
Solutions to Home-work 9

1.










1 1 2
... 1 0 0

1 2 5
... 0 1 0

2 5 14
... 0 0 1











→











1 1 2
... 1 0 0

0 1 3
... −1 1 0

2 5 14
... 0 0 1











→











1 1 2
... 1 0 0

0 1 3
... −1 1 0

0 3 10
... −2 0 1











→











1 0 −1
... 2 −1 0

0 1 3
... −1 1 0

0 3 10
... −2 0 1











→











1 0 −1
... 2 −1 0

0 1 3
... −1 1 0

0 0 1
... 1 −3 1











→











1 0 0
... 3 −4 1

0 1 3
... −1 1 0

0 0 1
... 1 −3 1











→











1 0 0
... 3 −4 1

0 1 0
... −4 10 −3

0 0 1
... 1 −3 1











;

and hence, we see that








1 1 2
1 2 5
2 5 14









−1

=





3 −4 1
−4 10 −3
1 −3 1



 .

2. (a) We start by row-reducing the augmented matrix










1 0 2 0 3 0
... 4

1 1 2 2 3 3
... 5

1 1 1 2 2 2
... 6










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thus:










1 0 2 0 3 0
... 4

1 1 2 2 3 3
... 5

1 1 1 2 2 2
... 6











→











1 0 2 0 3 0
... 4

0 1 0 2 0 3
... 1

1 1 1 2 2 2
... 6











→











1 0 2 0 3 0
... 4

0 1 0 2 0 3
... 1

0 1 −1 2 −1 2
... 2











→











1 0 2 0 3 0
... 4

0 1 0 2 0 3
... 1

0 0 −1 0 −1 −1
... 1











→











1 0 2 0 3 0
... 4

0 1 0 2 0 3
... 1

0 0 1 0 1 1
... −1











→











1 0 0 0 1 −2
... 6

0 1 0 2 0 3
... 1

0 0 1 0 1 1
... −1











;

Hence the initial system of equations

x1 + 2x3 + 3x5 = 4

x1 + x2 + 2x3 + 2x4 + 3x5 + 3x6 = 5

x1 + x2 + x3 + 2x4 + 2x5 + 2x6 = 6

are satisfied if only if the following system of equations is
satisfied:

x1 + x5 − 2x6 = 6

x2 + 2x4 + 3x6 = 1

x3 + x5 + x6 = −1

i.e., if and only if
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x1 = 6 − x5 − 2x6 (0.1)

x2 = 1 − 2x4 − 3x6 (0.2)

x3 = −1 − x5 − x6 (0.3)

So the answer to 2(a) is ‘yes; in fact there are infinitely
many distinct solutions (for varying choices of x5)’, as is
seen from (b) below.

(b) It follows from the reasoning of (a) above and equations
(0.1)-(0.3) that the most general solution is given by ar-
bitrarily specifying

x4 = a, x5 = b, x6 = c

and then requiring that

x1 = 6 − b − 2c, x2 = 1 − 2a − 3c, x3 = −1 − b − c.

3. (a) Row-reduce thus:









1 1 2 1
1 2 2 3
1 2 0 3
1 3 0 5









→









1 1 2 1
0 1 0 2
1 2 0 3
1 3 0 5









→









1 1 2 1
0 1 0 2
0 1 −2 2
1 3 0 5









→









1 1 2 1
0 1 0 2
0 1 −2 2
0 2 −2 4









→









1 1 2 1
0 1 0 2
0 0 −2 0
0 2 −2 4









→









1 1 2 1
0 1 0 2
0 0 −2 0
0 0 −2 0









→









1 1 2 1
0 1 0 2
0 0 1 0
0 0 −2 0









→









1 1 2 1
0 1 0 2
0 0 1 0
0 0 0 0









→









1 0 2 −1
0 1 0 2
0 0 1 0
0 0 0 0









→









1 0 0 −1
0 1 0 2
0 0 1 0
0 0 0 0









.
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(b) It follows from (a) above that there exists a 4×4 matrix E
which is (a product of elementary, and hence) invertible,
such that B = EA. The fact that E is 1-1 implies that

Ax = 0 ⇒ Bx = 0

Thus,

x1 + x2 + 2x3 + x4 = 0

x1 + 2x2 + 2x3 + 3x4 = 0

x1 + 2x2 + 3x4 = 0

x1 + 3x2 + 4x3 + 5x4 = 0

if and only if

x1 − x4 = 0

x2 + 2x4 = 0

x3 = 0

if and only if x1 = a, x2 = −2a, x3 = 0, x4 = a for some
a ∈ R

(c) It is seen by reading the steps of the row-reduction in (a)
above, but in reverse order, that









1 0 0 −1
0 1 0 2
0 0 1 0
0 0 0 0









=









1 0 −2 0
0 1 0 0
0 0 1 0
0 0 0 1









×









1 0 2 −1
0 1 0 2
0 0 1 0
0 0 −2 0

















1 0 2 −1
0 1 0 2
0 0 1 0
0 0 −2 0









=









1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









×









1 0 2 −1
0 1 0 2
0 0 1 0
0 0 −2 0









Thus, we have

E9 =









1 0 −2 0
0 1 0 0
0 0 1 0
0 0 −0 1









& E8 =









1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.
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Similarly, we find that

E9 =









1 0 −2 0
0 1 0 0
0 0 1 0
0 0 0 1









E8 =









1 −1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









E7 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1









E6 =









1 0 0 0
0 1 0 0
0 0 −1

2
0

0 0 0 1









E5 =









1 0 0 0
0 1 0 0
0 0 1 0
0 −2 0 1









E4 =









1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1









E3 =









1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1









E2 =









1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1









& E1 =









1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1









(d) The E that we seek is seen to be given (after some matrix
multiplication) by

E = (E9 · · ·E1)
−1

= E−1

1
· · ·E−1

9

=









1 1 2 0
1 2 2 0
1 2 0 0
1 3 0 1









.

Since clearly









0
0
0
1









/∈ ran B, and since E is 1-1, it follows

that









0
0
0
1









= E

















0
0
0
1

















/∈ ran A.

(Note: since the row-reduced achelon form a square ma-
trix is the identity matrix if and only if it is invertible,
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this argument shows that a square matrix is invertible if
and only if it is expressible as a product of elementary
matrices!)
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