
Solutions to Home-work 4

1. (a) ⇒ (b): Let S be a linearly independent set in V . By
hypothesis, there exists a basis B for V with n elements, and
also |S| = n. By the lemma proved in last class, (since B
spans V ), there exists a decomposition B = B1

∐
B2 of B with

|B1| = |S| such that S
∐

B2 spans V . The hypotheses imply
that |B1| = |B| so B2 = ∅, and hence S = S

∐
∅ is a spanning

set for V . Thus sp(S) = V , as desired.

(b) ⇒ (c): If S is a spanning set for V , with |S| = n, and if
B is any basis for V , then by the lemma alluded to in the last
paragraph, there is a decomp[osition S = S1

∐
S2 such that

n = |B| = |S1| and B
∐

S2 is a spanning set for V . This means
that S2 = ∅ so that S = B is a basis.

(c) ⇒ (a): Obvious.

2. Suppose If (a, b, c) = α(1, 1, 1) + β(0, 1, 1) + γ(0, 0, 1), then it
is easy to see that a = α, β = b − β = b − a and similarly that
γ = c − a − b. Since (a, b, c) is arbitrary, we see that the given
set of three vectors does indeed span R

3, and hence must be a
basis for R

3, by the previous problem.

3. We leave it as an exercise to the reader to verify that

{(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}

is a linearly independent (or spanning) set, and hence a basis
for R

4.

4. By the remark in the solution to 3(c) of HW-3, the set {(1, 2), (3, 6)}
is linearly dependent, while {(1, 2), (3, 8)} is linearly indepen-
dent, and hence a basis for R

2.

5. If x = (x1, x2, x3), y = (y1, y2, y3) ∈ W, α, β ∈ R and z =
(z1, z2, z3) = αx + βy, then

2z1 + z2 − z3 = 2(αx1 + βy1) + (αx2 + βy2) − (αx3 + βy3)

= α(2x1 + x2 − x3) + β(2y1 + y2 − y3)

= 0

so indeed also z ∈ W and W is a subspace of R
3. Hence

dim(W ) ≤ 3. On the other hand, it is easy to see that {(1, 0, 2), (1, 0, 1)}
is a linarly independent set in W so that dim(W ) ≥ 2. So in-
deed W is a two-dimensional (subspace of R

3 and hence a)
vector space.
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6. For the first assertion, we may clearly assume V 6= {0} Suppose
V admits a finite spanning set S (which is not {0}). We have
seen (in problem 5 of HW-3) that then S contains a subset
which is a minimal spanning set, hence a basis (call it B), for
V . Let |B| = dim(V ) = n. We shall now prove the following:

Assertion If L is any linearly independent set in V , then there
exists a basis which contains L.

We prove this assertion by induction on n− |L|. First suppose
|L| = n. Then if v ∈ V  L, |L∪{v}| > n, and hence L∪{v} can-
not be linearly independent, since any linearly independent set
in an n-dimensional vector space can have at most n elements.
So there must be a non-trivial linear combination of L ∪ {v}
which vanishes. Since L is linearly independent, the coefficient
of v in this combiation should be non-zero, or in other words,
we must have v ∈ sp(L). Since v was arbitrary, this shows
that L spans V and must already be a basis.

Suppose the result is true for any linearly independent set L1

with n−|L1| < n−|L|(> 0). Let W = sp(L). Then dimW < n.
Pick an y v ∈ V \W . Notice that the set L1 = L∪{v} is linearly
independent. (Reason: If L = {v1, · · · , vm} and set v = vm+1.
If

∑
m+1

i=1
αivi = 0, the assumption vm+1 /∈ W implies that

αm+1 = 0 (since L ⊂ W ). The linear independence of L next
forces αi = 0 ∀i ≤ m.) Since n− |L1| = n− (|L|+ 1) < n− |L|,
it follows from the induction hypothesis that L1 - and hence
also L - can be extended to a basis, as desired.

Now if W is any subspace of V , by what we have just shown,
W has a basis, say L. Since L is a linearly independent set (in
W as well as in V , this L is a subset of a basis, say B, for V ;
deduce that dim(W ) = |L| ≤ |B| = dim(V ).

7. Since any (finite) spanning set for V can be shrunk to a basis,
and since every linearly independent set in a (finite-dimensional
vector space) V can be expanded to a basis for V , it is clear
that if S, B and L denote an arbitrary spanning set, basis and
linearly independent set for V , then

|L| ≤ |B| ≤ |S|.

So if there exists an S with |S| = n, then we must have |L| ≤
n < n + 1, as asserted. The final assertion follows easily. One
consequence of this is, for instance, that the vector space of all
polynomials is not finite-dimensional.
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