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Solutions to Home-work 8
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where of course A’ denotes the i-th row of A, then
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If A® denotes the i-th row of A as in (a) above, then the
i-th row of R,(:ZL)A is seen to be given by
Al if i £k
AF el ifi=k
If Ais asin 1(a), then
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If A® denotes the i-th row of A as in (a) above, then the
i-th row of F, ,EZn)A is seen to be given by

Al ifi=k
AF ifi=1
At ifi ¢ {k, 1}

It is clear that vi,vs € II and in particular, Tv; = v; for
i = 1,2 (since in fact Tv = vVov € V); also v and vq are
not multiples of one another, and so {vy,vs} is a linearly
independent set. As II is a proper subspace of R?, it follos
that IT must be two-dimensional. Hence {v1,v2} is a basis
for II as asserted. As ws is perpendicular to II, it follows
from the definition of T' that Tws = —wvs3. The preceding
observations show that B is indeed a basis for R? and that
[T]5 is as shown.



(b) Routine matrix multilication shows that U is invertible
and that U’ is the inverse of U.
(c) If S € L(R?) is given by [S]e = U, then it is clear that
Sej =wv; for 1 < j < 3.

(d) The rule for ‘change of basis’ (see lecture 8) shows that
we must have
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