteness of P,. (4) has already been proved (18.20.(2)).

19.17. In particular, for every action 8:.# — A @ £(G) of G on .#, the dual action
8: G — Aut(R(H, &)) defines an n.s.f. operator valued weight

Py (A, 0)* — (MY

In this case, the *-homomorphism 1: £%(G) — R(#, &) is defined by X(f)= 1.8f
(fe £2%(G)). .

Thus, if ¢ is an n.s.f. weight on ., then, according to Proposition 11.6,

b=951-P

is an n.s.f. weight on R(A, &), called the dual weight of .
From Theorem 11.9 it follows that

M of(G(x) = 6(oP(x)  (xeH, teR)
@) [Dy: Dp), = 8((DY: Dgl)  (teR)

for any n.s.f. weights @ and ¢ on 4. :
According to 19.16.(4), the dual weights are relatively invariant with respect
to the dual action, more precisely,

3) $(,00) = 489X (XeR(A, 8)*, g€C).
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Conversely, let ¥ be an n.s.f. weight on.@l(ﬂ, 6) which is relatively\ invariant with res-
pect to the dual action. Then it follows that [D¥: D), € R(A, 5)° = 5(K) (¢ R),
and by Theorem 5.1 there exists an n.s.f. weight ¢ on .4 such that [D¥: Dy}, =
= 8([Dy: Dg),) = [Dy: Dyp], (t€R), hence ¥ =. Thus, the dual weights
on A(#, J) are exactly those which are relatively invariant with respect to the
dual action.

If G is commutative, then the notions introduced in Sections 19.16, 19.17
agree with the corresponding notions introduced in Sections 19.7, 19.8.

19.18. Consider again a continuous action ¢:G — Aut(.#) of G on .# and an n.s.f.
weight ¢ on .4. n
On the crossed product #(.#, g) we have the dual weight (19.8) p=¢ nglePa.

By Theorem 19.5 we have _
)] (R(R(AH, 0), G); 3) ~ (A B B(LYG); o B Ad(p))

and hence on A4 & 2(£*(G)) we obtain the dual weight (f) of the weight ¢ (19.17)

2 A

[9)) P=¢@-° Pa?Ad(p) =@ e a;le Ps ° Pa;Ad(p)'

On_the other hand, on .# & #(£*G)) we can consider the weight ¢ & tr
where #r is the canonical trace on #(#%(G)).
It is then natural to try to compute the Connes cocycle

[D5:De® ), (teR)
that is, to give a more explicit expression of the second dual weight & using the #-iso-
morphism (1).
To this end, we consider for each ¢ € R the unitary operator U, € 48 £*(G)
defined by the function
Gagrr Ufg) = [D(p* o,): Dp), A

and recall that the modular function 4 = 4, can be also regarded as non-singular
positive self-adjoint operator on £*(G), acting by multiplication.
Theorem. Let a: G — Aut () be a continuous action of G on the We-algebra .
For every n.s.f. weight ¢ on .# we have

[Dp: D@ B )], = (1a B 4YU, (teR).

The following obvious consequence is particularly useful:

Corollary. Let 6: G — Aut(.#) be a continuous action of the unimodular locally com-
Ppact group G on the W*-algebra M. For every c-invariant n.s. f. weight @ on K we

have ¢ =@ J 1.
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The proof of the Theorem is contained in Sections 19.19-—-19.23.

19.19. We first reformulate Theorem 19.18. Since 4 = 4, is a non-singular positive
self-adjoint operator on £*G), we can consider the n.s.f. weight tr, on #(ZL*G))
given by the Pedersen-Takesaki construction (4.4).

Lemma. The mapping Raotr> U,eM @ £%(G) = M S B(£L*G)) is a unitary
cocycle with respect to the modular automorphism group of the n.s.f. weight e &ir,
on M S B(LUG)).

Proof. Recall that the unitary operator U, &.# ® £°(G) is determined by
(U By = Sw(v.cg»k(g) g e kL),

where U(g) = [D(@ ° o,): Dol (g € G).
Since, for every g € G, the function ¢ = U(g) is s*-continuous, using the Le-
besgue dominated convergence theorem we see also that the function U, is s*-con-

tinuous. .
Let 0 = @ B try. Then of = of ® Ad(4") and hence

NMBLGC) =0 B1 (tcR).

Let s, te[R. Since U,e# ® £*(G) is defined by the function g ++ U,(g),
the element of(U,) €.#4 & £=(G) is defined by the function g+~ cf(U(g)) and
the element U,0?(U,) e # & £=(G) is defined by the function g =+ U(g)o?(U,(8))=
= U,,(g). Hence U,,, = Ugl(U).

Thus, by Theorem 5.1, there exists a unique n.s.f. weight on 4 & #(£*(G)),
denoted by (¢ & tr,)y, such that

(D@ D trdo): De B tr)l,=U, (teR).
Then
(D¢ B rr)o): Dip B, =(1B4YW, (e R).

Consequently, Theorem 19.18 asserts that

) ‘21’ =(p @ tray
on 4 & R(LYG)).

The proof of (1) consists in computing the values of the two weights on ele-
ments X € (4 B B(LHG)))* defined by compactly supported s*-continuous func-
tions G X G — .4 (18.21.(2)) and showing that the two weights commute; then (1)
will follow from Theorem 6.2.
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19.20. Since the values of the weight (¢® tr,)y are not directly computable, we shall
first express this weight in another form, which makes possible such computations,

Without loss of generality, we may assume /4 < Z(H) realized as a von Neu-
mann algebra such that there is an so-continuous unitary representation v: G —
- B(K¥) with ¢, = Ad(v(g)) | (¢ € G). Then the function g~ v(g) defines a
unitary operator V€. & #°(G) and hence a *-automorphism & = Ad(V) of
M@ £*(G) (compare to the proof of Lemma 19.2). It is easy to check that if an
element X €.# @ £*(G) is defined by a bounded w-continuous function Gog>
> X(g) €., then the clement S(X)e.# ® Z*°(G) is defined by the function
Gag > 0,(X(g):

(1) [S(X)](8) = 0,(X(g)) (€ G).

Thus, the *-automorphism & of # @ £°(G) depends only on the continuous action
0: G - Aut(#) and we can consider the n.s.f. weight (¢ @ 1) S on A & LG),
where pt = pg. A '

On the other hand, the action 6 = 1.4 & 8 of G on . ® #(£%(G)) defines an
n.s.f. operator valued weight P, on .# @ #(£*G)) with values in (A D B(LHG)))’=
=l & £*(G), and we can consider the n.s.f, weight ((¢p & ) S) - P, on
M B B(LG)).

Lemma. We have

) (0 &trdy=(¢®n)-6)- P,

Proof. From the proof of Lemma 19.19 it also follows that the mapping
U, € A @L>(G) is a unitary cocycle with respect to the modular automorphism
group of the n.s.f. weight ¢ @ 1 on /' & £*(G), hence there exists a unique n.s.f.
weight on .# ® £*(G), denoted by (¢ ® p)y, such that [D(e ® 1)y: D(e@u)], =

= U, (te R). Actually,
A3) (@®uy=(p®n) 6.

Indeed, for the element X e/ 2 () defined by the bounded w-continuous
function G 5g ~» X(g) €. we have

(61722 0] (g) = (B~ = (oF B 16) * S)X)] ) = (55 oF * 5,)(X (2))
= 07"t (X(g)) = U (g)o?(X(2))U(g)*

= Ul&) (o7 & 15) ()] (&)U g)* = [U,07®*(X)U"*] (g),
hence 6{*®#8(X) = U ,o$®(X)Us# (1€ R). Then we similarly verify the corres-
ponding KMS condition and hence (3) follows from the uniqueness part of
Theorem 3.1,
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Furthermore, since P, is an n.s.f. (# ® £*(G))-valued weight on.# @ B(LXG))
and U, el ® Z>(G) (t € R), we infer from (3) and Theorem 11.9.(3) that

) (¢ @y Py= ((¢p ® 1) ° Py)y.

On the other hand, the action d; of G on B(L*(G)) defines an L*(G)-valued
ns.f. weight P= Py  on B(L*G)). Since & =14 ® 6 we have (18.19.(5)

P, = 14 ® P. Consequently,
©) @Bn P,=0 B P)

Thus, (2) will follow from (3), (4), (5) once we have proved that on Z(£*G)):
6) try=p-°P.

To prove (6) we consider an operator X € #(Z*G))* defined as in 18.21.(2)

by a compactly supported continuous function X: GXx G 3 (s, r) = X(s, r) € €. By
18.22 (7), 18.22.(8) we have [P(X)] (g)= SA(g)X(g, g)dg (g€ G), hence(u » P)(X) =

=\ A(g) X(g, g) dg. On the other hand, the operator 4X is defined similarly by the
function (4X) (s,r) = 4(s) X(s,r) (s,r€G), and using Mercer’s formula ({79,
Ch.IX, §8, Ex. 49 (c)) we obtaintr(X) = \ 4(g) X (g, g) dg. Therefore, the n.s.f.
weights u » P and tr, are cqual on the linecar subspace # of #(Z*G)) spanned

by the elements X € #(£%G)) which are defined as above by compactly supported
continuous functions G X G — €. It is clear that 4 is an s*-densc #-subalgebra of
B(L*(G)). Since o7 4(X) = A"XA- (X € B(L*G), t€ R), it follows that & is
also ¢"4-invariant. Moreover, since 4 € £%°(G), P is an £%(G)-valued weight on
B(LYG)) and £(G) is abelian, we have P(4"*X4-") = 4" P(X)4-" = P(X)
(X € B(L*G))*). Consequently, the weight 1 « P is ¢"4-invariant, that is the two
weights appearing in (6) commute. Thus, (6) follows from Theorem 6.2.

19.21. Lemma. Let X € (# @ R(LXG)))* be defined as in 18.21.(2) by the compactly
supported s*-continuous function G x G 3 (s, r) — X(s, r)€ M. Then

M 5= Sqo(o,(X(g,g))) A(g) dg = (@ B 1r)o(X).

Proof. By 18.21.(3) we have P 5, “)(X) = T}, where f{s) = \0,,(X(sr, r) X
X A(r)dr (s € G). Recall that the dual action ¢ is the restriction of the action
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14 ® g, so that, by 18.19.(4) and 18.22.(2), we have Pn(T}) =n=(f(e))=
=1, (So,(X (r,r)) 4(r) dr). Finally, using the definition 19.18.(2) of ("}; and Corollary

2.10, we infer that H(X) = Sq:(a,(X(r, ) A(r) dr.
On the other hand, using 19.20.(2) and 18.22.(2), we obtain

(@ & tr)o(X) = (¢ B 1) (S(P,XN) = Scp([s (P, () dg =
S:p(a.([r,(xn(g» dg = Sqo(o,(A(g)X(g, £) dg = Sqo(a.(X(g, £)A(e)de.

19.22. Our next objective is to show that the weights (¢ @ tr,)y and ¢ commute. We
shall put

o, =" Me Au(h & BLG)) (cR)
Be =0, B Ad(p(g)) € Aut (M B R(L*G))) (8€G)

Ufe) =4@)"Ufe) (teR,geC).

Lemma. With the above notation we have

) a| (M, 0)=0f (tcR)
7)) Pyea,=a,*P, (teR).

. Corollary. The weights % and (¢ @ try)y commute.

Proof of the Corollary Recall that P, is an R(.4, o¢)-valued n s.f. weight on
A G B(LYG)) and ®=o+P, Using (1) and Q) We get p >, = 9 + (P * @) =

=g a’) Pp=9p+Pp= ¢p(te [R), hence @ is a-invariant, i.e. @ and (p&tr,),
commute.

Proof of the Lemma. Note that
3 a(X) = U (! @) XNT? (Xek T B(LHG)), teR).

Thus, for fe £*(G) and e [R we have

“) c(1aBN=T0BNO=1.BS,
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since ﬁ,e.l & #>(G) and £*(G) is commutative. Then, for xe.#, te R and
£€ G we have

[ (r(N)E) = [T (o7 & 1) (=) U*)(e)
- U(®) o2 (=)&) U e)*
= Ul(g) o7(07()) Ug)*
= 0] #(07'(x))
= 07 %(07(x))
= [r,(o7(x))] (8)

= (o7 ()] (8)s
by 19.8.(7), hence
®) a,(m,(x) = of (z,(%)).
Finally, let g € G, t € [R. We have
© (e BMe) = Tl BMe) UF = (1 B Me)) (Ad(La B A" (THTS.
For r € G we bave

(Ad(l« B M)V U)r) = UenU, (r)*
1)
= 4(g)"U(gr) U(r)* = 4(g) [n,((D(p * 0,): D] )} (r)

The last equality is justified as follows. By Corollary 3.5 we have

[D(@ « 0,,): D(@ * 6, [D(p * a,): Do), = [D(p * 0,,): Do},
that is,

Ufgr) ULr)* =[D(p * 0,): D(p * 0,)];
and, using Corollary 3.8, we obtain
Ugr) ULr)* = [D((p *o,) *0,): D(o * 0,):

= o7 Y(D(p * 0,): Dg),) = [x,(D(p * 0,): Dg)) ().
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From (6) and (7) we infer that '
a(le & Me)) = 4(2)" (e & M2)) 7,(ID(p * 0,): Dopl,)
and hence (19.8.(8)) . .
® (L.« BME)) = o?(1.4 B Mg)).
Since R(AM, 0) = R{n (A), 1.4 B £(G)}, (1) follows from (5) and (8). Since
R(M, 0) = (M B B(LG)))?, (5) and (8) also show that

® 