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Cyclic vectors and tridiagonality

Our interest will be in self-adjoint operators A on Hilbert space H. More
specifically, we will be concerned with bounded self-adjoint A which admit a
cyclic vector, i.e., a vector Ω such that the set {Ω, AΩ, · · · , AnΩ, · · · } linearly
spans a dense subspace of H.
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Cyclic vectors and tridiagonality

Our interest will be in self-adjoint operators A on Hilbert space H. More
specifically, we will be concerned with bounded self-adjoint A which admit a
cyclic vector, i.e., a vector Ω such that the set {Ω, AΩ, · · · , AnΩ, · · · } linearly
spans a dense subspace of H.

It is a consequence of the Hermitian symmetry of any matrix representing A
that Ω is a cyclic vector for A if and only if there exists an orthonormal basis
{Ω = e0, e1, e2, · · · } for H with respect to which the matrix representing A has
the tridiagonal form

2

6

6

6

4

a0 b0 0 · · · · · ·
b0 a1 b1 · · · · · ·
0 b1 a1 b2 · · ·
...

...
. . .

. . .
. . .

3

7

7

7

5

with all the off-diagonal terms bi being non-zero.
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(Scalar) spectral measure

The following alternative characterisation of self-adjoint operators with cyclic
vector relies on the celebrated Riesz representation theorem:
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(Scalar) spectral measure

The following alternative characterisation of self-adjoint operators with cyclic
vector relies on the celebrated Riesz representation theorem:

Theorem

If µ is a probability measure on a compact set Σ ⊂ R, the equation
(Mf )(x) = xf (x) deines a bounded self-adjoint (multiplication) operator on
L2(Σ, µ), and the function f0 ≡ 1 is a cyclic vector for M.
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(Scalar) spectral measure

The following alternative characterisation of self-adjoint operators with cyclic
vector relies on the celebrated Riesz representation theorem:

Theorem

If µ is a probability measure on a compact set Σ ⊂ R, the equation
(Mf )(x) = xf (x) deines a bounded self-adjoint (multiplication) operator on
L2(Σ, µ), and the function f0 ≡ 1 is a cyclic vector for M.

A unit vector Ω ∈ H is a cyclic vector for a bounded self-adjoint operator A on
H if and only if there exists a (uniquely determined) probability measure µ

defined on the Borel subsets of Σ = sp(A) and a unitary operator
U : H → L2(Σ, µ) such that UAU∗ = M and UΩ = f0.

V.S. Sunder IMSc, Chennai Self adjoint operators and their spectra



(Scalar) spectral measure

The following alternative characterisation of self-adjoint operators with cyclic
vector relies on the celebrated Riesz representation theorem:

Theorem

If µ is a probability measure on a compact set Σ ⊂ R, the equation
(Mf )(x) = xf (x) deines a bounded self-adjoint (multiplication) operator on
L2(Σ, µ), and the function f0 ≡ 1 is a cyclic vector for M.

A unit vector Ω ∈ H is a cyclic vector for a bounded self-adjoint operator A on
H if and only if there exists a (uniquely determined) probability measure µ

defined on the Borel subsets of Σ = sp(A) and a unitary operator
U : H → L2(Σ, µ) such that UAU∗ = M and UΩ = f0.

The measure µ above, is called the scalar spectral measure of A associated to
Ω.
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Moments

A compactly supported measure µ is determined - thanks to Weierstrass’
polynomial approximation theorem and Riesz representation theorem - by the
sequence {mn : n = 0, 1, 2, · · · } of moments, defined by

mn =

Z

Σ

xndµ(x)
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Moments

A compactly supported measure µ is determined - thanks to Weierstrass’
polynomial approximation theorem and Riesz representation theorem - by the
sequence {mn : n = 0, 1, 2, · · · } of moments, defined by

mn =

Z

Σ

xndµ(x)

We shall illustrate these notions and the way to use the one to get a
description of the others by considereing one classic example.
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The standard semi-circular operator

The tridiagonal matrix
2

6

6

6

4

0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
...

...
. . .

. . .
. . .

3

7

7

7

5

(∗)

clearly represents a self-adjoint operator A0 on ℓ2 with cyclic vector e0.
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The standard semi-circular operator

The tridiagonal matrix
2

6

6

6

4

0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
...

...
. . .

. . .
. . .

3

7

7

7

5

(∗)

clearly represents a self-adjoint operator A0 on ℓ2 with cyclic vector e0.

To calculate the moments mn = 〈An
0e0, e0〉, notice first that A0 = S + S∗,

where S (resp. S∗) denotes the right (resp., left-) shift on ℓ2 with

Sen = en+1, S
∗en+1 = en, S

∗e0 = 0
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The standard semi-circular operator

The tridiagonal matrix
2

6

6

6

4

0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
...

...
. . .

. . .
. . .

3

7

7

7

5

(∗)

clearly represents a self-adjoint operator A0 on ℓ2 with cyclic vector e0.

To calculate the moments mn = 〈An
0e0, e0〉, notice first that A0 = S + S∗,

where S (resp. S∗) denotes the right (resp., left-) shift on ℓ2 with

Sen = en+1, S
∗en+1 = en, S

∗e0 = 0

It follows that m2n+1 = 0 and m2n is the (Catalan) number Cn of (Dyck) paths
of 2n steps from (0, 0) to (2n, 0), such that each step is from a (k, l) to a
(k, l ± 1), and such that the path never goes below the x-axis. The Catalan
numbers satisfy and are determined by the recurrence relation:

C0 = 1

Cn =

n
X

p=1

Cp−1Cn−p
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The Cauchy transform

The Cauchy transform of a measure µ supported on a compact subset of R is
the obviously holomorphic function defined on C

+ = {z ∈ C : Im z > 0} by

Gµ(z) =

Z

dµ(t)

z − t
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The Cauchy transform

The Cauchy transform of a measure µ supported on a compact subset of R is
the obviously holomorphic function defined on C

+ = {z ∈ C : Im z > 0} by

Gµ(z) =

Z

dµ(t)

z − t

We first observe, from the ‘Neumann series’ that

Gµ(z) =

∞
X

n=0

mn

zn+1
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The Cauchy transform

The Cauchy transform of a measure µ supported on a compact subset of R is
the obviously holomorphic function defined on C

+ = {z ∈ C : Im z > 0} by

Gµ(z) =

Z

dµ(t)

z − t

We first observe, from the ‘Neumann series’ that

Gµ(z) =

∞
X

n=0

mn

zn+1

We then use the recursion relation satisfied by the Catalan numbers to
compute the Cauchy transform of the scalar spectral measure of our
semi-circular operator as follows:
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Computation of Gµ

Gµ(z) =

∞
X

n=0

Cn

z2n+1

=
1

z
+

∞
X

n=1

1

z2n+1
Cn

=
1

z
+

∞
X

n=1

1

z2n+1

 

n
X

p=1

Cp−1Cn−p

!

=
1

z
+

1

z

∞
X

n=1

n
X

p=1

Cp−1

z2p−1

Cn−p

z2n−2p+1

=
1

z
+

1

z

∞
X

p=1

Cp−1

z2p−1

 

∞
X

n=p

Cn−p

z2n−2p+1

!

=
1

z
(1 + Gµ(z)2)
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Computation of Gµ (contd.)

Hence (Gµ(z))2 − zGµ(z) + 1 = 0, and so

Gµ(z) =
z −

√
z2 − 4

2

for a suitable branch of the complex square root, which must satisfy the
obvious necessary condition that lim|z|→∞| |Gµ(z)| = 0.
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Computation of Gµ (contd.)

Hence (Gµ(z))2 − zGµ(z) + 1 = 0, and so

Gµ(z) =
z −

√
z2 − 4

2

for a suitable branch of the complex square root, which must satisfy the
obvious necessary condition that lim|z|→∞| |Gµ(z)| = 0.

It may be verified that the above limiting condition will be satisfied if the
branch of

√
z2 − 4 is defined as

√
z − 2 ×

√
z + 2, where√

z ∓ 2 =
p

|z ∓ 2| exp( I

2
arg(z ∓ 2)), and this is defined only for

arg(z ∓ 2) 6= −π

2
,
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Computation of Gµ (contd.)

Hence (Gµ(z))2 − zGµ(z) + 1 = 0, and so

Gµ(z) =
z −

√
z2 − 4

2

for a suitable branch of the complex square root, which must satisfy the
obvious necessary condition that lim|z|→∞| |Gµ(z)| = 0.

It may be verified that the above limiting condition will be satisfied if the
branch of

√
z2 − 4 is defined as

√
z − 2 ×

√
z + 2, where√

z ∓ 2 =
p

|z ∓ 2| exp( I

2
arg(z ∓ 2)), and this is defined only for

arg(z ∓ 2) 6= −π

2
,

It may be further seen that this specification leads to a continuous
determination of Gµ(z) for Im z ≥ 0, in such a way that

Gµ(t) =

8

>

>

<

>

>

:

t−
√

t2−4

2
if t ≥ 2

t−i
√

4−t2

2
if |t| ≤ 2

t+
√

t2−4

2
if t ≤ −2
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From Gµ to µ

The final step in the derivation of µ from Gµ is completed by the following
application of the so-called Stieltje’s inversion formula which shows that:
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From Gµ to µ

The final step in the derivation of µ from Gµ is completed by the following
application of the so-called Stieltje’s inversion formula which shows that:

In case Gµ(z) admits a continuous extension to C
+ ∪ R and if

g(t) = limǫ→0 Gµ(t + iǫ), then

dµ(t) =
−1

π
(Im g(t))dt

and we finally deduce that the scalar spectral measure of our semi-circular
operator is the celebrated Wigner semi-circular distribution given by

µ(E) =
1

2π

Z

E∩[−2,2]

p

4 − t2dt
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From Gµ to µ

The final step in the derivation of µ from Gµ is completed by the following
application of the so-called Stieltje’s inversion formula which shows that:

In case Gµ(z) admits a continuous extension to C
+ ∪ R and if

g(t) = limǫ→0 Gµ(t + iǫ), then

dµ(t) =
−1

π
(Im g(t))dt

and we finally deduce that the scalar spectral measure of our semi-circular
operator is the celebrated Wigner semi-circular distribution given by

µ(E) =
1

2π

Z

E∩[−2,2]

p

4 − t2dt

An excellent reference for all this is:
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From Gµ to µ

The final step in the derivation of µ from Gµ is completed by the following
application of the so-called Stieltje’s inversion formula which shows that:

In case Gµ(z) admits a continuous extension to C
+ ∪ R and if

g(t) = limǫ→0 Gµ(t + iǫ), then

dµ(t) =
−1

π
(Im g(t))dt

and we finally deduce that the scalar spectral measure of our semi-circular
operator is the celebrated Wigner semi-circular distribution given by

µ(E) =
1

2π

Z

E∩[−2,2]

p

4 − t2dt

An excellent reference for all this is:

Lectures in the Combinatorics of Free Probability by Alexandru Nica and
Roland Speicher, LMS Lecture Note Series 335, Cambridge University Press.
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An extension

We - Madhushree Basu, Vijay Kodiyalam and I - had to compute the scalar
spectral measure for a near-relative of our semi-circular operator, namely the
one given by
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An extension

We - Madhushree Basu, Vijay Kodiyalam and I - had to compute the scalar
spectral measure for a near-relative of our semi-circular operator, namely the
one given by

2

6

6

6

4

−δ 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
...

...
. . .

. . .
. . .

3

7

7

7

5
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An extension

We - Madhushree Basu, Vijay Kodiyalam and I - had to compute the scalar
spectral measure for a near-relative of our semi-circular operator, namely the
one given by
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−δ 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
...

...
. . .

. . .
. . .
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7

7

7
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By a not dissimilar analysis, we proved that this was a so-called Free Poisson
distribution.
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