
Solutions to Home-work 8

1. (a) If
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where of course Ai denotes the i-th row of A, then
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(b) If Ai denotes the i-th row of A as in (a) above, then the

i-th row of R
(m)
k,l A is seen to be given by

Ai if i 6= k
Ak + cAj if i = k

2. (a) If A is as in 1(a), then

FA =
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
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(b) If Ai denotes the i-th row of A as in (a) above, then the

i-th row of F
(m)
kl A is seen to be given by

Al if i = k
Ak if i = l
Ai if i /∈ {k, l}

3. (a) It is clear that v1, v2 ∈ Π and in particular, Tvi = vi for
i = 1, 2 (since in fact Tv = v∀v ∈ V ); also v1 and v2 are
not multiples of one another, and so {v1, v2} is a linearly
independent set. As Π is a proper subspace of R

3, it follos
that Π must be two-dimensional. Hence {v1, v2} is a basis
for Π as asserted. As v3 is perpendicular to Π, it follows
from the definition of T that Tv3 = −v3. The preceding
observations show that B is indeed a basis for R

3 and that
[T ]B is as shown.
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(b) Routine matrix multilication shows that U is invertible
and that U ′ is the inverse of U .

(c) If S ∈ L(R3) is given by [S]E = U , then it is clear that
Sej = vj for 1 ≤ j ≤ 3.

(d) The rule for ‘change of basis’ (see lecture 8) shows that
we must have

[T ]E = U [T ]BU−1
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