
Solutions to Home-work 11

1. (a) Notice that if φ ∈ B2(R3) and x, y ∈ R
3 are arbitrary, and

if we define φij = φ(ei, ej), then

φ(x, y) = φ(x,

3
∑

j=1

ej(y)ej)

=
3

∑

j=1

ej(y)φ(x, ej)

=

3
∑

j=1

ej(y)φ(

3
∑

i=1

ei(x)ei, ej)

=
3

∑

i=1

3
∑

j=1

ei(x)ej(y)φ(ei, ej)

=





3
∑

i=1

3
∑

j=1

φ(ei, ej)e
i ⊗ ej



 (x, y) ,

thereby showing that {ei ⊗ ej : 1 ≤ i, j ≤ 3} is a spanning
set for B2(R3).

The above string of equations can also be used to see
that the only linear combination of the (ei ⊗ ej)’s which
can vanish identically os the trivial linear combination, ie.
that they are linearly independent.

(b) Notice, to start with, that if αij , 1 ≤ i < j ≤ 3 are arbi-
trary scalars, then

∑

i<j

αije
i ∧ ej = 0 ⇒

∑

i<j

αij(e
i ⊗ ej − ej ⊗ ei) = 0

⇒ αij = 0 ∀i, j ,

since {ei ⊗ ej : 1 ≤ i < j ≤ 3} is linearly independent,
by (a) above. Hence, {ei ∧ ej : 1 ≤ i < j ≤ 3} is linearly
independent.

Next, the string of equations in 1(a) above show that if
φ ∈ B2(R3), then φ =

∑3
i,j=1 φ(ei, ej)e

i ⊗ ej . If further
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φ ∈
∧2

R
3, then, φ(ei, ej) = −φ(ej , ei), and we find that

φ =

3
∑

i,j=1

φ(ei, ej)e
i ⊗ ej

=
∑

1≤i<j≤3

φ(ei, ej)e
i ∧ ej

and hence, {ei ∧ ej : 1 ≤ i < j ≤ 3} spans
∧2

R
3.

2. (a) If A and B are skew-symmetric matrices, and if α, β ∈ R,
and if C = αA + βB, then

cij = αaij + βbij

= −αaji − βbji

− −cij ,

thus demonstrating that the set of skew-symmetric matri-
ces is (closed under formation of linear combinations, and
is hence) a vector subspace of Mn(R).

Notice that a skew-symmetric matrix must have zeroes
on the main diagonal, and that the entries in the triangle
below the diagonal are the negative of the corresponding
(transposed) entries above the diagonal. Hence if {E(i, j)
denotes the matrix with 1 in the 9i, j)-th entry and 0
everywhere else - so the {E(i, j) : 1 ≤ i, j ≤ n} are the
‘standard basis’ for Mn(R), usually called a system of ma-
trix units - then {E(i, j) − E(j, i) : 1 ≤ i < j ≤ n} is a
basis for the space of skew-symmetric matrices. Since this
set has exactly (n− 1) + (n− 2) + · · ·+ 2 + 1 = n(−1)

2 , we
are done.

(b) This is an easy verification, which we omit, since this fact
can also be deduced from 2(c) below.

(c) With the foregoing notation, we see that the equation

T (E(i, j)) = ei ⊗ ej

extends to a unique isomorphism of Mn(R) onto B2(Rn)
which maps E(i, j) − E(j, i) to ei ∧ ej .

3. (a) This is almost the same as verifyting that the mapping
ǫ : Z → {±1} defined by

ǫ(n) =

{

1 if n is even
−1 if n is odd
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is a group homomorphism.

(b) If σ ∈ An and π ∈ Sn are arbitrary, then

ǫ(πσπ−1) = ǫ(π)ǫ(π)−1 = 1

and so indeed πσπ−1 ∈ An. The same argument shows,
more generally that if φ : G1 → G2 is a homomorphism
between groups, then {g ∈ G1 : φ(g) = 1} is a normal
subgroup of G1. (We have written 1 above for the identity
element of the group G2.)

(c) Suppose that, for i = 1, 2, the transposition interchanges
the distinct elemens pi and qi. Let σ be any permuta-
tion such that σ(p1) = p2 and σ(q1) = q2 . Then, direct
computation shows that στ1σ

−1 = τ2.

(d) If even one transposition, say τ1 were to belong to An, it
would follow from (c) above and (b) that every transpo-
sition τ2 should also belong to An. Since transpositions
generate all of Sn, it would then follow that Sn = An,
contrary to our assumption.

Next, if some σ ∈ An were expressible as a product σ =
τ1 · · · τ2k+1 of an odd number of transpositions, that would
imply that τ2k+1 = στ2k · · · τ1 ∈ An, which we have shown
to not be possible.
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