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Chapter 1

The Basics of C∗-algebras

1.1 Banach algebras

Definition 1.1.1 A normed algebra is a complex algebra A which is a

normed space, and the norm satisfies

‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A.

If A (with this norm) is complete, then A is called a Banach algebra.

Every closed subalgebra of a Banach algebra is itself a Banach algebra.

Example 1.1.2 Let C be the complex field. Then C is a Banach algebra.

Let X be a compact Hausdorff space and C(X) the set of continuous func-

tions on X. C(X) is a complex algebra with pointwise operations. With

‖f‖ = supx∈X |f(x)|, C(X) is a Banach algebra.

Example 1.1.3 Let Mn be the algebra of n × n complex matrices. By

identifying Mn with B(C
n), the set of all (bounded) linear maps from the

n-dimensional Hilbert space Cn to Cn, with operator norm, i.e, ‖x‖ =

supξ∈Cn,‖ξ‖≤1 ‖x(ξ)‖, we see that Mn is a Banach algebra.

Example 1.1.4 The set of continuous functions A(D) on the closed unit

disk D in the plane which are analytic on the interior is a closed subalgebra

of C(D). Therefore, A(D) is a Banach algebra.

Example 1.1.5 Let X be a Banach space and B(X) be the set of all

bounded linear operators on X. If T,L ∈ B(X), define TL = T ◦ L. Then

B(X) is a complex algebra. With operator norm, B(X) is a Banach algebra.

1
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2 The Basics of C∗-algebras

A commutative Banach algebra is a Banach algebra A with the property

that ab = ba for all a, b ∈ A Examples 1.1.2 and 1.1.4 are of commutative

Banach algebras while Example 1.1.3 1.1.5 are not commutative.

Definition 1.1.6 In a unital algebra, an element a ∈ A is called invertible

if there is an element b ∈ A such that ab = ba = 1. In this case b is unique

and written a−1. The set

GL(A) = {a ∈ A : a is invertible}

is a group under multiplication.

We define the spectrum of an element a to be the set

sp(a) = spA(a) = {λ ∈ C : λ1− a 6∈ GL(A)}.

Whenever there is no confusion, we will write λ1 simply as λ.

The complement of the spectrum is called the resolvent and R(λ) =

(λ− a)−1 is the resolvent function.

Example 1.1.7 Let A = C(X) be as in 1.1.2. Then sp(f) = f(X) for all

f ∈ A. In other words, the spectrum of f is the range of f.

Let A = Mn. If a = (aij) ∈ A, then the reader can check that sp(a) is

the set of eigenvalues of the matrix a.

Proposition 1.1.8 For any a and b in A,

sp(ab) \ {0} = sp(ba) \ {0}.

Proof. If λ 6∈ sp(ab) and λ 6= 0, then there is c ∈ A such that

c(λ− ab) = (λ− ab)c = 1.

Thus c(ab) = λc− 1 = (ab)c. So we compute that

(1 + bca)(λ− ba) = λ− ba+ λbca− bcaba

= λ− ba+ b(λ− ab)ca = λ− ba+ ba = λ,

which shows that λ−1(1 + bca) is the inverse of λ − ba. Hence λ 6∈ sp(ba)

and sp(ba) \ {0} ⊂ sp(ab) \ {0}. �

Definition 1.1.9 A Banach algebra A is said to be unital if it admits a

unit 1 and ‖1‖ = 1. Banach algebras in 1.1.2, 1.1.3 and 1.1.4 are unital.
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Banach algebras 3

Lemma 1.1.10 Let A be a unital Banach algebra and a be an element of

A such that ‖1− a‖ < 1. Then a ∈ GL(A) and

a−1 =
∞
∑

n=0

(1− a)n.

Moreover, ‖a−1‖ ≤ 1
1−‖1−a‖ and ‖1− a

−1‖ ≤ ‖1−a‖
1−‖1−a‖ .

Proof. Since

∞
∑

n=0

‖(1− a)n‖ ≤
∞
∑

n=0

‖1− a‖n =
1

(1− ‖1− a‖)
<∞,

the series
∑∞
n=0(1− a)

n is convergent. Let b be its limit in A. Then ‖b‖ ≤
1

(1−‖1−a‖) and

‖1− b‖ ≤
∞
∑

n=1

‖1− a‖n =
‖1− a‖

1− ‖1− a‖
.

One verifies

a(
k
∑

n=0

(1− a)n) = (1− (1− a))(
k
∑

n=0

(1− a)n) = 1− (1− a)k+1

and that it converges to ab = ba = 1 as k →∞. Hence b is the inverse of a.

�

Definition 1.1.11 A function f from an open subset Ω ⊂ C to a Banach

algebra is said to be analytic, if for any λ0 ∈ Ω there is an open neigh-

borhood O(λ0) such that f(λ) =
∑∞
n=0 an(λ − λ0)

n converges for every

λ ∈ O(λ0). To include the case that λ0 =∞, we say f is analytic at infinity

if f(λ) =
∑∞
n=0 anλ

−n for all λ in a neighborhood of infinity.

Theorem 1.1.12 In any unital Banach algebra A, the spectrum of each

a ∈ A is a non-empty compact subset, and the resolvent function is analytic

on C \ sp(a).

Proof. If |λ| > ‖a‖, then ‖λ−nan‖ ≤ (‖a‖λ )
n. So the series

∞
∑

n=0

an

λn+1
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4 The Basics of C∗-algebras

converges (in norm). Similarly to 1.1.10,

(λ− a)
k
∑

n=0

an

λn+1
= 1− (

ak+1

λk+1
)

which converges to 1. This shows that supλ∈sp(a) |λ| ≤ ‖a‖ and R(λ) is

analytic in {λ : |λ| > ‖a‖}. Moreover,

lim
|λ|→∞

‖R(λ)‖ ≤ lim
|λ|→∞

|λ|−1

1− (‖a‖λ )
= 0. (e 1.1)

Similarly, if λ0 − a is invertible and |λ− λ0| <
1

‖(λ0−a)−1‖
, then

(λ− a)−1 =
∞
∑

n=0

(λ0 − λ)
n((λ0 − a)

−1)n+1.

This also shows that the resolvent is open. Since sp(a) has been shown to be

bounded, sp(a) is compact. We have also shown that the resolvent function

is analytic on the complement of the spectrum.

In particular, f(R(λ)) is a (scalar) analytic function for every bounded

linear functional f ∈ A∗. If sp(a) were empty, then f(R(λ)) would be an

entire function for every f ∈ A∗. However, (e 1.1) shows that f(R(λ)) is

bounded on the plane. Thus Liouville’s theorem implies that f(R(λ)) is a

constant. But (e 1.1) also implies that f(R(λ)) = 0. So, by the Hahn-Banach

theorem, R(λ) = 0. This is a contradiction. Hence sp(a) is not empty. �

Corollary 1.1.13 The only simple commutative unital Banach algebra

is C.

Proof. Suppose that A is a unital commutative Banach algebra and a ∈

A is not a scalar. Let λ ∈ sp(a). Set I = (a− λ)A. Then I is clearly a closed

ideal of A. No element of the form (a−λ)b is invertible in the commutative

Banach algebra A. By 1.1.10,

‖(a− λ)b− 1‖ ≥ 1.

So 1 6∈ I and I is proper. Therefore, if A is simple, a must be a scalar,

whence A = C. �

Lemma 1.1.14 If p is a polynomial and a is an element of a unital

Banach algebra A, then

sp(p(a)) = p(sp(a)).
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Banach algebras 5

Proof. We may assume that p is not constant. If λ ∈ C, there are

c, β1, ..., βn ∈ C such that

p(z)− λ = c
n
∏

i=1

(z − βi),

and therefore

p(a)− λ = c
n
∏

i=1

(a− βi).

It is clear that p(a)−λ is invertible if and only if each a−βi is. It follows that

λ ∈ sp(p(a)) if and only if λ = p(α) for some α ∈ sp(a). Thus sp(p(a)) =

p(sp(a)). �

Definition 1.1.15 Let A be a unital Banach algebra. If a ∈ A, its spectral

radius is defined to be

r(a) = sup
λ∈sp(a)

|λ|.

Theorem 1.1.16 If a is an element in a unital Banach algebra A, then

r(a) = lim
n→∞

‖an‖1/n.

Proof. If λ ∈ sp(a), then λn ∈ sp(an) by 1.1.14, so |λn| ≤ ‖an‖. There-

fore, r(a) ≤ lim infn→∞ ‖an‖1/n. Let Ω be the open disk in C with center

0 and radius 1/r(a) (or ∞ if r(a) = 0). If λ ∈ Ω, then 1− λa ∈ GL(A). If

f ∈ A∗, then f((1−λa)−1) is analytic. There are unique complex numbers

zn such that

f((1− λa)−1) =
∞
∑

n=0

znλ
n (λ ∈ Ω).

However, if |λ| < 1/‖a‖ ≤ 1/r(a), then ‖λa‖ < 1, so (1 − λa)−1 =
∑∞
n=0 λ

nan, and therefore, f((1− λa)−1) =
∑∞
n=0 λ

nf(an). It follows that

zn = f(an) for all n ≥ 0. Hence the sequence {λnf(an)} converges to zero

for each λ ∈ Ω, and therefore is bounded. Since this is true for every f ∈ A∗,

by the principle of uniform boundedness, {λnan} is a bounded sequence.

So we may assume that |λn|‖an‖ ≤ M for all n ≥ 0 and for some positive

number M. Hence

‖an‖1/n ≤
M1/n

|λ|
, n = 0, 1, ....
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6 The Basics of C∗-algebras

Consequently,

lim sup
n→∞

‖an‖1/n ≤ 1/|λ|.

This implies that if r(a) < 1
|λ| , then lim supn→∞ ‖a

n‖1/n ≤ 1/|λ|. It fol-

lows that lim supn→∞ ‖a
n‖1/n ≤ r(a). From what we have shown at the

beginning of this proof, we obtain

lim sup
n→∞

‖an‖1/n ≤ r(a) ≤ lim inf
n→∞

‖an‖1/n.

This implies that r(a) = limn→∞ ‖a
n‖1/n. �

Example 1.1.17 Let A =M3 and a =





1/2 1 0

0 1/2 0

0 0 1/3



 . Then ‖a‖ ≥

1 and sp(a) = {1/2, 1/3}. So r(a) = 1/2. It follows that ‖an‖1/n → 1/2.

Let T ∈ B(L2([0, 1])) be a bounded linear operator defined by

T (f) =

∫ t

0

f(x)dx.

The reader can compute that ‖T n‖ ≤ 1
n! . Hence r(T ) = 0. Note that T 6= 0

(see Exercise 1.11.3).

We now establish the holomorphic functional calculus for elements in

Banach algebras (1.1.19). The first application appears in 1.2.9. Later, we

will establish continuous functional calculus for commutative C∗-algebras

(1.3.5) and Borel functional calculus for normal elements in von Neumann

algebras (1.8.5).

Definition 1.1.18 Let x be a fixed element in a unital Banach algebra

A. Let f be a holomorphic function in an open neighborhood Of of sp(x),

and C be a smooth simple closed curve in Of enclosing sp(x). We assign

the positive orientation to C as in complex analysis. For each φ ∈ A∗, we

consider a continuous function which maps λ to f(λ)φ((λ − x)−1) on the

curve C. Set

L(φ) =
1

2πi

∫

C

f(λ)φ((λ − x)−1)dλ.

The map φ 7→ L(φ) is a linear functional on A∗ and

|L(φ)| ≤
l

2π
‖φ‖ sup{|f(λ)|‖(λ− x)−1‖ : λ ∈ C},
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Banach algebras 7

where l is the length of the curve C. Hence there exists an F ∈ A∗∗ such

that F (φ) = L(φ).

On the other hand, the function λ 7→ f(λ)(λ − x)−1 is a continuous

function from C into A. So the limit of
n
∑

i=0

f(λi)(λi − x)
−1(λi − λi+1) (as maxi|λi − λi+1| → 0),

where {λ0, ..., λn, λn+1 = λ0} is a partition of the curve C, converges in

norm in A to y. By the continuity of φ, we know that φ(y) = L(φ) = F (φ)

for all φ ∈ A∗. Hence F ∈ A. By Cauchy’s theorem, F does not depend on

the choice of the curve C, but only on the function f. Therefore we may

denote F by f(x) and write

f(x) =
1

2πi

∫

C

f(λ)(λ− x)−1dλ.

We denote by Hol(sp(x)) the algebra of all functions which are holo-

morphic in a neighborhood of sp(x).

Theorem 1.1.19 Fix an element x in a unital Banach algebra A. The

map f 7→ f(x) from Hol(sp(x)) into A is a homomorphism which sends

the constant function 1 to the identity of A and the identity function on

C to the element x. If f(z) =
∑∞
n=0 cnz

n in a neighborhood of sp(x), then

f(x) =
∑∞
n=0 cnx

n.

Proof. Linearity is clear. Let f and g be functions holomorphic in neigh-

borhoods Of and Og of sp(x), respectively. Set O = Of ∩ Og and let

Ci, i = 1, 2 be smooth simple closed curves in O enclosing sp(x) such that

C1 lies completely inside the curve C2. Then

f(x)g(x) = (
1

2πi

∫

C1

f(λ)(λ− x)−1dλ)(
1

2πi

∫

C2

g(z)(z − x)−1dz)

= −
1

4π2

∫

C1

[

∫

C2

f(λ)g(z)(λ− x)−1(z − x)−1dz]dλ

= −
1

4π2

∫

C1

∫

C2

f(λ)g(z)
[(z − x)−1 − (λ− x)−1]

λ− z
dzdλ

=
1

2πi

∫

C1

f(λ)(λ− x)−1(
1

2πi

∫

C2

g(z)

z − λ
dz)dλ

+
1

2πi

∫

C2

g(z)(z − x)−1(
1

2πi

∫

C1

f(λ)

λ− z
dλ)dz
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8 The Basics of C∗-algebras

=
1

2πi

∫

C1

f(λ)g(λ)(λ − x)−1dλ = (f · g)(x).

The second to last equality holds because 1
2πi

∫

C2

g(z)
z−λdz = g(λ) (by the

Cauchy formula) and because f(λ)λ−z is holomorphic inside the curve C2 if

λ ∈ C1 (so that
∫

C1

f(λ)
λ−z dλ = 0).

To complete the proof, pick a circle C with center at 0 and large radius.

We note that

λn−1(1− λ−1x)−1 = λn−1
∞
∑

n=0

xkλ−k =
∞
∑

k=0

xkλn−k−1,

where the convergence is in norm and is uniform on C. Therefore
∫

C

xkλn−k−1dλ = (

∫

C

λn−k−1dλ)xk = 0 · xk = 0 (e 1.2)

unless k = n, in which case the integral is 2πixn. This implies that

xn =
1

2πi

∫

C

λn(λ− x)−1dλ. (e 1.3)

Now suppose that f(z) =
∑∞
n=0 cnz

n in a neighborhood of sp(x). Then

it converges in an open disk with center 0. Let C be a circle with center at

0 contained in the open disk. Then the series converges uniformly on C, so

from (e 1.3),

f(x) =
1

2πi

∫

C

f(z)(z−x)−1dz =
∞
∑

n=0

cn(
1

2πi

∫

C

zn(z−x)−1dz) =
∞
∑

n=0

cnx
n.

�

Proposition 1.1.20 If I is a closed ideal in a Banach algebra, then A/I

is a Banach algebra with the quotient norm

‖ā‖ = ‖a+ I‖ = inf
b∈I
‖a+ b‖.

Proof. It is well known that A/I, as a normed space is complete. It

remains to show that A/I is a normed algebra. Let ε > 0 and a, b ∈ A.

Then, there are i, j ∈ I such that

‖a+ i‖ < ‖a+ I‖+ ε and ‖b+ j‖ < ‖b+ I‖+ ε.

Hence, for c = ib+ aj + ij ∈ I,

‖ab+ c‖ ≤ ‖a+ i‖‖b+ j‖ < (‖a+ I‖+ ε)(‖b+ I‖+ ε).
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Thus,

‖ab+ I‖ ≤ (‖a+ I‖+ ε)(‖b+ I‖+ ε).

Letting ε→ 0, we obtain

‖ab+ I‖ ≤ ‖a+ I‖‖b+ I‖.

In other words, A/I is a normed algebra. �

1.2 C
∗-algebras

Definition 1.2.1 An algebra A is called a ∗-algebra if it is a complex

algebra with a conjugate linear involution ∗ which is an anti-isomorphism,

i.e., for any a, b ∈ A and α ∈ C,

(a+ b)∗ = a∗ + b∗, (αa)∗ = ᾱa∗, a∗∗ = a and (ab)∗ = b∗a∗.

If a ∈ A, then a∗ is called the adjoint of a. Let A be a ∗-algebra which is

also a normed algebra. A norm on A that satisfies

‖a∗a‖ = ‖a‖2

for all a ∈ A is called a C∗-norm. If, with this norm, A is complete, then A

is called a C∗-algebra.

Since ‖x∗x‖ ≤ ‖x∗‖‖x‖ we have ‖x‖ ≤ ‖x∗‖ for all x ∈ A. Thus ‖x∗‖ =

‖x‖.

A closed ∗-subalgebra of a C∗-algebra is also a C∗-algebra. Such a ∗-

subalgebra will be called a C∗-subalgebra.

Example 1.2.2 (a) Let A be as in 1.1.3 and let a = (aij) ∈ A. Define

a∗ = (āji). Then A is a C
∗-algebra.

(b) Let X be a locally compact Hausdorff space and C0(X) be the

set of all continuous functions vanishing at infinity. Define f∗(t) = f(t)

(for t ∈ X). Then C0(X) becomes a ∗-algebra. With ‖f‖ = supt∈X |f(t)|,

C0(X) is a C
∗-algebra. C0(X) is unital if and only if X is compact.

Example 1.2.3 Let X be a compact Hausdorff space and B(X) be the

set of all bounded Borel functions on X. With ‖f‖ = supx∈X |f(x)| and

f∗(x) = f(x), B(X) becomes a C∗-algebra. For any complex Borel measure
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Thus,

‖ab+ I‖ ≤ (‖a+ I‖+ ε)(‖b+ I‖+ ε).

Letting ε→ 0, we obtain

‖ab+ I‖ ≤ ‖a+ I‖‖b+ I‖.

In other words, A/I is a normed algebra. �

1.2 C
∗-algebras

Definition 1.2.1 An algebra A is called a ∗-algebra if it is a complex

algebra with a conjugate linear involution ∗ which is an anti-isomorphism,

i.e., for any a, b ∈ A and α ∈ C,

(a+ b)∗ = a∗ + b∗, (αa)∗ = ᾱa∗, a∗∗ = a and (ab)∗ = b∗a∗.

If a ∈ A, then a∗ is called the adjoint of a. Let A be a ∗-algebra which is

also a normed algebra. A norm on A that satisfies

‖a∗a‖ = ‖a‖2

for all a ∈ A is called a C∗-norm. If, with this norm, A is complete, then A

is called a C∗-algebra.

Since ‖x∗x‖ ≤ ‖x∗‖‖x‖ we have ‖x‖ ≤ ‖x∗‖ for all x ∈ A. Thus ‖x∗‖ =

‖x‖.

A closed ∗-subalgebra of a C∗-algebra is also a C∗-algebra. Such a ∗-

subalgebra will be called a C∗-subalgebra.

Example 1.2.2 (a) Let A be as in 1.1.3 and let a = (aij) ∈ A. Define

a∗ = (āji). Then A is a C
∗-algebra.

(b) Let X be a locally compact Hausdorff space and C0(X) be the

set of all continuous functions vanishing at infinity. Define f∗(t) = f(t)

(for t ∈ X). Then C0(X) becomes a ∗-algebra. With ‖f‖ = supt∈X |f(t)|,

C0(X) is a C
∗-algebra. C0(X) is unital if and only if X is compact.

Example 1.2.3 Let X be a compact Hausdorff space and B(X) be the

set of all bounded Borel functions on X. With ‖f‖ = supx∈X |f(x)| and

f∗(x) = f(x), B(X) becomes a C∗-algebra. For any complex Borel measure
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10 The Basics of C∗-algebras

µ onX, there is a bounded linear functional Fµ ∈ C(X)∗ such that Fµ(f) =∫
X
fdµ. It is clear that (by considering point-evaluation)

sup
‖µ‖≤1

|Fµ(f)| ≥ ‖f‖

for any f ∈ B(X). On the other hand, if ‖µ‖ ≤ 1,

|Fµ(f)| ≤

∫
X

|f |d|µ| ≤ ‖f‖‖µ‖.

Thus the C∗-algebra B(X) is the same Banach space when we regard it as

a subspace of the second dual of C(X) as described above.

Definition 1.2.4 Let A be a C∗-algebra. An element x ∈ A is normal

if xx∗ = x∗x and is self-adjoint if x = x∗. The self-adjoint part of A is

denoted by Asa. For each x ∈ A, the element
1

2
(x + x∗) is in Asa, and is

called the real part of x, and the element − i
2
(x−x∗) is in Asa and is called

the imaginary part of x. It follows that Asa is a closed real subspace of A

and each element x ∈ A has a unique decomposition as x = y + iz with

y, z ∈ Asa. An element p ∈ Asa is called a projection if p2 = p.

When A admits a unit, we denote the unit (or identity) by 1A, or 1

when there is no confusion. If A has a unit, then A 6= 0. Since 1∗A = 1A,

‖1A‖ = ‖1A‖2 and ‖1A‖ = 1. Thus a C∗-algebra with unit is a unital

Banach algebra. We will call it a unital C∗-algebra.

An element u in a unital C∗-algebra is unitary if u∗u = uu∗ = 1. Since

1∗ = 1, ‖u‖ = 1.

One can always unitize a C∗-algebra.

Proposition 1.2.5 For each C∗-algebra A there is a C∗-algebra Ã with

unit containing A as a closed ideal. If A has no unit, Ã/A = C.

Proof. LetB(A) be the set of all bounded linear operators onA. Consider

the map π : A → B(A) defined by π(a)b = ab for all a, b ∈ A. (This map

is often called the left regular representation of A.) It is clear that π is a

homomorphism. Since ‖π(a)b‖ ≤ ‖a‖‖b‖, ‖π(a)‖ ≤ ‖a‖. Also

‖a‖2 = ‖aa∗‖ = ‖π(a)a∗‖ ≤ ‖π(a)‖‖a∗‖ = ‖π(a)‖‖a‖.

Hence π is an isometry. Let 1 denote the identity operator on A and let Ã

be the algebra of operators on A of the form π(a) + λ · 1 with a ∈ A and

λ ∈ C. Since π(A) is complete and Ã/π(A) = C, Ã is also complete. Define
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an involution on Ã by defining (π(a) + λ1)∗ = π(a∗) + λ̄1. For each ε > 0,

there is b ∈ A with ‖b‖ = 1 such that

‖π(a) + λ1‖2 ≤ ε+ ‖(a+ λ)b‖2 = ε+ ‖b∗(a∗ + λ̄)(a+ λ)b‖

≤ ε+ ‖(a∗ + λ̄)(a+ λ)b‖ ≤ ε+ ‖(π(a∗) + λ̄)(π(a) + λ)‖.

So Ã becomes a C∗-algebra. �

Definition 1.2.6 For a non-unital C∗-algebra A, the spectrum of x ∈ A,

denoted by sp(x), is defined to be the spectrum of x in Ã.

Lemma 1.2.7 If A is a C∗-algebra and x ∈ A is a normal element, then

‖x‖ = r(x).

Proof. If x ∈ Asa, then ‖x
2‖ = ‖x‖2 implies that

r(x) = lim
n→∞

‖x2
n

‖1/2
n

= ‖x‖.

If in general, x is normal, we obtain

r(x)2 ≤ ‖x‖2 = ‖x∗x‖ = lim
n→∞

‖(x∗x)n‖1/n

≤ lim
n→∞

(‖(x∗)n‖‖xn‖)1/n ≤ r(x)2.

Hence r(x) = ‖x‖. �

Corollary 1.2.8 There is at most one norm on a ∗-algebra making it a

C∗-algebra.

Proof. If ‖ · ‖1 and ‖ · ‖2 are two norms on a ∗-algebra A making it a

C∗-algebra, then

‖a‖2i = ‖a
∗a‖i = r(a

∗a) = sup{|λ| : λ ∈ sp(a∗a)}

(i = 1, 2). Thus ‖a‖1 = ‖a‖2. �

Lemma 1.2.9 Let A be a C∗-algebra and a ∈ Asa. Then sp(a) ⊂ R. If

u ∈ A is a unitary, then sp(u) is a subset of the unit circle.

Proof. Let u be a unitary in a unital C∗-algebra A and λ ∈ sp(u).

Since ‖u‖2 = ‖u∗u‖ = ‖1‖ = 1, |λ| ≤ 1. However, λ−1 ∈ sp(u−1). Since

u−1 = u∗ is also a unitary, we conclude that |λ| = 1. For a ∈ Asa, by

considering Ã if necessary, we may assume that A is unital. The function

exp(iz) =
∑∞
n=0(iz)

n/n! is an entire function. By applying 1.1.19, we see
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12 The Basics of C∗-algebras

that u = exp(ia) is a unitary (with u∗ = exp(−ia)). If λ ∈ sp(a) and

b =
∑∞
n=1(i)

n(a− λ)n−1/n!, then by 1.1.19,

exp(ia)− eiλ = (exp(i(a− λ)) − 1)eiλ = (a− λ)beiλ.

Since b commutes with a (by 1.1.19), and a−λ is not invertible, exp(ia)−eiλ

is not invertible. Hence |eiλ| = 1, and therefore λ ∈ R. In other words,

sp(a) ⊂ R. �

1.3 Commutative C∗-algebras

The C∗-algebra C0(X) in 1.2.2 (b) is a commutative C
∗-algebra. In this

section, we will show that every commutative C∗-algebra has this form.

Definition 1.3.1 A multiplicative linear functional on a Banach algebra

A is a nonzero homomorphism of A into C. The set of all multiplicative

linear functionals on A is called the maximal ideal space of A and will be

denoted by Ω(A).

If A is a unital algebra, and I is a proper ideal of A, then an application

of Zorn’s lemma shows that there is an ideal M ⊃ I such that A/M is

simple and nonzero. Such ideals are called maximal ideal. We leave this to

the reader as an exercise.

Theorem 1.3.2 Let A be a unital commutative Banach algebra.

(1) If φ ∈ Ω(A), then ‖φ‖ = 1.

(2) The space Ω(A) is non-empty, and the map φ 7→ kerφ defines a

bijection from Ω(A) onto the set of all maximal ideals of A.

Proof. Suppose that φ ∈ Ω(A) and a ∈ A such that ‖a‖ < 1 = φ(a). Let

b =
∑∞
n=1 a

n. Then a+ ab = b and

φ(b) = φ(a) + φ(a)φ(b) = 1 + φ(b).

This is not possible. So ‖φ‖ ≤ 1. Since φ(1) = 1, we proved that ‖φ‖ = 1.

For part (2), let φ ∈ Ω(A). It follows that M = kerφ is a closed ideal

of codimension 1 in A, and thus is maximal. If φ1, φ2 ∈ Ω(A) and kerφ1 =

kerφ2, then for each a ∈ A, a − φ2(a) ∈ kerφ1. This implies that φ1(a −

φ2(a)) = 0 or φ1(a) = φ2(a). This shows the map is one-to -one.

Conversely, if M is a maximal ideal, then dist(M, 1) ≥ 1 because the

open unit ball with center at 1 consists of only invertible elements (by
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1.1.10). It follows that the closure of M still does not contain 1. It is easy

to see that the closure is an ideal. So it is a proper ideal. We conclude that

M itself is closed. So the quotient A/M is a simple commutative Banach

algebra. By Lemma 1.1.13 A/M = C. So this quotient map φ gives a

continuous homomorphism from A → C with kerφ = M. The map is

therefore bijective.

To see that Ω(A) is non-empty, we may assume that A 6= C, otherwise

the identification of A with C gives a nonzero homomorphism. So A is not

simple (by 1.1.13). Let I be a proper ideal of A. Since A has an identity,

there is a maximal proper ideal of A containing I (see 1.3.1). �

If A is a unital commutative Banach algebra, it follows from 1.3.2 that

Ω(A) is a subset of the (closed) unit ball of A∗. So Ω(A) with the relative

weak ∗-topology becomes a topological space.

Theorem 1.3.3 If A is a unital commutative Banach algebra, then Ω(A)

is a compact Hausdorff space.

Proof. It is easy to check that Ω(A) is weak∗ closed in the closed unit

ball of A∗. Since the unit ball of A∗ is weak∗ compact (Banach-Alaoglu

theorem), Ω(A) is weak∗ compact. �

Definition 1.3.4 Suppose that A is a unital commutative Banach alge-

bra and Ω(A) is its maximal ideal space. If a ∈ A, we define a function ǎ

by

ǎ(t) = t(a) ( t ∈ Ω(A) ).

The set {φ ∈ Ω(A) : |φ(a)| ≥ α} is weak∗ closed (for every α > 0) in the

closed unit ball of A∗. Thus it is weak∗ compact by the Banach-Alaoglu

theorem. Hence ǎ ∈ C(Ω(A)). Thus we define a map Γ : a→ ǎ from A into

C(Ω(A)). This map is called the Gelfand transform. It is clear that Γ is a

homomorphism.

Assume A is a non-unital C∗-algebra and Ã is its unitization. If φ :

A → C is a nonzero homomorphism, then φ̃(a + λ) = φ(a) + λ (a ∈ A

and λ ∈ C) is a homomorphism from Ã into C. Thus Ω(A) is a subset of

Ω(Ã). In fact Ω(Ã) = Ω(A) ∪ {π}, where π is determined by Ã/A = C,

i.e., kerπ = A. Since Ω(Ã) is a compact Hausdorff space, we conclude that

Ω(A) is a locally compact Hausdorff space. The restriction of the Gelfand

transform of Ã on A maps A into C0(Ω(A)).
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14 The Basics of C∗-algebras

The following is the Gelfand theorem for commutativeC∗-algebras. Note

that if A is unital, Ω(A) is compact and C0(Ω(A)) = C(Ω(A)).

Theorem 1.3.5 Suppose that A is a commutative C∗-algebra. Then the

Gelfand transform a 7→ ǎ is a ∗-preserving isometry from A onto C0(Ω(A)).

Proof. Suppose first that A is unital. Let t ∈ Ω(A) and a ∈ A then

t(a)−a ∈ ker t. Since kert is a maximal ideal, t(a) ∈ sp(a). Therefore, if a ∈

Asa, then t(a) ∈ R by 1.2.9. By writing a = (1/2)(a+a∗)+i[(1/2i)(a−a∗)],

we conclude that t(a∗) = t(a) for each a ∈ A. This shows that Γ(a) = ǎ is

a ∗-preserving homomorphism from A into C(Ω).

If a is invertible, then Γ(a−1) = Γ(a)−1, since Γ is a homomorphism.

Conversely, if a is not invertible, then the ideal I = aA is proper and thus

is contained in a maximal ideal M (we still assume that A is unital). If

φ ∈ Ω(A) and kerφ =M, then φ(a) = 0.Thus ǎ is not invertible inC(Ω(A)).

This implies that ǎ and a have the same spectrum and this coincides with

the range of ǎ (see 1.1.7). Since the norm in C(Ω(A)) is the supremum norm

and the range of ǎ is sp(a), we conclude that ‖ǎ‖∞ = r(a) = ‖a‖, since a is

normal (see 1.2.7). This says that Γ is a ∗-preserving isometry from A into

C(Ω(A)). Since points in Ω(A) are multiplicative linear functionals which

can be only distinguished by elements in A, {ǎ : a ∈ A} separates points in

Ω(A). It follows from the Stone-Weierstrass Theorem that Γ is surjective.

For the non-unital case, from the above, Γ : Ã→ C(Ω(Ã)) is a surjective

∗-preserving isometry. Since Ã/A = C, Γ(A) is a maximal ideal. Note as

in 1.3.4, we may write Ω(Ã) = Ω(A) ∪ {π}, where π is determined by

the quotient map Ã → Ã/A = C. Then C0(Ω(A)) is the (maximal) ideal

(of C(Ω(Ã))) of continuous functions vanishing at π, which is identified

naturally with C0(Ω(A)). �

Let S be a subset of a C∗-algebra A. Then the C∗-subalgebra of A

generated by S, denoted by C∗(S), is the smallest C∗-subalgebra of A

containing S.

Corollary 1.3.6 If a is a normal element in a unital C∗-algebra A, then

there is an isometric ∗-isomorphism from C∗(a) to C0(sp(a) \ {0}) which

sends a to the identity function on sp(a).

Proof. Since a is normal, C∗(a) is commutative. Note that φ ∈ Ω(C∗(a))

is determined by φ(a) = λ. Thus the map from Ω(C∗(a)) into C taking φ

to φ(a) is a homeomorphism onto ǎ(Ω(A)). From the Gelfand transform,

ǎ(Ω(A)) = sp(a). This map identifies ǎ with the identity function z on sp(a)
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as desired. It follows from 1.3.5 that this map is an isometric ∗-isomorphism

. �

Definition 1.3.7 If a is a normal element of A and f ∈ C0(sp(a) \ {0})

we denote by f(a) the element of A corresponding to f via the isomorphism

given in 1.3.6. Corollary 1.3.6 is known as the continuous functional calculus

for normal elements.

The following corollary is often called the spectral mapping theorem.

Corollary 1.3.8 Let a be a normal element in a unital C∗-algebra A

and f ∈ C(sp(a)). Then

f(sp(a)) = sp(f(a)).

Proof. This follows immediately from the above corollary. �

Theorem 1.3.9 Let A = C(X) and B = C(Y ), where X and Y are

two compact Hausdorff spaces. Then A ∼= B if and only if X and Y are

homeomorphic.

Proof. Let φ : A → B be an isomorphism. Define τ : Y → X by

τ(y)(f) = y(φ(f)). Here we identify X with the maximal ideal space (mul-

tiplicative states) of A and Y with the maximal ideal space of B. The

continuity of φ implies that τ is continuous. Since φ is onto, there is f ∈ A

such that τ(y1) 6= τ(y2) if y1 6= y2. Thus τ is injective. Since Y is a compact

Hausdorff space, F = τ(Y ) is a closed subset of X. Let

I = {f ∈ C(X) : f |F = 0}.

Then kerφ ⊃ I. Thus F = X. In other words τ is onto, whence τ is a

homeomorphism.

Conversely if τ : Y → X is a homeomorphism, define φ(f)(y) = f(τ(y)).

To verify that φ is an isomorphism one can simply reverse the above argu-

ment, and we leave this to the reader. �

Remark 1.3.10 The Gelfand representation theorem for commutative

C∗-algebras is fundamentally important. Even in a non-commutative C∗-

algebra A, we often obtain useful information of A via the study of certain

commutative C∗-subalgebras of A. So Theorem 1.3.5 certainly plays an

important role in studying non-commutative C∗-algebras as well. Theorem

1.3.9 shows that to study commutative C∗-algebras, it is equivalent to study

their maximal ideal spaces. Therefore the commutative C∗-algebra theory is
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16 The Basics of C∗-algebras

the theory of topology. Much of general C∗-algebra theory can be described

as non-commutative topology.

1.4 Positive cones

Example 1.4.1 LetH be a Hilbert space and let B(H) be the space of all

bounded operators from H to H. If T1, T2 ∈ B(H), we define (T1T2)(v) =

T1(T2(v)) for v ∈ H. With the operator norm ‖T‖ = sup‖v‖=1 ‖T (v)‖,

B(H) is a Banach algebra. If T ∈ B(H), define T ∗ by 〈Tx, y〉 = 〈x, T ∗y〉

(x, y ∈ H), where 〈·, ·〉 is the inner product on H. Then one easily checks

‖T ∗T‖ = sup
‖x‖=1=‖y‖

|〈T ∗Tx, y〉| = sup
‖x‖=1=‖y‖

|〈Tx, Ty〉| = ‖T‖2.

Thus B(H) is a C∗-algebra.

Every closed ∗-subalgebra of B(H) is a C∗-algebra. Later in this chapter

we will show that every C∗-algebra is a closed ∗-subalgebra of B(H) for

some Hilbert space.

Example 1.4.2 Let H be a Hilbert space. An operator T ∈ B(H) is said

to be compact if it maps bounded sets to precompact subsets. If the range

of T is finite dimensional, then T is compact. Denote by K(H) the set of

all compact operators in B(H). K(H) is clearly a closed subspace of B(H).

If T ∈ K(H), L ∈ B(H), then TL, LT ∈ K(H). Therefore K(H) is a closed

ideal of B(H). Moreover if T ∈ K(H), then T ∗ ∈ K(H). Therefore K is a

C∗-subalgebra of B(H). When H is separable infinite dimensional Hilbert

space, we will use K for K(H). K is a very important example of a (simple)

C∗-algebra.

Example 1.4.3 To show that any C∗-algebra is a C∗-subalgebra of

B(H) for some Hilbert space H, we need to study the order structure of C∗-

algebras. Recall that an operator T ∈ B(H) is called positive if 〈Tv, v〉 ≥ 0

for all v ∈ H. In the case that H is finite dimensional, T is positive if and

only if it is self-adjoint and all eigenvalues are nonnegative.

If A = C(X), an element f ∈ A is positive if f(t) ≥ 0 for all t ∈ X.

We now introduce the following definition.

Definition 1.4.4 An element a in a C∗-algebra A is positive if a ∈ Asa
and sp(a) ⊂ R+. We write a ≥ 0 if a is positive. The set of all positive

elements in A will be denoted by A+.
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We now introduce the following definition.

Definition 1.4.4 An element a in a C∗-algebra A is positive if a ∈ Asa
and sp(a) ⊂ R+. We write a ≥ 0 if a is positive. The set of all positive

elements in A will be denoted by A+.
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A projection p is always positive, since p2 = p and p ∈ Asa implies that

sp(p) = {0, 1}, by 1.3.6.

Lemma 1.4.5 Let A be a C∗-algebra and let a ∈ A. Then the following

are equivalent:

(i) a ≥ 0;

(ii) a = b2 for some b ∈ Asa;

(iii) a = a∗ and ‖t− a‖ ≤ t for any t ≥ ‖a‖;

(iv) a = a∗ and ‖t− a‖ ≤ t for some t ≥ ‖a‖.

Proof. (i) ⇒ (ii): In C∗(a), by 1.3.6, we set b = a1/2.

(ii) ⇒ (i): Consider the C∗-subalgebra C∗(b). Then a ∈ C∗(b) and, by

1.3.6, C∗(b) = C0(sp(b)). We see that a = a
∗ since b ∈ Asa.

(i) ⇒ (iii): Since t− a is normal, from 1.3.5 we have (with t ≥ ‖a‖),

‖t− a‖ = sup{|t− λ| : λ ∈ sp(a)} ≤ t.

(iii) ⇒ (iv) is immediate.

(iv) ⇒ (i): If λ ∈ sp(a) then t− λ ∈ sp(t− a). Thus

|t− λ| ≤ ‖t− a‖ ≤ t.

Therefore λ > 0 since λ ≤ t. �

Definition 1.4.6 Let a ∈ Asa. Then a
2 ∈ A+. Set |a| = (a2)1/2 (by

1.3.6). Then a+ = (1/2)(|a|+ a) and a− = (1/2)(|a| − a). By the Gelfand

transform, |a|, a+ and a− are positive. Moreover, by 1.3.6, a+a− = 0 and

a = a+ − a−.

Corollary 1.4.7 If A is a unital C∗-algebra, then A is the linear span of

unitaries.

Proof. Let a ∈ Asa and ‖a‖ ≤ 1. Then 1− a2 ∈ A+. Put

u = a+ i(1− a2)1/2 and v = a− i(1− a2)1/2.

Then u∗ = v and u∗u = uu∗ = 1. So u and v are unitaries. On the other

hand, we have a = (1/2)(u+ v). �

Theorem 1.4.8 The set A+ is a closed cone (a + b ∈ A+, if a, b ∈ A+
and A+ ∩A− = {0} ) and a ∈ A+ if and only if a = x∗x for some x ∈ A.

Proof. It follows from (iii) of 1.4.5 that A+ is closed and, if a ∈ A+, then

λa ∈ A+ for any λ ∈ R+. To see that A+ is a cone, take a and b in A+. By
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18 The Basics of C∗-algebras

(iii) of 1.4.5,

‖(‖a‖+ ‖b‖)− (a+ b)‖ = ‖(‖a‖ − a) + (‖b‖ − b)‖

≤ ‖‖a‖ − a‖+ ‖‖b‖ − b‖ ≤ ‖a‖+ ‖b‖.

Since ‖a‖+ ‖b‖ ≥ ‖a+ b‖, from the above and (iv) of 1.4.5, a+ b ∈ A+.

Now suppose that a = x∗x for some x ∈ A. Then a∗ = a. Set a = a+−a−
as in 1.4.6. We have

−(xa
1/2
− )

∗(xa
1/2
− ) = −a

1/2
− x∗xa

1/2
− = −a

1/2
− (a+ − a−)a

1/2
− = a2− ∈ A+.

Put xa
1/2
− = b+ ic with b, c ∈ Asa. Then

(xa
1/2
− )(xa

1/2
− )

∗ = 2(b2 + c2) + [−(xa
1/2
− )

∗(xa
1/2
− )] ∈ A+

since A+ is a cone. It follows from 1.1.8 that sp(a
2
−) ⊂ R+ ∩ R− = {0}.

Therefore a− = 0 and a ≥ 0. �

Definition 1.4.9 In Asa, we write b ≤ a if a−b ≥ 0. Since Asa = A+−A+
and A+ ∩ (−A+) = {0}, Asa becomes a partially ordered real vector space.

Theorem 1.4.10 Let A be a C∗-algebra.

(1) A+ = {a
∗a : a ∈ A}.

(2) If a, b ∈ Asa and c ∈ A, then a ≤ b implies that c∗ac ≤ c∗bc.

(3) If 0 ≤ a ≤ b, ‖a‖ ≤ ‖b‖.

(4) If A is unital and a, b ∈ A+ are invertible, then a ≤ b implies that

0 ≤ b−1 ≤ a−1.

Proof. Condition (1) follows from 1.4.8 and the fact that positive ele-

ments have positive square roots. To see (2), we note that c∗bc − c∗ac =

c∗(b−a)c. So (2) follows from (1). For (3), we may assume that A is unital.

The inequality b ≤ ‖b‖ · 1 follows from 1.3.5 by considering C∗(b, 1). Hence

a ≤ ‖b‖ · 1. We then apply 1.3.5 to C∗(a, 1) to obtain ‖a‖ ≤ ‖b‖.

To see (4), we note that if b ≥ 0 and invertible, then b−1 ≥ 0 (by 1.3.6). It

follows from (2) that b−1/2ab−1/2 ≤ b−1/2bb−1/2 = 1. Hence ‖a1/2b−1/2‖ ≤

1 (by (3)). Thus ‖a1/2b−1a1/2‖ ≤ 1 which implies that a1/2b−1a1/2 ≤ 1. By

(2), we have

b−1 = (a−1/2)(a1/2b−1a1/2)(a−1/2) ≤ (a−1/2)1(a−1/2) = a−1.
�

Theorem 1.4.11 Let A be a C∗-algebra. If a, b ∈ A+ such that a ≤ b,

then aα ≤ bα for any 0 ≤ α ≤ 1.
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Proof. By considering Ã, we may assume that A is unital. Fix 0 ≤ a ≤ b

in A+. Let C = {α ∈ R+ : a
α ≤ bα}. Then 0, 1 ∈ C. Since the function

fn(t) = t
αn → tα if αn → α for αn ≥ 0 uniformly on [0,K] for any K > 0,

xαn → xα for any positive element x ∈ A+ if αn → α (and αn ≥ 0). Since

A+ is closed, if αn ∈ C and αn → α, then bα − aα ∈ A+. This shows that

C is closed. To prove the theorem, it suffices to show that C is convex. We

first consider the case that both a and b are invertible. Let α, β ∈ C. Then

b−α/2aαb−α/2 ≤ 1 and b−β/2aβb−β/2 ≤ 1.

Hence, by 1.4.10, ‖b−α/2aαb−α/2‖ ≤ 1 and ‖b−β/2aβb−β/2‖ ≤ 1. So

‖aα/2b−α/2‖2 ≤ 1 and ‖aβ/2b−β/2‖2 ≤ 1. Therefore (using the fact that

sp(xy) = sp(yx))

1 ≥ ‖(b−β/2aβ/2)(aα/2b−α/2)‖ = ‖b−β/2[a(α+β)/2b−α/2]‖

≥ r(b−β/2[a(α+β)/2b−α/2]) = r(a(α+β)/2b−(α+β)/2)

= r([a(α+β)/2b−(α+β)/4]b−(α+β)/4) = r(b−(α+β)/4a(α+β)/2b−(α+β)/4)

= ‖b−(α+β)/4a(α+β)/2b−(α+β)/4‖

Therefore we have b−(α+β)/4a(α+β)/2b−(α+β)/4 ≤ 1. Hence a(α+β)/2 ≤

b(α+β)/2. Therefore C contains (1/2)(α + β). Consequently, C ⊃ [0, 1]. In

general, for any ε > 0, we have

(b+ ε)α − (a+ ε)α ≥ 0 (0 ≤ α ≤ 1).

Since A+ is closed, letting ε→ 0, we obtain aα ≤ bα. �

Example 1.4.12 It is not true that 0 ≤ a ≤ b implies a2 ≤ b2 in general

non-commutative C∗-algebras. For example, let A =M2 and let

p =

(

1 0

0 0

)

and q = 1/2

(

1 1

1 1

)

.

Then both p and q are projections and p ≤ p+ q. But p2 = p 6≤ (p+ q)2 =

p+ q + pq + qp, since

q + pq + qp = 1/2

(

3 2

2 1

)

is not positive.
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20 The Basics of C∗-algebras

1.5 Approximate identities, hereditary C∗-subalgebras and

quotients

To deal with non-unital C∗-algebras, and avoid the troubles caused by the

absence of unit, one can often embed A into Ã. However, more often, one

has to work in the original non-unital C∗-algebra. Therefore the notion of

approximate identity is essential.

Example 1.5.1 Let H be a Hilbert space with an orthonormal basis

{vn}∞n=1. The C
∗-algebra K, the set of all compact operators onH, is a non-

unital C∗-algebra. Let pn be the projection (from H) onto span{v1, ...., vn}.

Then {pn} is an increasing sequence of projections in K. The reader easily

checks that, for any x ∈ K,

‖pnx− x‖ → 0 and ‖x− xpn‖ → 0 as n→∞.

The sequence {pn} plays a role which is similar to that of identity in a

unital C∗-algebra.

Let X be a non-compact but σ-compact and locally compact Hausdorff

space X. Then C0(X) = A is non-unital. Moreover, X = ∪∞n=1Xn, where

each Xn is compact and Xn+1 contains a neighborhood of Xn. It is easy to

produce an increasing sequence of positive functions fn ∈ C0(X) such that

0 ≤ fn ≤ 1, fn(t) = 1 on Xn and fn(t) = 0 if t 6∈ Xn+1. One checks that,

for any g ∈ C0(X),

‖gfn − g‖ → 0 as n→∞.

Definition 1.5.2 An approximate identity for a C∗-algebra A is an in-

creasing net {eλ}λ∈Λ of positive elements in the closed unit ball of A such

that

a = lim
λ
aeλ.

Equivalently, a = limλ eλa for all a ∈ A.

Lemma 1.5.3 Let A be a C∗-algebra and denote by Λ the set of all

elements a ∈ A+ with ‖a‖ < 1. Then Λ is upwards-directed; i.e., if a, b ∈ Λ,

then there exists some c ∈ Λ such that a, b ≤ c.

Proof. Suppose that a ∈ A+. Then 1 + a ∈ GL(Ã), and a(1 + a)−1 =

1− (1 + a)−1. We claim that

a, b ∈ A+ and a ≤ b→ a(1 + a)−1 ≤ b(1 + b)−1. (e 5.4)
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In fact, if a ≤ b, then 1+a ≤ 1+bwhich implies that (1+b)−1 ≤ (1+a)−1

by 1.4.10 (4). Consequently 1− (1 + a)−1 ≤ 1− (1 + b)−1. This is the same

as

a(1 + a)−1 ≤ b(1 + b)−1.

So the claim is proved.

We note also (by 1.3.6) that if a ∈ A+, then a(1 + a)−1 ∈ Λ. Now

suppose that a, b ∈ Λ. Put

x = a(1− a)−1, y = b(1− b)−1 and c = (x+ y)(1 + x+ y)−1.

Since x+y ∈ A+, c ∈ Λ.We note that (1+x)−1 = 1−a and x(1+x)−1 = a.

So, by e 5.4, a = x(1 + x)−1 ≤ c, since x ≤ x + y. Similarly, b ≤ c. This

proves the lemma. �

The following positive continuous functions will be used throughout this

book.

Definition 1.5.4 Let

fε(t) =







1 if ε ≤ t

linear if ε/2 ≤ t < ε

0 if 0 ≤ t ≤ ε/2

(e 5.5)

so that fε ∈ C0((0,K]) for any K > 0, and 0 ≤ fε ≤ 1. Note that if

α ≥ β > 0, then fβ ≥ fα. Also f 1
2n
f 1
n

= f 1
n

.

Let a ∈ A+. Then it follows from 1.3.6 that fε(a)a→ a if ε→ 0.

Theorem 1.5.5 Every C∗-algebra A admits an approximate identity.

Indeed, if Λ is the upwards-directed set of all a ∈ A+ with ‖a‖ < 1 and

eλ = λ for all λ ∈ Λ, then {eλ}λ∈Λ forms an approximate identity for A.

Proof. From 1.5.3 {eλ} is an increasing net in the closed unit ball of A.

We need to show that limλ aeλ = a for all a ∈ A. Since Λ spans A, it suffices

to assume that a ∈ A+. Since {‖a(1 − eλ)a‖} is decreasing, it suffices to

show that there are un ∈ {eλ} such that ‖a(1 − un)a‖ → 0 (as n → ∞).

Note that un = (1−
1

n2 )f 1
n

(a) ∈ Λ. We have t(1− (1− 1

n2 )f 1
n

(t))t → 0 as

n→∞ uniformly on [0, 1]. It follows from 1.3.6 that

‖a(1− un)a‖ → 0 as n→∞.
�
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22 The Basics of C∗-algebras

Corollary 1.5.6 If A is separable, then A admits a countable approxi-

mate identity.

Proof. Fix a dense sequence {xn} of A. Let {eλ} be an approximate

identity for A. Choose ek ∈ {eλ} such that

‖xiek − xi‖ < 1/k (1 ≤ i ≤ k)

and ek+1 ≥ ek, k = 1, 2, ..., . Thus {ek} forms an approximate identity for

A. �

Definition 1.5.7 A C∗-algebra is said to be σ-unital if A admits a count-

able approximate identity.

The above corollary (1.5.6) shows that every separable C∗-algebra is

σ-unital.

Definition 1.5.8 A C∗-subalgebra B of A is said to be hereditary if for

any a ∈ A+ and b ∈ B+ the inequality a ≤ b implies that a ∈ B. Obviously,

0 and A are hereditary C∗-subalgebras of A. Any intersection of hereditary

C∗-subalgebras is hereditary. Let S ⊂ A. The hereditary C∗-subalgebra

generated by S is the smallest hereditary C∗-subalgebra of A containing S.

Such a hereditary C∗-subalgebra is denoted by Her(S).

Lemma 1.5.9 Let A be a C∗-algebra and a ∈ A+. Then aAa is the

hereditary C∗-subalgebra generated by a.

Proof. Let B = aAa. It is easy to see that aAa is a ∗-subalgebra. It

follows that B is a C∗-subalgebra.

Claim (1): If c ∈ B+ then cAc ⊂ B. In fact, if axna→ c, then, for any

y ∈ A, axnayaxna→ cyc. Therefore cAc ⊂ B. This proves the claim.

Claim (2): Let en = f1/n(a). Then {en} forms an approximate identity

for B. In fact by 1.5.4, ‖ena−a‖ → 0 as n→∞. Suppose x = aba for some

b ∈ A. Then we have ‖enx− x‖ → 0 and ‖xen − x‖ → 0 as n→∞. Since

aAa is dense in B, we conclude that {en} is an approximate identity for B.

Since aena → a2, a2 ∈ B. Hence a ∈ B and C∗(a) ⊂ B. In particular,

from Claim (1), f1/n(a)Af1/n(a) ⊂ B.

Now suppose that 0 ≤ c ≤ b with b ∈ B+. We will show that c ∈ B. By

1.4.11, c1/2 ≤ b1/2. Thus

‖(1− en)c(1− en)‖ ≤ ‖(1− en)b(1− en)‖ ≤ ‖(1− en)b‖ → 0.
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Therefore ‖(1−en)c1/2‖ → 0, or enc1/2 → c1/2. Hence encen → c. By Claim

(1), encen ∈ B. Therefore c ∈ B. So B is hereditary. We have shown that

a ∈ aAa. It follows that Her(a) = aAa. �

Theorem 1.5.10 A C∗-algebraA is σ-unital if and only if there is a ∈

A+ such that Her(a) = A.

Proof. We have shown (from Claim (2) in the proof of 1.5.9) that A is

σ-unital if A = Her(a) for some a ∈ A+.

For the converse, let {en} be an approximate identity for A. Put a =
∑

∞

n=1(1/2
n)en and B = Her(a). Since en ≤ 2na, by 1.5.9, en ∈ B for all n.

As in the proof of 1.5.9, enben ∈ B for any b ∈ A+. Since enb1/2 → b1/2,

enben → b. Therefore b ∈ B. It follows that A = B. �

Corollary 1.5.11 If A is a σ-unital C∗-algebra, then A admits a count-

able approximate identity {en} satisfying

enen+1 = en = en+1en n = 1, 2, ....

Proof. Let A = aAa for some a ∈ A+. Set en = f1/2n(a). Then {en} is

an approximate identity. By 1.5.4, f1/2nf1/2(n+1) = f1/2n for all n. �

Theorem 1.5.12 If I is an ideal in a C∗-algebra A, then I is a hereditary

C∗-subalgebra of A. If {eλ} is an approximate identity for I, then for each

a ∈ A,

‖ā‖ = inf
b∈I
‖a+ b‖ = lim

λ
‖a− eλa‖ = lim

λ
‖a− aeλ‖.

Proof. Let B = I∗ ∩ I. Then B is a C∗-subalgebra of A. Let {eλ} be an

approximate identity for B. Note that eλ ∈ B ⊂ I. If a ∈ I,

limλ a
∗a(1− eλ) = 0. Hence

lim
λ
‖a− aeλ‖

2 = lim
λ
‖(1− eλ)a

∗a(1− eλ)‖ ≤ lim
λ
‖a∗a(1− eλ)‖ = 0.

Therefore a = limλ aeλ. Hence a
∗ = limλ eλa

∗. Since eλa
∗ ∈ I, we conclude

that a∗ ∈ I. Therefore I is C∗-subalgebra.

To see it is hereditary, let 0 ≤ c ≤ a, where c ∈ A+ and a ∈ I+. By

1.5.9 c ∈ Her(a) = aAa. But aAa ⊂ I. Hence I is hereditary.

Now suppose that {eλ} is an approximate identity for I.

By definition, ‖ā‖ = infb∈I ‖a + b‖ for all a ∈ A. Fix a ∈ A. Put

α = infb∈I ‖a + b‖ and β = limλ ‖a(1 − eλ)a∗‖ (it exists since the net is
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decreasing). We have

α2 ≤ ‖a(1− eλ)‖
2 = ‖a(1− eλ)

2a∗‖ ≤ ‖a(1− eλ)a
∗‖ → β.

Hence α2 ≤ β. Thus it suffices to show that α2 ≥ β. To do this, let ε > 0

and take b ∈ I such that α+ ε ≥ ‖a+ b‖. Then

(α+ ε)2 ≥ ‖a+ b‖‖1− eλ‖‖a
∗ + b∗‖ ≥ ‖(a+ b)(1− eλ)(a

∗ + b∗)‖ → β

since both ‖b(1− eλ)‖ and ‖b∗(1− eλ)‖ tend to zero. Thus we have

(α+ ε)2 ≥ β

for every ε > 0. Hence α2 ≥ β. �

Corollary 1.5.13 If I is a closed ideal of A, then A/I equipped with its

natural operation is a C∗-algebra. (In particular, x̄∗ = x∗.)

Proof. It follows from 1.1.20 that it suffices to show that ‖x̄∗x̄‖ = ‖x̄‖2.

Let {eλ} be an approximate identity for I. Then,

‖x̄∗x̄‖ = lim
λ
‖x∗x(1− eλ)‖ ≥ lim

λ
‖(1− eλ)x

∗x(1− eλ)‖

= lim
λ
‖x(1− eλ)‖

2 = ‖x̄‖2.
�

Definition 1.5.14 From now on, an ideal of a C∗-algebra is always

closed, and a homomorphism from a C∗-algebra to another is always a

∗-homomorphism.

Theorem 1.5.15 Each homomorphism h : A → B is norm decreasing,

and h(A) is always a C∗-subalgebra of B. If h is injective, then it is an

isometry.

Proof. If a ∈ Asa, then sp(h(a)) \ {0} ⊂ sp(a) \ {0}. Since ‖a‖ = r(a) by

1.2.7, we conclude that for each a ∈ A,

‖h(a)‖2 = ‖h(a∗a)‖ ≤ ‖a∗a‖ = ‖a‖2.

Thus h is norm decreasing.

Now assume that h is injective. To show that h is an isometry, we need

to show that ‖h(a)‖2 = ‖a‖2, i.e., ‖h(a∗a)‖ = ‖a∗a‖. Thus it suffices to

show that ‖h(x)‖ = ‖x‖ for all x ∈ A+. Fix such an x and by restricting

to C∗(x), we may assume that A is commutative. Also, by considering Ã

and extending h to h̃ : Ã → B̃ if necessary, we may assume that A and B
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are unital. Thus, by 1.3.5, we may assume that A = C(S), where S is a

compact Hausdorff space. Since h(A) is commutative, by taking its closure,

we may also assume that B = C(T ) for some compact Hausdorff space

T. Define h∗ : T → S by h∗(t) = t ◦ h. As in 1.3.9, since h is injective,

h∗(T ) = S. Therefore, for each g ∈ C(S),

‖g‖ = sup
s∈S
|g(s)| = sup

t∈T
|g(h∗(t))| = ‖h(g)‖.

Thus h is an isometry.

To complete the proof, we note the I = kerh is an ideal of A (closed). So

h induces an isomorphism from A/I into B. Therefore A/I is isometrically

∗-isomorphic to h(A). It follows that h(A) is a C∗-subalgebra. �

Definition 1.5.16 From now on, an isomorphism h from a C∗-algebra

A to another C∗-algebra B is always a ∗-isomorphism. Furthermore, it is

an isometric ∗-isomorphism. If A is isomorphic to B, we write A ∼= B.

Corollary 1.5.17 Let I be a closed ideal of a C∗-algebra A and let B

be a C∗-subalgebra of A. Then B + I is a C∗-subalgebra of A. Moreover,

B/(B ∩ I) ∼= (B + I)/I.

Proof. Clearly B + I is a ∗-subalgebra of A containing I and B. Let

π : A → A/I be the quotient map. By 1.5.15, π(B) is closed in A/I,

whence the preimage of π(B) is closed, i.e., B + I is closed.

Note that the map b+B∩I 7→ b+ I is a ∗-isomorphism from B/(B∩I)

to (B + I)/I. Thus, by 1.5.15, it is a C∗-isomorphism. �

1.6 Positive linear functionals and a Gelfand-Naimark

theorem

Definition 1.6.1 A linear map φ : A → B between C∗-algebras is said

to be self-adjoint if φ(Asa) ⊂ Bsa, and positive if φ(A+) ⊂ B+. It follows

that if φ is positive then φ is self-adjoint.

Every homomorphism h : A→ B is positive.

If B = C, then a positive linear map φ : A → C is called a positive

linear functional. If, in addition, φ is bounded and ‖φ‖ = 1, then φ is called

a state on A. If φ is a linear functional, we write φ ≥ 0 if it is positive.
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are unital. Thus, by 1.3.5, we may assume that A = C(S), where S is a

compact Hausdorff space. Since h(A) is commutative, by taking its closure,

we may also assume that B = C(T ) for some compact Hausdorff space

T. Define h∗ : T → S by h∗(t) = t ◦ h. As in 1.3.9, since h is injective,

h∗(T ) = S. Therefore, for each g ∈ C(S),

‖g‖ = sup
s∈S
|g(s)| = sup

t∈T
|g(h∗(t))| = ‖h(g)‖.

Thus h is an isometry.

To complete the proof, we note the I = kerh is an ideal of A (closed). So

h induces an isomorphism from A/I into B. Therefore A/I is isometrically

∗-isomorphic to h(A). It follows that h(A) is a C∗-subalgebra. �

Definition 1.5.16 From now on, an isomorphism h from a C∗-algebra

A to another C∗-algebra B is always a ∗-isomorphism. Furthermore, it is

an isometric ∗-isomorphism. If A is isomorphic to B, we write A ∼= B.

Corollary 1.5.17 Let I be a closed ideal of a C∗-algebra A and let B

be a C∗-subalgebra of A. Then B + I is a C∗-subalgebra of A. Moreover,

B/(B ∩ I) ∼= (B + I)/I.

Proof. Clearly B + I is a ∗-subalgebra of A containing I and B. Let

π : A → A/I be the quotient map. By 1.5.15, π(B) is closed in A/I,

whence the preimage of π(B) is closed, i.e., B + I is closed.

Note that the map b+B∩I 7→ b+ I is a ∗-isomorphism from B/(B∩I)

to (B + I)/I. Thus, by 1.5.15, it is a C∗-isomorphism. �

1.6 Positive linear functionals and a Gelfand-Naimark

theorem

Definition 1.6.1 A linear map φ : A → B between C∗-algebras is said

to be self-adjoint if φ(Asa) ⊂ Bsa, and positive if φ(A+) ⊂ B+. It follows

that if φ is positive then φ is self-adjoint.

Every homomorphism h : A→ B is positive.

If B = C, then a positive linear map φ : A → C is called a positive

linear functional. If, in addition, φ is bounded and ‖φ‖ = 1, then φ is called

a state on A. If φ is a linear functional, we write φ ≥ 0 if it is positive.
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A positive linear functional τ : A→ C is called a trace if φ(u∗au) = φ(a)

for all a ∈ A and all unitaries u ∈ Ã. A trace which is also a state is called

a tracial state.

Example 1.6.2 Let A = C(X), where X is a compact Hausdorff space,

and let µ be a positive Borel finite measure. Then the linear functional τ

defined by

τ(f) =

∫
fdµ

is positive. Since A is commutative, τ is also a trace.

Example 1.6.3 Let A =Mn. Define a linear functional Tr on A by

Tr((aij)) =
n∑
i=1

aii.

This is a trace. It is called the standard trace onMn. The normalized trace

tr on A is defined to be tr = (1/n)Tr. It is a tracial state.

Example 1.6.4 Let A be a C∗-subalgebra of B(H), where H is a Hilbert

space. Let v ∈ H be a nonzero vector. Define f(a) = 〈a(v), v〉 for a ∈ A.

Then f is positive. To see this, note that for a ≥ 0, there is x ∈ A such

that a = x∗x. Thus f(a) = 〈x∗x(v), v〉 = 〈x(v), x(v)〉 = ‖x(v)‖ ≥ 0. This

functional is, in general, not a trace.

Lemma 1.6.5 Every positive linear functional on a C∗-algebra A is

bounded.

Proof. Let φ be a positive linear functional on A. If φ is not bounded,

then there is a sequence {xn} ⊂ A with ‖xk‖ ≤ 1 such that |φ(xk)| → ∞.

Since φ(Asa) ⊂ R, by considering the real part and imaginary part of xk,

without loss of generality, we may assume that xk ∈ Asa. By considering

xk = (xk)+ − (xk)−, we may further assume that xk ∈ A+. By passing to

a subsequence if necessary, we may assume that φ(xk) ≥ 2k, k = 1, 2, ..., .

Set x =
∑∞
k=1

xk
2k
. Then x ∈ A+. For any n,

n ≤
∞∑
k=1

2−kφ(xk) = φ(
∞∑
k=1

xk
2k
) ≤ φ(x).

This is impossible. Thus φ must be bounded. �
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The following is the Cauchy-Schwarz inequality.

Lemma 1.6.6 If φ is a positive linear functional on a C∗-algebra A, then

for all a, b ∈ A

|φ(b∗a)|2 ≤ φ(b∗b)φ(a∗a). (e 6.6)

Proof. For each complex number λ, we have φ((λa + b)∗(λa + b)) ≥ 0.

We may assume that φ(b∗a) 6= 0. With λ = t|φ(a∗b)|
φ(b∗a) and t ∈ R, this gives

t2φ(a∗a) + 2t|φ(b∗a)|+ φ(b∗b) ≥ 0

(φ(b∗a) = φ(a∗b)). If φ(a∗a) = 0, the above becomes

2t|φ(b∗a)|+ φ(b∗b) ≥ 0

for all t ∈ R. By taking negative t with large |t|, we conclude that φ(b∗a) =

0. The inequality (e 6.6) holds in this case.

If φ(a∗a) 6= 0, choose t = − |φ(b
∗a)|

φ(a∗a) . We obtain

|φ(b∗a)|2

φ(a∗a)
− 2
|φ(b∗a)|2

φ(a∗a)
+ φ(b∗b) ≥ 0.

Thus (e 6.6) follows. �

Theorem 1.6.7 An element φ in A∗ is positive if and only if limλ φ(eλ) =

‖φ‖ for some approximate identity {eλ} in A.

Proof. If φ is a positive linear functional on A and {eλ} is any approx-

imate identity for A, then φ(eλ) is increasing. Hence it has a limit, say l.

Then l ≤ ‖φ‖. For each a ∈ A with ‖a‖ ≤ 1, by 1.6.6,

|φ(eλa)|
2 ≤ φ(e2λ)φ(a

∗a) ≤ φ(eλ)‖φ‖ ≤ l‖φ‖.

Since φ is continuous (1.6.5), we obtain |φ(a)|2 ≤ l‖φ‖, whence ‖φ‖2 ≤ l‖φ‖

and l = ‖φ‖.

To prove the converse, suppose that {φ(eλ)} converges to ‖φ‖. We first

show that φ(Asa) ⊂ R. Let a ∈ Asa with ‖a‖ ≤ 1 and write φ(a) = α + iβ

with α, β ∈ R. By multiplying by −1 if necessary, we may assume that

β ≥ 0. Choose eλ so that ‖eλa− aeλ‖ < 1/n. Then

‖neλ − ia‖
2 = ‖n2eλ + a

2 − in(aeλ − eλa)‖ ≤ n
2 + 2.
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On the other hand

lim
λ
|φ(neλ − ia)|

2 = (n‖φ‖+ β)2 + α2.

Combining these two inequalities, we obtain

(n‖φ‖+ β)2 + α2 ≤ (n2 + 2)‖φ‖2

for all n. Thus

2n‖φ‖β + β2 + α2 ≤ 2‖φ‖2.

for all n. Hence β = 0. So φ(Asa) ⊂ R.

Now if a ∈ A+ with ‖a‖ ≤ 1, then eλ − a ∈ Asa and eλ − a ≤ eλ ≤ 1.

Therefore

φ(eλ − a) ≤ ‖φ‖.

Taking the limit, we obtain ‖φ‖ − φ(a) ≤ ‖φ‖. It follows that φ(a) ≥ 0

which implies that φ ≥ 0. �

Remark 1.6.8 We actually proved that limλ φ(eλ) = ‖φ‖ for any ap-

proximate identity {eλ} of A. If A is unital then Theorem 1.6.7 also implies

that φ ≥ 0 if and only if φ(1) = ‖φ‖.

Lemma 1.6.9 Let Ã be the C∗-algebra obtained by adjoining a unit to

the C∗-algebra A. For each positive linear functional φ on A define an

extension φ̃ on Ã by setting φ̃(1) = ‖φ‖. Then φ̃ is positive on Ã and

‖φ̃‖ = ‖φ‖.

Proof. Let {eλ} be an approximate identity for A. For each a ∈ A and

α ∈ C, by 1.4.10 (3),

lim sup
λ
‖αeλ + a‖

2 = lim sup
λ
‖|α|2e2λ + ᾱeλa+ αa

∗eλ + a
∗a‖

≤ lim sup
λ
‖|α|21 + ᾱeλa+ αa

∗eλ + a
∗a‖ = ‖α1 + a‖2.

It follows from 1.6.7 that

|φ̃(α+ a)| = lim
λ
|φ(αeλ + a)| ≤ ‖α1 + a‖‖φ‖.

Hence ‖φ̃‖ = ‖φ‖. Since φ̃(1) = ‖φ̃‖, by 1.6.7, φ̃ ≥ 0. �
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Proposition 1.6.10 Let B be a C∗-subalgebra of a C∗-algebra A. For

each positive linear functional φ on B there is a positive linear functional

φ̃ on A such that φ̃|B = φ and ‖φ̃‖ = ‖φ‖. If furthermore B is hereditary,

then the extension is unique.

Proof. Wemay assume that A has a unit by replacingA by Ã if necessary.

Extend φ to C∗(B, 1A) ∼= B̃ by setting φ(1) = ‖φ‖. It follows from 1.6.9

that so extended φ is positive and preserves the norm. Therefore, without

loss of generality, we may assume that A has a unit 1 and 1 ∈ B .

By the Hahn-Banach theorem, there is a linear functional φ̃ such that

φ̃|B = φ and ‖φ̃‖ = ‖φ‖. Since φ̃(1) = ‖φ̃‖, by 1.6.7, φ̃ ≥ 0.

To prove the second part, assume that B is hereditary and let {eλ} be

an approximate identity for B. Suppose that ψ is a positive linear functional

on A with ψ|B = φ and ‖ψ‖ = ‖φ‖. Then ‖ψ‖ = limλ φ(eλ) by 1.6.7. So

limλ ψ(1A − eλ) = 0. It follows that ψ((1A − eλ)2) ≤ ψ(1A − eλ) → 0. By

1.6.6, for any c ∈ A,

|ψ((1− eλ)ac)|
2 ≤ ψ((1A − eλ)

2)ψ(c∗a∗ac)→ 0.

Therefore

ψ(a) = lim
λ
ψ(eλaeλ).

Since eλÃeλ ⊂ B, we have

ψ(a) = lim
λ
ψ(eλaeλ) = lim

λ
φ(eλaeλ)

for every a ∈ A. Thus ψ = φ̃. �

Corollary 1.6.11 Let a ∈ A be a normal element. Then there is a state

φ on A such that |φ(a)| = ‖a‖.

Proof. Let B = C∗(a). Since r(a) = ‖a‖, by 1.2.7, there is λ ∈ sp(a)

such that |λ| = ‖a‖. Identify B with C0(sp(a)), by 1.3.6, we define a state

φ1 on B by φ1(g) = g(λ) for g ∈ C0(sp(a)). In particular, |φ1(a)| = ‖a‖.

By 1.6.10, there is a state φ on A such that φ|B = φ1. �

Definition 1.6.12 Let A be a C∗-algebra and f ∈ A∗. Define f∗(a) =

f(a∗).Denote by fsa and fim the self-adjoint linear functionals (1/2)(f+f
∗)

and (1/2i)(f−f∗), respectively. We also use Ref for the real part of f, i.e.,

Ref(a) = (1/2)[f(a) + f(a)] (for a ∈ A). Ref is a real linear functional on

A (regard A as a real Banach space). One should note that fsa and Ref
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are different. It is standard that ‖f‖ = ‖Ref‖. This is usually used in the

proof of the Hahn-Banach theorem (to pass from the real version to the

complex version). It will be used later in these notes.

We have the following non-commutative Jordan decomposition theorem.

Proposition 1.6.13 Let A be a C∗-algebra and f ∈ A∗. Then f is a

linear combination of states. More precisely, we have the following decom-

position:

f = fsa + ifim, fsa = (fsa)+ − (fsa)− and fim = (fim)+ − (fim)−,

where ‖fsa‖ ≤ ‖f‖, ‖fim‖ ≤ ‖f‖, (fsa)+, (fsa)−, (fim)+ and (fim)− are

positive and

‖fsa‖ = ‖(fsa)+‖+ ‖(fsa)−‖ and ‖fim‖ = ‖(fim)+‖+ ‖(fim)−‖.

Proof. It is clear that fsa and fim are self-adjoint and ‖fsa‖, ‖fim‖ ≤

‖f‖ are obvious. For the rest of the proof, we may assume that f is self-

adjoint. Let Ω be the set of all positive linear functionals g with ‖g‖ ≤ 1.

With the weak∗-topology, Ω is compact. View A as a closed subspace of

C(Ω). Note that A+ ⊂ C(Ω). Let f ∈ A∗. Then f can be extended to a

bounded linear functional f̃ on C(Ω) with the same norm. Therefore there

is a complex Radon measure µ on Ω such that

f̃(x) =

∫
Ω

xdµ (x ∈ C(Ω)).

Let µ = ν1 + iν2, where ν1 and ν2 are signed measures. So νj (j = 1, 2)

gives self-adjoint bounded linear functionals on A which will be denoted by

fj (j = 1, 2). Since f is self-adjoint, (f2)|A = 0. So f1 extends f (necessarily

they have the same norm). Therefore we may assume that f̃ is self-adjoint.

So we may assume that µ is a signed measure. Then by Jordan decom-

position, we have positive measures µj (j = 1, 2) such that µ = µ1 − µ2
and ‖µ‖ = ‖µ1‖+ ‖µ2‖. Each µj gives a positive linear functional fj on A

(j = 1, 2). We have the following

‖f‖ = ‖f̃ |A‖ ≤ ‖(f1)|A‖+ ‖(f2)|A‖ ≤ ‖f1‖+ ‖f2‖ = ‖f̃‖ = ‖f‖.

Thus ‖f‖ = ‖(f1)|A‖+ ‖(f2)|A‖. �

Definition 1.6.14 A representation of a C∗-algebra A is a pair (H,π),

where H is a Hilbert space and π : A→ B(H) is a homomorphism. We say
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(H,π) is faithful if π is injective. A cyclic representation is a representation

(H,π) with a vector v ∈ H such that π(A)v is dense in H; and the vector

v is called cyclic.

Theorem 1.6.15 For each positive linear functional φ on a C∗-algebra

A there is a cyclic representation (Hφ, πφ) of A with a cyclic vector vφ such

that 〈πφ(a)vφ, vφ〉 = φ(a) for all a ∈ A.

Proof. Define the left kernel of φ as the set

Nφ = {a ∈ A : φ(a
∗a) = 0}.

Since φ is continuous, Nφ is a closed subspace. It follows from the Cauchy-

Schwarz inequality (1.6.6) that Nφ is a closed left ideal. On A/Nφ define

〈ā, b̄〉 = φ(b∗a). (e 6.7)

It is easy to see that the above is well defined on A/Nφ × A/Nφ. By the

Cauchy-Schwarz inequality (1.6.6) again, A/Nφ becomes an inner product

space. Let Hφ be the completion. Define πφ(a)(x̄) = ax for all a, x ∈ A. It

is well-defined. In fact, if y ∈ A such that ȳ = x̄, then a(y − x) ∈ Nφ, since

Nφ is a left ideal. Thus πφ(a) is a linear map on A/Nφ. Furthermore,

‖πφ(a)x̄‖
2 = ‖ax‖2 = φ(x∗a∗ax) ≤ ‖a‖2φ(x∗x) = ‖a‖2‖x̄‖2

(the inequality holds because a∗a ≤ ‖a‖2 and φ is positive). Thus πφ can

be uniquely extended to an operator (still denoted by πφ(a)) on Hφ such

that ‖πφ(a)‖ ≤ ‖a‖. Also,

〈πφ(a)(x̄), ȳ〉 = φ(y
∗ax) = 〈x̄, πφ(a

∗)(ȳ)〉

which shows that πφ(a)
∗ = πφ(a

∗). So πφ : A→ B(Hφ) gives a representa-

tion.

To complete the proof, let {eλ} be an approximate identity for A. Then

for λ < µ,

‖ēµ − ēλ‖
2 = φ((eµ − eλ)

2) ≤ φ(eµ − eλ).

Since φ(eλ) → ‖φ‖, the net {ēλ} is convergent with a limit vφ ∈ Hφ. For

each a ∈ A we have

πφ(a)(vφ) = lim
λ
πφ(a)(ēλ) = lim

λ
aeλ = ā,
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since a→ ā is continuous. Hence vφ is cyclic. Moreover, since

〈πφ(a
∗a)(vφ), vφ〉 = 〈ā, ā〉 = φ(a

∗a),

we have 〈πφ(a)(vφ), vφ〉 = φ(a) for all a ∈ A+ (by 1.4.8) and by linearity

for all a ∈ A. �

Definition 1.6.16 Let (Hλ, πλ)λ∈Λ be a family of representations. Let

H = ⊕λHλ be the Hilbert space direct sum. Define π(a)({vλ}) =

{πλ(a)(vλ)}. One verifies that π : A → B(H) gives a representation of

A. This representation is called the direct sum of {πλ}.

Let S be the state space of A. By 1.6.15, for each t ∈ S, there is a

representation πt of A. The direct sum πU of {πt}t∈S is called the universal

representation of A.

Theorem 1.6.17 (Gelfand-Naimark) If A is a C∗-algebra, then it has

a faithful representation. In other words, every C∗-algebra is isometrically

∗-isomorphic to a C∗-subalgebra of B(H) for some Hilbert space H.

Proof. We will show that the universal representation πU is faithful. Let

a ∈ A be nonzero with ‖a‖ ≤ 1. It follows from 1.6.11 that there is τ ∈ S

such that |τ((a∗a)2)| = ‖(a∗a)2‖ = ‖a‖4. Then

‖πU (a)‖
2 ≥ ‖πτ (a)‖

2 ≥ ‖πτ (a)((a∗a)1/2)‖
2

= τ((a∗a)1/2(a∗a)(a∗a)1/2) = τ((a∗a)2) = ‖a‖4.

Thus πU is injective. �

1.7 Von Neumann algebras

Definition 1.7.1 Let H be a Hilbert space and B(H) be the C∗-algebra

of all bounded operators on H. The strong (operator) topology on B(H) is

the locally convex space topology associated with the family of semi-norms

of the form x 7→ ‖x(ξ)‖, x ∈ B(H) and ξ ∈ H. In other words, a net {xλ}

converges strongly to x and only if {xλ(ξ)} converges to x(ξ) for all ξ ∈ H.

The weak (operator) topology on B(H) is the locally convex space topol-

ogy associated with the family of semi-norms of the form x 7→ |〈x(ξ), η〉|,

x ∈ B(H) and ξ, η ∈ H. In other words, a net {xλ} converges weakly to

x ∈ B(H) if and only if 〈(xλ − x)(ξ), η〉 → 0 for all ξ, η ∈ H.
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since a→ ā is continuous. Hence vφ is cyclic. Moreover, since

〈πφ(a
∗a)(vφ), vφ〉 = 〈ā, ā〉 = φ(a

∗a),

we have 〈πφ(a)(vφ), vφ〉 = φ(a) for all a ∈ A+ (by 1.4.8) and by linearity

for all a ∈ A. �

Definition 1.6.16 Let (Hλ, πλ)λ∈Λ be a family of representations. Let

H = ⊕λHλ be the Hilbert space direct sum. Define π(a)({vλ}) =

{πλ(a)(vλ)}. One verifies that π : A → B(H) gives a representation of

A. This representation is called the direct sum of {πλ}.

Let S be the state space of A. By 1.6.15, for each t ∈ S, there is a

representation πt of A. The direct sum πU of {πt}t∈S is called the universal

representation of A.

Theorem 1.6.17 (Gelfand-Naimark) If A is a C∗-algebra, then it has

a faithful representation. In other words, every C∗-algebra is isometrically

∗-isomorphic to a C∗-subalgebra of B(H) for some Hilbert space H.

Proof. We will show that the universal representation πU is faithful. Let

a ∈ A be nonzero with ‖a‖ ≤ 1. It follows from 1.6.11 that there is τ ∈ S

such that |τ((a∗a)2)| = ‖(a∗a)2‖ = ‖a‖4. Then

‖πU (a)‖
2 ≥ ‖πτ (a)‖

2 ≥ ‖πτ (a)((a∗a)1/2)‖
2

= τ((a∗a)1/2(a∗a)(a∗a)1/2) = τ((a∗a)2) = ‖a‖4.

Thus πU is injective. �

1.7 Von Neumann algebras

Definition 1.7.1 Let H be a Hilbert space and B(H) be the C∗-algebra

of all bounded operators on H. The strong (operator) topology on B(H) is

the locally convex space topology associated with the family of semi-norms

of the form x 7→ ‖x(ξ)‖, x ∈ B(H) and ξ ∈ H. In other words, a net {xλ}

converges strongly to x and only if {xλ(ξ)} converges to x(ξ) for all ξ ∈ H.

The weak (operator) topology on B(H) is the locally convex space topol-

ogy associated with the family of semi-norms of the form x 7→ |〈x(ξ), η〉|,

x ∈ B(H) and ξ, η ∈ H. In other words, a net {xλ} converges weakly to

x ∈ B(H) if and only if 〈(xλ − x)(ξ), η〉 → 0 for all ξ, η ∈ H.
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Example 1.7.2 Let H be an infinite dimensional Hilbert space with an

orthonormal basis {en}∞n=1.Define an(ξ) = 〈ξ, en〉e1 for ξ ∈ H (n = 1, 2, ...).

Then an ∈ B(H). We have

limn→∞ ‖an(ξ)‖ = limn→∞ |〈ξ, en〉| = 0. Thus an strongly converges to

zero. However, ‖an‖ = 1 since ‖an(en)‖ = 1 for all n. Thus the strong

topology is weaker than the norm topology.

Define bn(ξ) = 〈ξ, e1〉en (n = 1, ...). Then, for any ξ, η ∈ H,

|〈bn(ξ), η〉| = |〈ξ, e1〉〈en, η〉| → 0, as n → ∞. So bn converges weakly to

zero. However, ‖bn(e1)‖ = ‖en‖ = 1. So bn does not converge to zero in the

strong topology.

The reader may want to take a look at exercises (1.11.18-1.11.22) for

some additional information about the weak and strong (operator) topolo-

gies.

Proposition 1.7.3 Let {aλ} be an increasing net of positive operators

in B(H) which is also bounded above. Then {aλ} converges strongly to a

positive operator a ∈ B(H).

Proof. Suppose that there isM > 0 such that ‖aλ‖ ≤M. For any ξ ∈ H,

{〈aλ(ξ), ξ〉} is a bounded increasing sequence. So it is convergent. Using the

polarization identity

〈aλ(ξ), η〉 = (1/4)
3
∑

k=0

ik〈aλ(ξ + i
kη), ξ + ikη〉,

we see that {〈aλ)(ξ), η〉} is convergent for all ξ, η ∈ H. Denote by L(ξ, η) the

limit. The map (ξ, η) 7→ L(ξ, η) is linear in the first variable and conjugate

linear in the second. We also have

|L(ξ, η)| = lim
λ
|〈aλ(ξ), η〉| ≤M‖ξ‖‖η‖

for all ξ, η ∈ H. By the Riesz representation theorem, there is a ∈ B(H)

such that 〈a(ξ), η〉 = L(ξ, η) for all ξ, η ∈ H. Clearly ‖a‖ ≤M and aλ ≤ a.

Moreover,

‖a(ξ)− aλ(ξ)‖
2 = ‖(a− aλ)

1/2(a− aλ)
1/2(ξ)‖2

≤ ‖a− aλ‖‖(a− aλ)
1/2(ξ)‖2 ≤ 2M〈(a− aλ)(ξ), ξ〉,

and 〈(a− aλ)(ξ), ξ〉 → 0, so a(ξ) = limλ aλ(ξ). Thus aλ converges strongly

to a. �
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Definition 1.7.4 IfH is a Hilbert space, we writeH(n) for the orthogonal

sum of n copies ofH. If a ∈Mn(B(H)), we define φ(a) ∈ B(H(n)) by setting

φ(a)(x1, ..., xn) = (
n
∑

j=1

a1j(xj), ...,
n
∑

j=1

anj(xj))

for all (x1, ..., xn) ∈ H(n).

It is easy to verify that the map

φ :Mn(B(H))→ B(H(n)), a 7→ φ(a),

is a ∗-isomorphism. We call φ the canonical ∗-isomorphism of Mn(B(H))

onto B(H(n)), and use it to identify these two algebras. We define a norm on

Mn(B(H)) making it a C
∗-algebra by setting ‖a‖ = ‖φ(a)‖. The following

inequalities for a ∈Mn(B(H)) are easily verified:

‖aij‖ ≤ ‖a‖ ≤
n
∑

k,l=1

‖akl‖ (i, j = 1, ..., n) (e 7.8)

For each i ≤ n let Pi be the projection of H
(n) onto the ith copy

of H. Each element x ∈ B(H(n)) has a representation (aij)1≤i,j≤n with

aij ∈ B(H).We define an amplification ρ (of multiplicity n) from B(H)→

B(H(n)) by setting ρ(a) = diag(a, ..., a) (where a repeats n times).

Lemma 1.7.5 Let φ be a linear functional on B(H). Then the following

are equivalent:

(i) φ(a) =
∑n
k=1〈a(ξk), ηk〉 for some ξ1, ..., ξn, η1, ..., ηn ∈ H and for all

a ∈ B(H);

(ii) φ is weakly continuous;

(iii) φ is strongly continuous.

Proof. It is obvious that (i) ⇒ (ii) ⇒ (iii). To prove (iii) ⇒ (i), suppose

that φ is strongly continuous. Therefore, there exist vectors ξ1, ..., ξn and

δ > 0 such that |φ(a)| ≤ 1, whenever maxk{‖a(ξk)‖} ≤ δ for all a ∈ B(H).

For any a ∈ B(H), put b = δa
(
∑
n
k=1 ‖aξk‖

2)1/2
. Then |φ(b)| ≤ 1. Thus

|φ(a)| ≤ (1/δ)(
n
∑

k=1

‖aξk‖
2)1/2. (e 7.9)
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for all a ∈ B(H). With notation as in 1.7.4, we define ξ = ξ1 ⊕ · · · ⊕ ξn in

H(n). On the vector subspace V = {ρ(a)ξ : a ∈ B(H)}, define

ψ(ρ(a)ξ) = φ(a).

From the definition (in 1.7.4), ψ is a linear functional (on the span) and

|ψ(ρ(a)ξ)| ≤ (1/δ)‖ρ(a)ξ‖. So it is a bounded linear functional. It extends

to a bounded linear functional on H0, the closure of V. By the Riesz rep-

resentation theorem, there is a vector η = η1 ⊕ · · · ⊕ ηn ∈ H0 ⊂ H(n) such

that

φ(a) = 〈ρ(a)(ξ), η〉 =
n
∑

k=1

〈aξk, ηk〉.

�

Corollary 1.7.6 Each strongly closed convex set in B(H) is weakly

closed.

We leave this to the reader for an exercise (1.11.23).

Definition 1.7.7 For each subset M ⊂ B(H), let M ′ denote the com-

mutant of M, i.e.,

M ′ = {a ∈ B(H) : ab = ba for all b ∈M}.

It is easy to verify that M ′ is weakly closed. If M is self-adjoint, then M ′

is a C∗-algebra. We will write M ′′ for (M ′)′.

The following is von Neumann’s double commutant theorem.

Theorem 1.7.8 Let M be a C∗-subalgebra of B(H) containing the iden-

tity. The following are equivalent:

(i) M =M ′′.

(ii) M is weakly closed.

(iii) M is strongly closed.

Proof. The implication (i) ⇒ (ii) ⇔ (iii) follows from 1.7.7 and 1.7.6.

We will show (iii) ⇒ (i). Fix ξ ∈ H let P be the projection on the closure

of {aξ : a ∈ M}. Note that Pξ = ξ since 1 ∈ M. Since PaP = aP for all

a ∈ M, Pa∗ = Pa∗P for all a ∈ M. Therefore P ∈ M ′. Let x ∈ M ′′. Then

Px = xP. Hence xξ ∈ PH. Thus for any ε > 0 there is an a ∈ M with

‖(x− a)ξ‖ < ε.
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To show that x is in the strong closure ofM, take finitely many vectors

ξ1, ..., ξn ∈ H. Set ξ = ξ1 ⊕ · · · ⊕ ξn ∈ H(n). It is easily checked that

ρ(M)′ = {a ∈ B(H(n)) : aij ∈M
′}.

Therefore ρ(x) ∈ ρ(M)′′. From what we have proved in the first part of the

proof, we obtain a ∈M such that

n
∑

k=1

‖(x− a)ξk‖
2 = ‖(ρ(x)− ρ(a))ξ‖2 < ε2.

It follows that x is in the strong closure ofM. Thus x ∈M. In other words,

M ′′ ⊂M. Since clearly M ⊂M ′′, M =M ′′. �

Definition 1.7.9 A weakly closed C∗-subalgebra M ⊂ B(H) is called a

von Neumann algebra. In other words, a C∗-subalgebra M ⊂ B(H) is a

von Neumann algebra if M =M ′′ and 1 ∈M.

Definition 1.7.10 Let A be a C∗-algebra and πU : A → B(HU ) be

the universal representation. Then (πU (A))
′′ is called the enveloping von

Neumann algebra (or universal weak closure) of A and will be denoted

by A′′. A representation π : A → B(H) is said to be non-degenerate if

{π(a)H : a ∈ A} is dense in H.

Proposition 1.7.11 Every non-degenerate representation is a direct sum

of cyclic representations

The proof is an exercise (see 1.11.14).

Lemma 1.7.12 Let f ∈ A∗ be self-adjoint. Then there are vectors ξ, η ∈

HU with ‖ξ‖2, ‖η‖2 ≤ ‖f‖ such that f(a) = 〈πU (a)(ξ), η〉 for all a ∈ A.

Proof. To save notation, we may assume that ‖f‖ = 1. By 1.6.13, there

are positive linear functionals fj , j = 1, 2, such that f = f1 − f2 and

‖f‖ = ‖f1‖ + ‖f2‖. Each fj is a positive scalar multiple of a state on A.

Therefore there are mutually orthogonal vectors ξj ∈ HU (j = 1, 2) such

that ‖ξj‖2 = ‖fj‖ and fj(a) = 〈πU (a)(ξj), ξj〉, j = 1, 2. Set ξ = ξ1⊕ ξ2 and

η = ξ1 ⊕ (−ξ2). Then f(a) = 〈πU (a)ξ, η〉 for all a ∈ A. Furthermore,

‖η‖2 = ‖ξ‖2 = ‖ξ1‖
2 + ‖ξ2‖

2 ≤ ‖f‖.
�
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Theorem 1.7.13 The enveloping von Neumann algebra A′′ of a C∗-

algebra A is isometrically isomorphic, as a Banach space, to the second

dual A∗∗ of A which is the identity map on A.

Proof. Let j : A → A∗∗ be the usual embedding. Let (HU , πU ) be the

universal representation of A. For each f ∈ A∗, by 1.6.13, there are ξf , ηf ∈

HU such that f(a) = 〈πU (a)ξf , ηf 〉. Define J : A′′ → A∗∗ by J(x)(f) =

〈x(ξf ), ηf 〉 for each state f. It follows from 1.7.12 that J(x) defines an

element in A∗∗. In fact (using 1.7.12), we have

‖J(x)‖ = sup
‖f‖≤1,f∈A∗

|f(x)| ≤ sup
‖ξ‖,‖η‖≤2

|〈x(ξ), η〉| ≤ 4‖x‖.

On the other hand, if ‖x‖ ≤ 1, and ξ ∈ HU with ‖ξ‖ ≤ 1, 〈πU (a)ξ, x(ξ)〉 for

a ∈ A defines a linear functional φξ,x(ξ) on A with ‖φξ,x(ξ)‖ ≤ ‖x(ξ)‖. So

|J(x)(φξ,x(ξ))| = |〈x(ξ), x(ξ)〉| = ‖x(ξ)‖‖x(ξ)‖.

Hence ‖J(x)‖ ≥ ‖x(ξ)‖ for all ξ ∈ HU with ‖ξ‖ ≤ 1. This implies that

‖J(x)‖ ≥ ‖x‖.

Suppose that x ∈ A′′sa and {aλ} ⊂ A such that πU (aλ) converges to x

weakly in A′′. By replacing aλ by (1/2)(aλ+a
∗
λ) (see Exercise (1.11.18)), we

may assume that aλ are self-adjoint. This implies that, for any self-adjoint

φ ∈ A∗, J(x)(φ) is real. Fix f ∈ A∗ with ‖f‖ ≤ 1, x ∈ A′′sa, and assume

that |f(x)| = eiθf(x). Define F = eiθf. Note that 1 ≥ ‖F‖ = ‖ReF‖. We

have

|f(x)| = F (x) = ReF (x) = Fsa(x) = |〈x(ξ), η〉|

for some ξ, η ∈ HU with ‖ξ‖, ‖η‖ ≤ 1 (by 1.7.12). Thus

|f(x)| = |〈x(ξ), η〉| ≤ ‖x‖.

This implies that ‖J(x)‖ = ‖x‖ for all x ∈ A′′sa.

In general, note that M2(A
′′) = (M2(A))

′′. Let J2 : (M2(A))
′′ →

M2(A)
∗∗ be as above. Fix f ∈ A∗ and x ∈ A′′. There are ξf , ηf ∈ HU

such that J(x)(f) = 〈x(ξf ), ηf 〉.

In H(2), set ξ′ = 0⊕ ξf and η′ = ηf ⊕ 0. Define a linear functional φ on

Q, where

Q = {(aij) ∈M2(A) : a11 = a22 = 0},
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by φ(z) = 〈z(ξ′), η′〉 for z ∈ Q. So ‖φ‖ = ‖f‖. Extend φ further to M2(A)

such that ‖φ‖ = ‖f‖. By 1.6.13 and 1.7.12, there are ξ1, η1 ∈ HU such

that J2(z)(φ) = 〈z(ξ1), η1〉 for all z ∈ M2(A)′′. Suppose that z = (zij) ∈

(M2(A))
′′ such that z11 = z22 = 0. Since z is in the weak (operator) closure

of πU (Q), J2(z)(φ) = 〈z(ξ′), η′〉 = f(z12). Put b =

(

0 x

x∗ 0

)

. Then b ∈

M2(A
′′)sa. Therefore, from what we have shown, ‖J2(b)‖ = ‖b‖ = ‖x‖. So

|J(x)(f)| = |J2(b)(φ)| ≤ ‖b‖‖φ‖ = ‖x‖‖f‖.

This implies that ‖J(x)‖ ≤ ‖x‖. Therefore J is an isometry. Since A is

weakly dense in A′′, J(A) is dense in J(A′′) in the weak∗-topology as a

subset of (A∗)∗. However, j(A) is dense in (A∗)∗ in the weak∗-topology.

Therefore, since J(a) = j(a) for a ∈ A, J(A′′) = (A∗)∗ = A∗∗. �

The following corollary follows from the above theorem and the uniform

boundedness theorem.

Corollary 1.7.14 Let {aλ} be a net in a C
∗-algebra A′′. If {aλ} con-

verges in the weak operator topology in A′′, then {‖aλ‖} is bounded.

Remark 1.7.15 The weak operator topology for A as a subalgebra of A′′

acting on HU is called the σ-weak topology. So the weak operator topology

for A′′ is sometimes called σ-weak topology.

1.8 Enveloping von Neumann algebras and the spectral

theorem

Lemma 1.8.1 Let (π1,H1) and (π2,H2) be two cyclic representations of

a C∗-algebra A with cyclic vectors ξ1 and ξ2 (‖ξ1‖ = ‖ξ2‖). Then there

exists an isometry u : H1 → H2 such that π1 = u∗π2u with u(ξ1) = ξ2 if

and only if 〈π1(a)ξ1, ξ1〉 = 〈π2(a)ξ2, ξ2〉 for all a ∈ A.

Proof. If uξ1 = ξ2 then

〈π1(a)ξ1, ξ1〉 = 〈u
∗π2(a)uξ1, ξ1〉 = 〈π2(a)ξ2, ξ2〉

for all a ∈ A.

Conversely, define a linear map u from π1(A)ξ1 onto π2(A)ξ2 by

u(π1(a)ξ1) = π2(a)ξ2. Since

‖u(π1(a)ξ1)‖
2 = 〈π2(a

∗a)ξ2, ξ2〉 = 〈π1(a
∗a)ξ1, ξ1〉 = ‖π1(a)ξ1‖

2,
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by φ(z) = 〈z(ξ′), η′〉 for z ∈ Q. So ‖φ‖ = ‖f‖. Extend φ further to M2(A)

such that ‖φ‖ = ‖f‖. By 1.6.13 and 1.7.12, there are ξ1, η1 ∈ HU such

that J2(z)(φ) = 〈z(ξ1), η1〉 for all z ∈ M2(A)′′. Suppose that z = (zij) ∈

(M2(A))
′′ such that z11 = z22 = 0. Since z is in the weak (operator) closure

of πU (Q), J2(z)(φ) = 〈z(ξ′), η′〉 = f(z12). Put b =

(

0 x

x∗ 0

)

. Then b ∈

M2(A
′′)sa. Therefore, from what we have shown, ‖J2(b)‖ = ‖b‖ = ‖x‖. So

|J(x)(f)| = |J2(b)(φ)| ≤ ‖b‖‖φ‖ = ‖x‖‖f‖.

This implies that ‖J(x)‖ ≤ ‖x‖. Therefore J is an isometry. Since A is

weakly dense in A′′, J(A) is dense in J(A′′) in the weak∗-topology as a

subset of (A∗)∗. However, j(A) is dense in (A∗)∗ in the weak∗-topology.

Therefore, since J(a) = j(a) for a ∈ A, J(A′′) = (A∗)∗ = A∗∗. �

The following corollary follows from the above theorem and the uniform

boundedness theorem.

Corollary 1.7.14 Let {aλ} be a net in a C
∗-algebra A′′. If {aλ} con-

verges in the weak operator topology in A′′, then {‖aλ‖} is bounded.

Remark 1.7.15 The weak operator topology for A as a subalgebra of A′′

acting on HU is called the σ-weak topology. So the weak operator topology

for A′′ is sometimes called σ-weak topology.

1.8 Enveloping von Neumann algebras and the spectral

theorem

Lemma 1.8.1 Let (π1,H1) and (π2,H2) be two cyclic representations of

a C∗-algebra A with cyclic vectors ξ1 and ξ2 (‖ξ1‖ = ‖ξ2‖). Then there

exists an isometry u : H1 → H2 such that π1 = u∗π2u with u(ξ1) = ξ2 if

and only if 〈π1(a)ξ1, ξ1〉 = 〈π2(a)ξ2, ξ2〉 for all a ∈ A.

Proof. If uξ1 = ξ2 then

〈π1(a)ξ1, ξ1〉 = 〈u
∗π2(a)uξ1, ξ1〉 = 〈π2(a)ξ2, ξ2〉

for all a ∈ A.

Conversely, define a linear map u from π1(A)ξ1 onto π2(A)ξ2 by

u(π1(a)ξ1) = π2(a)ξ2. Since

‖u(π1(a)ξ1)‖
2 = 〈π2(a

∗a)ξ2, ξ2〉 = 〈π1(a
∗a)ξ1, ξ1〉 = ‖π1(a)ξ1‖

2,



���������	
������������

������
���������������
��
���
������

��������������� ���!∀#��∃%��&�
�∋�!��∋�
��∋

%��()∗∗+++∋+����∃��#��,∃∋��−∗−.�%�−.���∃∗/012∋%�−�

Enveloping von Neumann algebras and the spectral theorem 39

we see that u extends to an isometry from the closure of π1(A)ξ1 onto the

closure of π2(A)ξ2. Since ξ1 and ξ2 are cyclic vectors, u is an isometry from

H1 onto H2. We have

uπ1(a)π1(b)ξ1 = π2(ab)ξ2 = π2(a)uπ1(b)ξ1

for all a, b ∈ A. Thus uπ1(a) = π2(a)u since {π1(b)ξ1 : b ∈ A} is dense in

H1. The lemma follows. �

Theorem 1.8.2 Let A be a C∗-algebra and π : A → B(H) be a non-

degenerate representation. Then there is a unique π′′ : A′′ → π(A)′′ such

that π′′|A = π and it is (σ-) weak-weak continuous, i.e., if {xλ} is a weak

convergent net in the von Neumann algebra A′′ then {π′′(xλ)} is a weak

convergent net in B(H).

Proof. First assume that (π,H) is cyclic with cyclic vector ξ1 and ‖ξ1‖ =

1. Then φ(a) = 〈π1(a)ξ1, ξ1〉 is a state. It follows from 1.8.1 that we may

assume that (π,H) = (πφ,Hφ). Let pφ be the projection of HU onto Hφ.

Then pφπU (a) = πU(a)pφ = πφ(a) for all a ∈ A. Thus pφ ∈ A′. It is clear

that x 7→ pφx is weak-weak continuous from A′′ into π(A)′′ which extends

π (from A to π(A)).

By 1.7.11, in general, π = ⊕λπλ, where each πλ is a cyclic representa-

tion. Therefore, there are states φλ of A and an isometry U : H → ⊕λHφλ
such that U∗πU = ⊕λπφλ . So we may assume that π = ⊕λπφλ . Let p be

the projection from HU onto ⊕λHφλ . Then the map x 7→ px is weak-weak

continuous and extends π. �

Definition 1.8.3 Let X be a compact Hausdorff space. Let B(X) be the

set of all bounded Borel functions on X. B(X) is a C∗-algebra containing

C(X) as a C∗-subalgebra. It follows from 1.2.3 that B(X) is a subspace

in C(X)∗∗. By 1.7.13, C(X)′′ = C(X)∗∗. So B(X) is a C∗-subalgebra of

C(X)′′. We say {fλ} converges weakly to f in B(X), if they do so as ele-

ments of the von Neumann algebraC(X)′′. If {fλ} is bounded and converges

pointwise everywhere on X, then, by Lebesgue’s Dominated Convergence

Theorem, {fλ} converges weakly.

Corollary 1.8.4 Let φ : C(X)→ B(H) be a unital homomorphism. Then

there is a unique homomorphism φ̃ : B(X)→ B(H) such that φ̃|C(X) = φ

and {fλ} converges weakly to f in B(X) implies that {φ̃(fλ)} converges

weakly to φ̃(f) in B(H).
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Definition 1.8.5 Let a ∈ B(H) be a normal element. Then A = C∗(1, a)

is a C∗-subalgebra. Denote by j : A → B(H) the embedding. Then by

1.8.4, let j̃ : B(X)→ B(H) be the extension, where X = sp(a).We will use

f(a) for j̃(f), f ∈ B(X). Thus the following is called the Borel functional

calculus.

Corollary 1.8.6 Let M be a von Neumann algebra and a ∈ M a nor-

mal element. Then there is a weak-weak continuous homomorphism from

B(sp(a))→M which maps z → a.

Definition 1.8.7 Let X be a compact Hausdorff space and H be a

Hilbert space. A spectral measure E relative to (X,H) is a map from the

Borel sets of X to the set of projections in B(H) such that

(1) E(∅) = 0, E(X) = 1;

(2) E(S1 ∩ S2) = E(S1)E(S2) for all Borel sets S1, S2 of X;

(3) for all ξ, η ∈ H, the function Eξ,η : S 7→ 〈E(S)ξ, η〉 is a regular Borel

complex measure.

For any simple function g =
∑n
k=1 αkχSk ,

∫

X

g(λ)dEλ =
n
∑

k=1

αkE(Sk)

is an operator in B(H) (Sk are Borel sets). Let f ∈ B(X). There is a

sequence {gn} of simple functions such that ‖gn − f‖ → 0 as n → ∞.

Since µ(S) = 〈E(S)ξ, η〉 defines a regular Borel complex measure,
∫

X gndEλ
converges weakly to an element (in B(H)). Denote by

∫

X fdEλ the weak

limit. Clearly this limit does not depend on the choice of gn.

We have the following corollary otherwise known as the spectral theorem.

Corollary 1.8.8 Let a be a normal operator on a Hilbert space H. Then

there is a unique spectral measure E relative to (sp(a),H) such that

a =

∫

sp(a)

λdEλ.

Proof. By the Borel functional calculus, the embedding j : C∗(1, a) →

B(H) extends to a weak-weak continuous homomorphism j̃ : B(X) →

B(H). For each Borel subset of sp(a), j̃(χS) = E(S) is a projection. It

is easy to verify that {E(S) : S Borel} forms a spectral measure. Since

the identity function on sp(a) is Borel, it follows from the Borel functional
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calculus that

a =

∫

sp(a)

λdEλ.

We leave it to the reader to check the uniqueness of E. �

Recall the range projection p of an operator a ∈ B(H) is the projection

on the closure of {a(ξ) : ξ ∈ H}.

Proposition 1.8.9 If M is a von Neumann algebra, then it contains the

range projection of every element in M.

Proof. Let a ∈ M. It is clear that we may assume that ‖a‖ ≤ 1. Since

(aa∗)1/2 and a have the same range projection, we may assume that a ≥ 0.

Note that {a1/n} is increasing and bounded. It follows from 1.7.3 that

{a1/n} converges strongly to a positive element, say q ∈M. Let f = χ(0,‖a‖].

Then, by 1.8.6, a1/n converges weakly to f(a), which is a projection. There-

fore q = f(a). Since a1/n ∈ C∗(a) and the polynomials are dense in

C(sp(a)), q(H) ⊂ a(H). One the other hand, qa = f(a)a = a. Hence

a(H) ⊂ q(H). Therefore q is the range projection of a. �

Definition 1.8.10 An operator u on H is called a partial isometry if u∗u

is a projection. Since

(uu∗)3 = u(u∗u)(u∗u)u∗ = (uu∗)2.

sp(uu∗) = {0, 1} by the spectral mapping theorem. Therefore, uu∗ is also

a projection.

Proposition 1.8.11 Each element x in a von Neumann algebra M has

a polar decomposition: there is a unique partial isometry u ∈ M such that

u∗u is the range projection of |x| and x = u|x|.

Proof. Set un = x((1/n) + |x|)−1 and denote by p the range projection

of |x|. Since x = xp, we have un = unp. We compute that

(un−um)
∗(un−um)

= [(
1

n
+ |x|)−1−(

1

m
+ |x|)−1)]x∗x[(

1

n
+ |x|)−1−(

1

m
+ |x|)−1]

= [(
1

n
+ |x|)−1 − (

1

m
+ |x|)−1)]2|x|2. (e 8.10)
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This converges weakly to zero (as n,m → ∞) by the Borel functional

calculus. So, for any ξ ∈ H,

‖(un − um)(ξ)‖
2 = |〈(un − um)

∗(un − um)(ξ), ξ〉| → 0

as n,m → ∞. This implies that {un} converges strongly to an element

u ∈M with up = u. As in (e 8.10),

(un|x| − um|x|)
∗(un|x| − um|x|) = [(

1

n
+ |x|)−1 − (

1

m
+ |x|)−1)]2|x|4.

By the continuous functional calculus (see 1.3.6), the above converges in

norm (as n,m→∞). On the other hand, by the Borel functional calculus,

((1/n)+ |x|)−1|x| converges weakly to p. Thus {un|x|} converges in norm to

x. Hence x = u|x|. Since pu∗up = (u∗)(u) = u∗u, p(u∗u) = (u∗u)p = u∗u.

On the other hand, x∗x = |x|u∗u|x|. For any ξ, η ∈ H,

〈(u∗u− p)(|x|(ξ)), |x|η〉 = 〈|x|(u∗u− p)(|x|(ξ)), η〉 = 0.

Regarding u∗u−p as an operator on p(H), the above implies that u∗u = p.

To see the decomposition is unique, let x = v|x| and v∗v = p. Then

v|x| = u|x|, or (v − u)|x| = 0. Therefore, (v − u)p = 0. This implies that

v = u. �

1.9 Examples of C∗-algebras

In this section we give some examples of C∗-algebras. More will be presented

later.

We first give more information about the C∗-algebras K and B(H). If

H is a Hilbert space, an operator x ∈ B(H) is said to have finite-rank, if

the range of x is a finite dimensional subspace. Denote by F (H) the set of

finite-rank operators on H. It is easy to check that F (H) is a ∗-subalgebra

of B(H) and is an ideal (not necessary closed) of B(H).

Clearly every operator in F (H) is compact. It is also easy to see that

F (H) is a linear span of rank-one projections.

Lemma 1.9.1 If H is a Hilbert space and K(H) is the C∗-algebra of all

compact operators on H, then F (H) is dense in K(H).

Proof. Since F (H) and K(H) are both self-adjoint, it suffices to show

that every self-adjoint element x ∈ K(H) is in F (H).We may even further


