Operator algebras - stage for non-commutativity
(Panorama Lectures Series)
IV. II_1 factors and their subfactors

V.S. Sunder
Institute of Mathematical Sciences
Chennai, India
sunder@imsc.res.in

IISc, January 30, 2009
Recall that a von Neumann algebra (vNa) is called a factor if
$Z(M) = M \cap M' = \mathbb{C}$; and that a factor M is said to be finite if
$$u \in M, u^* u = 1 \Rightarrow uu^* = 1.$$
Recall that a von Neumann algebra (vNa) is called a factor if $Z(M) = M \cap M' = \mathbb{C}$; and that a factor M is said to be finite if $u \in M$, $u^* u = 1 \Rightarrow uu^* = 1$.

Theorem: The following conditions on a factor M are equivalent:

1. M is a finite factor.
2. \exists a positive, normalised trace tr_M on M.

II$_1$ factors are the arena for continuously varying dimensions; they got von Neumann looking at continuous geometries.
Recall that a von Neumann algebra (vNa) is called a factor if $Z(M) = M \cap M' = \mathbb{C}$; and that a factor M is said to be finite if

$$u \in M, u^* u = 1 \Rightarrow uu^* = 1.$$

Theorem: The following conditions on a factor M are equivalent:

1. M is a finite factor.
2. \exists a positive, normalised trace tr_M on M.

Such a trace is automatically unique, faithful and normal.
Recall that a von Neumann algebra (vNa) is called a factor if \(Z(M) = M \cap M' = \mathbb{C} \); and that a factor \(M \) is said to be finite if \(u \in M, u^*u = 1 \implies uu^* = 1 \).

Theorem: The following conditions on a factor \(M \) are equivalent:

1. \(M \) is a finite factor.
2. \(\exists \) a positive, normalised trace \(tr_M \) on \(M \).

Such a trace is automatically unique, faithful and normal. \(\square \)

The following conditions on two projections \(p, q \) in a finite factor \(M \), are equivalent:

1. \(p \sim_M q \)
2. \(tr_M p = tr_M q \)
3. \(\exists u \in U(M) \) such that \(upu^* = q \).
Recall that a von Neumann algebra (vNa) is called a factor if
\[Z(M) = M \cap M' = \mathbb{C}; \] and that a factor \(M \) is said to be finite if
\[u \in M, u^*u = 1 \Rightarrow uu^* = 1. \]

Theorem: The following conditions on a factor \(M \) are equivalent:

1. \(M \) is a finite factor.
2. \(\exists \) a positive, normalised trace \(tr_M \) on \(M \).

Such a trace is automatically unique, faithful and normal. \(\square \)

The following conditions on two projections \(p, q \) in a finite factor \(M \), are equivalent:

1. \(p \sim_M q \)
2. \(tr_M p = tr_M q \)
3. \(\exists u \in U(M) \) such that \(upu^* = q \).

Let \(M \) be a finite factor. There are two possibilities:

1. \(dim_\mathbb{C} M < \infty \). In this case \(M \cong M_n(\mathbb{C}) = \mathcal{L}(\mathbb{C}^n) \) for a unique \(n \), and
\[\{ tr_M p : p \in \mathcal{P}(M) \} = \{ \frac{k}{n} : 0 \leq k \leq n \}. \]
2. \(dim_\mathbb{C} M = \infty \). Then \(M \) is a II\(_1\) factor, and in this case,
\[\{ tr_M p : p \in \mathcal{P}(M) \} = [0, 1]. \]
Henceforth, M will be a II_1 factor.

Def: An M-module is a separable Hilbert space \mathcal{H}, equipped with a morphism $\pi : M \rightarrow \mathcal{L}(\mathcal{H})$ of von Neumann algebras (i.e., a normal representation). Two M-modules are isomorphic if there exists an invertible (equivalently, unitary) M-linear map between them.
Henceforth, M will be a II_1 factor.

Def: An M-module is a separable Hilbert space \mathcal{H}, equipped with a morphism $\pi : M \to \mathcal{L}(\mathcal{H})$ of von Neumann algebras (i.e., a normal representation). Two M-modules are isomorphic if there exists an invertible (equivalently, unitary) M-linear map between them.

Proposition: There exists a complete isomorphism invariant $\mathcal{H} \mapsto dim_M \mathcal{H} \in [0, \infty]$ of M-modules such that:

- $\mathcal{H} \cong \mathcal{K} \iff dim_M \mathcal{H} = dim_M \mathcal{K}$.
- $dim_M (\bigoplus_n \mathcal{H}_n) = \sum_n dim_M \mathcal{H}_n$.
- For each $d \in [0, \infty]$, \exists an M-module \mathcal{H}_d with $dim_M \mathcal{H}_d = d$.
In view of the uniqueness of tr_M, we shall simply write $L^2(M) = (\hat{M})$. It is true as in the finite dimensional case that there exist the left and right regular representations of M on $L^2(M)$ which satisfy

- $\lambda_M(x)\hat{y} = \hat{x}y = \rho_M(y)\hat{x}$ $\forall x, y \in M$; and
- $(\lambda_M(M))' = \rho_M(M)''$

As before, we identify $x \in M$ with $\lambda_M(x) \in \mathcal{L}(L^2(M))$.
In view of the uniqueness of tr_M, we shall simply write $L^2(M) = (\hat{M})^\perp$. It is true as in the finite dimensional case that there exist the *left* and *right regular representations* of M on $L^2(M)$ which satisfy

1. $\lambda_M(x)\hat{y} = \hat{x}\hat{y} = \rho_M(y)\hat{x}$ $\forall x, y \in M$; and
2. $(\lambda_M(M))' = \rho_M(M)''$

As before, we identify $x \in M$ with $\lambda_M(x) \in \mathcal{L}(L^2(M))$.

$\mathcal{H}_1 = L^2(M, tr_M)$ is an $M - M$-bimodule.
The standard form of a II_1 factor

In view of the uniqueness of tr_M, we shall simply write $L^2(M) = (\hat{M})$. It is true as in the finite dimensional case that there exist the *left* and *right regular representations* of M on $L^2(M)$ which satisfy

- $\lambda_M(x)\hat{y} = \hat{x}\hat{y} = \rho_M(y)\hat{x}$ $\forall x, y \in M$; and
- $(\lambda_M(M))' = \rho_M(M)''$

As before, we identify $x \in M$ with $\lambda_M(x) \in \mathcal{L}(L^2(M))$.

$\mathcal{H}_1 = L^2(M, tr_M)$ is an $M - M$-bimodule.

If $0 \leq d \leq 1$, then $\mathcal{H}_d = L^2(M, tr_M) \cdot p$ where $p \in \mathcal{P}(M)$ satisfies $tr_M p = d$.
The standard form of a II_1 factor

In view of the uniqueness of tr_M, we shall simply write $L^2(M) = (M^\vee)$. It is true as in the finite dimensional case that there exist the left and right regular representations of M on $L^2(M)$ which satisfy

- $\lambda_M(x)\hat{y} = \hat{x}\hat{y} = \rho_M(y)\hat{x}$ $\forall x, y \in M$; and
- $(\lambda_M(M))' = \rho_M(M)''$

As before, we identify $x \in M$ with $\lambda_M(x) \in \mathcal{L}(L^2(M))$.

$\mathcal{H}_1 = L^2(M, tr_M)$ is an $M - M$-bimodule.

If $0 \leq d \leq 1$, then $\mathcal{H}_d = L^2(M, tr_M) \cdot p$ where $p \in \mathcal{P}(M)$ satisfies $tr_M p = d$.

\mathcal{H}_d is a finitely generated projective module iff $d < \infty$.
The standard form of a $\mathcal{I}\mathcal{I}_1$ factor

In view of the uniqueness of tr_M, we shall simply write $L^2(M) (= (\hat{M}))$. It is true as in the finite dimensional case that there exist the *left* and *right regular representations* of M on $L^2(M)$ which satisfy

1. $\lambda_M(x)\hat{y} = \hat{x}y = \rho_M(y)\hat{x} \ \forall x, y \in M$; and
2. $(\lambda_M(M))' = \rho_M(M)''$

As before, we identify $x \in M$ with $\lambda_M(x) \in \mathcal{L}(L^2(M))$.

$\mathcal{H}_1 = L^2(M, tr_M)$ is an $M - M$-bimodule.

If $0 \leq d \leq 1$, then $\mathcal{H}_d = L^2(M, tr_M) \cdot p$ where $p \in \mathcal{P}(M)$ satisfies $tr_M p = d$.

\mathcal{H}_d is a finitely generated projective module iff $d < \infty$.

It follows that $K_0(M) \cong \mathbb{R}$.
The hyperfinite II_1 factor R: Among II_1 factors, pride of place goes to the ubiquitous hyperfinite II_1 factor R. It is characterised as the unique II_1 factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).
The hyperfinite II_1 factor R: Among II_1 factors, pride of place goes to the ubiquitous hyperfinite II_1 factor R. It is characterised as the unique II_1 factor which has any of several properties, such as injectivity and approximate finite-dimensionality (\equiv hyperfiniteness).

Thus, up to isomorphism, there exists a unique II_1 factor R which contains an increasing sequence

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$

of finite-dimensional C^*-subalgebras such that $\bigcup_n A_n$ is σ-weakly dense in R.
The hyperfinite II_1 factor R: Among II_1 factors, pride of place goes to the ubiquitous hyperfinite II_1 factor R. It is characterised as the unique II_1 factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique II_1 factor R which contains an increasing sequence

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$

of finite-dimensional C^*-subalgebras such that $\bigcup_n A_n$ is σ-weakly dense in R.

Examples of II_1 factors: Let $\lambda : G \to \mathcal{U}(\mathcal{L}(\ell^2(G)))$ denote the left-regular representation of a countable infinite group G, and let $L\lambda G = (\lambda(G))''$. The group von Neumann algebra $L\lambda G$ is a II_1 factor iff every conjugacy class of G other than $\{1\}$ is infinite.
The hyperfinite II$_1$ factor R: Among II$_1$ factors, pride of place goes to the ubiquitous hyperfinite II$_1$ factor R. It is characterised as the unique II$_1$ factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique II$_1$ factor R which contains an increasing sequence

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$

of finite-dimensional C*-subalgebras such that $\bigcup_n A_n$ is σ-weakly dense in R.

Examples of II$_1$ factors: Let $\lambda : G \to \mathcal{U}(\mathcal{L}(\ell^2(G)))$ denote the left-regular representation of a countable infinite group G, and let $LG = (\lambda(G))''$. The group von Neumann algebra LG is a II$_1$ factor iff every conjugacy class of G other than $\{1\}$ is infinite.

$L\Sigma_\infty \cong R$, while $L\mathbb{F}_2$ is not hyperfinite.
The hyperfinite II_1 factor R: Among II_1 factors, pride of place goes to the ubiquitous hyperfinite II_1 factor R. It is characterised as the unique II_1 factor which has any of several properties, such as injectivity and approximate finite-dimensionality (= hyperfiniteness).

Thus, up to isomorphism, there exists a unique II_1 factor R which contains an increasing sequence

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$$

of finite-dimensional C^*-subalgebras such that $\bigcup_n A_n$ is σ-weakly dense in R.

Examples of II_1 factors: Let $\lambda : G \to U(L(\ell^2(G)))$ denote the left-regular representation of a countable infinite group G, and let $LG = (\lambda(G))''$. The group von Neumann algebra LG is a II_1 factor iff every conjugacy class of G other than $\{1\}$ is infinite.

$L\Sigma_\infty \cong R$, while $L\mathbb{F}_2$ is not hyperfinite.

Big open problem: is $L\mathbb{F}_2 \cong L\mathbb{F}_3$? (Compare with the C^*_red case.)
The study of bimodules over II_1 factors is essentially equivalent to that of ‘subfactors’. (The bimodule \mathcal{H}_M corresponds to $\lambda_M(N) \subset \rho_M(M)'$.)
The study of bimodules over \mathcal{II}_1 factors is essentially equivalent to that of ‘subfactors’. (The bimodule $\mathcal{N}\mathcal{H}_\mathcal{M}$ corresponds to $\lambda_\mathcal{M}(\mathcal{N}) \subset \rho_\mathcal{M}(\mathcal{M})'$.)

A **subfactor** is a unital inclusion $\mathcal{N} \subset \mathcal{M}$ of \mathcal{II}_1 factors. For a subfactor as above, Jones defined the **index of the subfactor** by

$$[\mathcal{M} : \mathcal{N}] = \dim_\mathcal{N} L^2(\mathcal{M}, tr_\mathcal{M})$$

A subfactor \mathcal{N} is said to be **irreducible** if $\mathcal{N}' \cap \mathcal{M} = \mathcal{C}$ or equivalently, if $L^2(\mathcal{M}, tr_\mathcal{M})$ is irreducible as an $\mathcal{N} - \mathcal{M}$ bimodule - meaning it has no non-zero submodule other than itself.
The study of bimodules over II_1 factors is essentially equivalent to that of ‘subfactors’. (The bimodule $N \mathcal{H}_M$ corresponds to $\lambda_M(N) \subset \rho_M(M)'$.)

A **subfactor** is a unital inclusion $N \subset M$ of II_1 factors. For a subfactor as above, Jones defined the **index of the subfactor** by

$$[M : N] = \dim_N L^2(M, tr_M)$$

and proved that

$$[M : N] \in [4, \infty] \cup \{4 \cos^2 \left(\frac{\pi}{n} \right) : n \geq 3\}$$
The study of bimodules over II_1 factors is essentially equivalent to that of ‘subfactors’. (The bimodule $\mathcal{N}\mathcal{H}_M$ corresponds to $\lambda_M(N) \subset \rho_M(M')$.)

A subfactor is a unital inclusion $N \subset M$ of II_1 factors. For a subfactor as above, Jones defined the index of the subfactor by

$$[M : N] = \dim_N L^2(M, tr_M)$$

and proved that

$$[M : N] \in [4, \infty] \cup \{4\cos^2\left(\frac{\pi}{n}\right) : n \geq 3\}$$

A subfactor N is said to be irreducible if $N' \cap M = \mathbb{C}$ - or equivalently, if $L^2(M, tr_M)$ is irreducible as an $N - M$ bimodule - meaning it has no non-zero submodule other than itself.
It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.
It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.

Very little is known about the set \mathcal{I}_R^0 of possible index values of irreducible hyperfinite subfactors.
It is known that if a subfactor $N \subset M$ has finite index, then N is hyperfinite if and only if M is. In this case, call the subfactor hyperfinite.

Very little is known about the set \mathcal{I}_R^0 of possible index values of irreducible hyperfinite subfactors.

1. (Jones) $\mathcal{I}_R = [4, \infty] \cup \{4\cos^2\left(\frac{\pi}{n}\right) : n \geq 3\}$ and $\mathcal{I}_R^0 \supset \{4\cos^2\left(\frac{\pi}{n}\right) : n \geq 3\}$

2. \(\left(\frac{N + \sqrt{N^2 + 4}}{2}\right)^2, \left(\frac{N + \sqrt{N^2 + 8}}{2}\right)^2 \in \mathcal{I}_R^0 \ \forall N \geq 1\)

3. $(N + \frac{1}{N})^2$ is the limit of an increasing sequence in \mathcal{I}_R^0.
We list below a few facts concerning **automorphisms** of von Neumann algebras:

1. If $\pi : M \to N$ is a normal homomorphism of von Neumann algebras, there exists a central projection z such that $\ker \pi = Mz = \{xz : x \in M\}$.
2. If π is a \ast-isomorphism of von Neumann algebras (just algebraically *à priori*), then it is automatically normal.
3. If $\pi : M \to N$ is a \ast-homomorphism of a factor onto a von Neumann algebra, then π is identically zero or a normal isomorphism.
4. Thus an algebraic \ast-automorphism of a von Neumann algebra is automatically normal.
5. An automorphism of a finite factor M preserves tr_M.
6. An automorphism θ of M is said to be *free* if
 \[x \in M, \theta(y)x = xy \ \forall y \in M \Rightarrow x = 0. \]
Automorphisms

We list below a few facts concerning automorphisms of von Neumann algebras:

1. If $\pi : M \to N$ is a normal homomorphism of von Neumann algebras, there exists a central projection z such that $\ker \pi = Mz = \{xz : x \in M\}$.
2. If π is a $*$-isomorphism of von Neumann algebras (just algebraically à priori), then it is automatically normal.
3. If $\pi : M \to N$ is a $*$-homomorphism of a factor onto a von Neumann algebra, then π is identically zero or a normal isomorphism.
4. Thus an algebraic $*$-automorphism of a von Neumann algebra is automatically normal.
5. An automorphism of a finite factor M preserves tr_M.
6. An automorphism θ of M is said to be free if
 \[x \in M, \theta(y)x = xy \ \forall y \in M \Rightarrow x = 0. \]

Proposition:

1. Suppose $M = L^\infty(X, B, \mu)$, with μ σ-finite. Then
 \[\theta \in \text{Aut}(M) \iff \text{there exists a non-singular automorphism } T \text{ of } (X, B, \mu) \text{ such that } \theta(f) = f \circ T^{-1}. \]
 \[\theta \in \text{Aut}(M) \text{ is free iff it moves almost all points - i.e., } \mu(\{x \in X : Tx = x\}) = 0. \]
 \[\text{An automorphism of a factor is free iff it is outer - i.e., it is not inner, meaning there is no } u \in U(M) \text{ such that } \theta(x) = uxu^* \ \forall x \in M. \]
Definitions:

1. An **action** of a group G on a von Neumann algebra M (written $G \rhd M$) is a group homomorphism α from G into the group $\text{Aut}(M)$ of \ast-automorphisms of M.

2. The action α is said to be *outer* if α_g is outer for each $g \neq 1$.
Group actions

Definitions:
1. An action of a group G on a von Neumann algebra M (written $G \curvearrowright M$) is a group homomorphism α from G into the group $Aut(M)$ of \ast-automorphisms of M.
2. The action α is said to be outer if α_g is outer for each $g \neq 1$.

Proposition:
1. For any n, $U_n(\mathbb{C}) = \mathcal{U}(M_n(\mathbb{C}))$ - and hence every finite group - admits an outer action on R.
2. If $G \curvearrowright R$ is an outer action of a finite group G on R, the fixed subalgebra $R^G = \{ x \in R : g \cdot x = x \forall g \in G \}$ is a subfactor of R with $[R : R^G] = |G|$.
3. If $G \curvearrowright R$ is as in (2) above, then every intermediate \ast-subalgebra $R^G \subset P \subset R$ is of the form $P = R^H$ for some subgroup H of G; further, $[R^H : R^G] = [G : H]$.
4. If $G_i \curvearrowright R$, $i = 1, 2$ are outer actions of finite groups, then $(R^{G_1} \subset R) \cong (R^{G_2} \subset R) \iff G_1 \cong G_2$.
Our earlier results (in the case of finite-dimensional C^*-algebras) about conditional expectations and basic constructions have perfect analogues here. Specifically one can show without much difficulty that:

Proposition:
Suppose $N \subset M$ is a subfactor. Then $L^2(N)$ sits naturally as a subspace of $L^2(M)$. Let us write e_N for the orthogonal projection of $L^2(M)$ onto $L^2(N)$.

Then $e_N(\hat{M}) \subset \hat{N}$, and we define E_N, the so-called tr-preserving conditional expectation of M onto N by

$$\hat{E}_N(m) = e_N(\hat{m}).$$

The map E_N satisfies and is characterised by the following properties:

1. $\text{tr} | N = \text{tr} \circ E_N$.
2. $E_N(nm) = nE_N(m)$, i.e., E_N is N-linear.
3. $e_{nm} = E_N(m)e_N$, where, as usual, we identify $m \in M$ with $\lambda_M(m)$.

The modular conjugation associated to M is the antiunitary operator J_M defined on $L^2(M)$ by $J_M(\hat{x}) = c\hat{x}^*$.

V.S. Sunder IMSc, Chennai

Operator algebras - stage for non-commutativity (Panorama Lectures Series)
Our earlier results (in the case of finite-dimensional C^*-algebras) about conditional expectations and basic constructions have perfect analogues here. Specifically one can show without much difficulty that:

Proposition: Suppose $N \subset M$ is a subfactor. Then $L^2(N)$ sits naturally as a subspace of $L^2(M)$. Let us write e_N for the orthogonal projection of $L^2(M)$ onto $L^2(N)$.

1. Then $e_N(\hat{M}) \subset \hat{N}$, and we define E_N, the so-called *tr-preserving conditional expectation of M onto N* by

$$\hat{E}_N(m) = e_N(\hat{m})$$

2. The map E_N satisfies and is characterised by the following properties:
 - $tr|_N = tr \circ E$.
 - $E(nm) = nE(m)$, i.e., E_N is N-linear.

3. $e_N m e_N = E(m) e_N$, where, as usual, we identify $m \in M$ with $\lambda_M(m)$.
Our earlier results (in the case of finite-dimensional C^*-algebras) about conditional expectations and basic constructions have perfect analogues here. Specifically one can show without much difficulty that:

Proposition: Suppose $N \subset M$ is a subfactor. Then $L^2(N)$ sits naturally as a subspace of $L^2(M)$. Let us write e_N for the orthogonal projection of $L^2(M)$ onto $L^2(N)$.

1. Then $e_N(\hat{M}) \subset \hat{N}$, and we define E_N, the so-called *tr-preserving conditional expectation of M onto N* by

$$\hat{E}_N(\hat{m}) = e_N(\hat{m})$$

2. The map E_N satisfies and is characterised by the following properties:
 - $tr|_N = tr \circ E$.
 - $E(nm) = nE(m)$, i.e., E_N is N-linear.

3. $e_nme_n = E(m)e_N$, where, as usual, we identify $m \in M$ with $\lambda_M(m)$.

The **modular conjugation associated to M** is the antiunitary operator J_M defined on $L^2(M)$ by $J_M(\hat{x}) = \hat{x}^*$.

V.S. Sunder IMSc, Chennai

Operator algebras - stage for non-commutativity (Panorama Lectures Series) IV.
Proposition: For a subfactor $N \subset M$, simply writing J for J_M and e for e_N, we have:

- $JxJ = \rho_M(x^*) \quad \forall x \in M$
- $Je = eJ$
- $JN'J = (M \cup \{e\})''$, where N' means $\lambda_M(N)'$ in $\mathcal{L}(L^2(M))$
- $JN'J$ is a II$_1$ factor iff $[M : N] < \infty$.

□
Proposition: For a subfactor $N \subset M$, simply writing J for J_M and e for e_N, we have:

- $JxJ = \rho_M(x^*) \quad \forall x \in M$
- $Je = eJ$
- $JN'J = (M \cup \{e\})''$, where N' means $\lambda_M(N)'$ in $L(L^2(M))$
- $JN'J$ is a II$_1$ factor iff $[M : N] < \infty$.

Proposition:
If $[M : N] < \infty$, then

1. $N' \cap M$ is finite-dimensional; in fact, $dim(N' \cap M) \leq [M : N]$; and

$$[M : N] < 4 \Rightarrow N' \cap M = \mathbb{C}.$$

2. $M_1 =: < M, e > = (M \cup \{e\})''$ is also a II$_1$ factor and

$$[M_1 : M] = [M : N].$$

3. $E_M(e) = \frac{1}{[M : N]} 1$
If $N \subset M$ is a finite index subfactor, we write

$$N \subset M \subset^{e_1} M_1$$

to denote the basic construction, where we write e_1 for e_N for reasons that will soon become clear.
If $N \subset M$ is a finite index subfactor, we write

$$N \subset M \subset^{e_1} M_1$$

to denote the basic construction, where we write e_1 for e_N for reasons that will soon become clear.

Since $M \subset M_1$ is also a finite index subfactor, we can play the game once more, and in fact *ad infinitum* (*nauseum*?), to get a tower

$$(M_{-1} =) N \subset (M_0 =) M \subset^{e_1} M_1 \subset^{e_2} M_2 \subset \cdots$$

of II_1 factors.
If $N \subset M$ is a finite index subfactor, we write

$$N \subset M \subset^{e_1} M_1$$

to denote the basic construction, where we write e_1 for e_N for reasons that will soon become clear.

Since $M \subset M_1$ is also a finite index subfactor, we can play the game once more, and in fact *ad infinitum* (*nauseum*?), to get a tower

$$(M_{-1} =) N \subset (M_0 =) M \subset^{e_1} M_1 \subset^{e_2} M_2 \subset \cdots$$

of II_1 factors.

Since the index is multiplicative, we see that $[M_i : M_j] = [M : N]^{j-i}$.
Thus we have the following grid of finite-dimensional C^*-algebras:

\[
\mathbb{C} = N' \cap N \subset N' \cap M \subset N' \cap M_1 \subset \cdots \\
\cup \quad \cup \quad \cup \quad \cdots \\
\mathbb{C} = M' \cap M \subset M' \cap M_1 \subset \cdots
\]
Thus we have the following grid of finite-dimensional C^*-algebras:

$$
\mathbb{C} = N' \cap N \subset N' \cap M \subset N' \cap M_1 \subset \cdots \\
\subset \subset
$$

Further, this comes equipped with a consistent trace (which, on $M_i' \cap M_j$ is the restriction of tr_{M_i}). This grid, with this trace, is called the standard invariant of $N \subset M$.

The standard invariant
Thus we have the following grid of finite-dimensional C^*-algebras:

\[
\begin{align*}
\mathbb{C} & = N' \cap N \subset N' \cap M \subset N' \cap M_1 \subset \cdots \\
\cup & \quad \cup \\
\mathbb{C} & = M' \cap M \subset M' \cap M_1 \subset \cdots \\
\end{align*}
\]

Further, this comes equipped with a consistent trace (which, on $M'_i \cap M_j$ is the restriction of tr_{M_j}). This grid, with this trace, is called the standard invariant of $N \subset M$.

This turns out to be a complete invariant for a ‘good class’ of subfactors - the so-called extremal ones.
To better understand this standard invariant, start by observing that the tower in the first row of the grid is described by the total Bratteli diagram obtained by glueing the several individual Bratteli diagrams together. We illustrate various features of this tower in the example $R^{S_3} \subset R$:

Here, we have written $P_k = N' \cap M_{k-1}$. The diagram illustrates several features that are present in the corresponding diagram of relative commutants for every subfactor:
(a) The part of the diagram between the nth and $(n + 1)$-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the $(n - 1)$-th and nth floors, and (ii) a ‘new part’. In fact, new vertices, if any, on the $(n + 1)$-st floor are connected only to new vertices on the n-th floor.
The principal graphs

(a) The part of the diagram between the nth and $(n + 1)$-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the $(n - 1)$-th and nth floors, and (ii) a ‘new part’. In fact, new vertices, if any, on the $(n + 1)$-st floor are connected only to new vertices on the n-th floor.

(b) The (red) graph comprising all the ‘new parts’ is called the principal graph Γ of the subfactor $N \subset M$. (It follows from (a) that the Bratteli diagram for the entire tower $\{N' \cap M_{k-1} : k \geq 0\}$ is determined by the principal graph.)
The principal graphs

(a) The part of the diagram between the \(n \)th and \((n+1)\)-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the \((n-1)\)-th and \(n\)th floors, and (ii) a ‘new part’. In fact, new vertices, if any, on the \((n+1)\)-st floor are connected only to new vertices on the \(n\)-th floor.

(b) The (red) graph comprising all the ‘new parts’ is called the principal graph \(\Gamma \) of the subfactor \(N \subset M \). (It follows from (a) that the Bratteli diagram for the entire tower \(\{N' \cap M_{k-1} : k \geq 0\} \) is determined by the principal graph.)

(c) In fact, the Bratteli diagram for the entire tower \(\{M' \cap M_k : k \geq 0\} \) is recovered in the same fashion from the so-called dual principal graph \(\tilde{\Gamma} \), which is just the principal graph of \(M \subset M_1 \).
(a) The part of the diagram between the nth and $(n + 1)$-st floors consists of two parts: (i) a (horizontal) mirror-reflection of the part of the diagram between the $(n − 1)$-th and nth floors, and (ii) a ‘new part’. In fact, new vertices, if any, on the $(n + 1)$-st floor are connected only to new vertices on the n-th floor.

(b) The (red) graph comprising all the ‘new parts’ is called the principal graph Γ of the subfactor $N \subset M$. (It follows from (a) that the Bratteli diagram for the entire tower $\{N' \cap M_{k−1} : k \geq 0\}$ is determined by the principal graph.)

(c) In fact, the Bratteli diagram for the entire tower $\{M' \cap M_k : k \geq 0\}$ is recovered in the same fashion from the so-called dual principal graph $\tilde{\Gamma}$, which is just the principal graph of $M \subset M_1$.

(d) In the exhibited example, the principal graph and the dual principal graph are given by:

\[\Gamma \]

\[\tilde{\Gamma} \]
(e) It is a fact that Γ is finite iff $\tilde{\Gamma}$ is finite, in which case the subfactor is said to have **finite depth**.
(e) It is a fact that Γ is finite iff $\tilde{\Gamma}$ is finite, in which case the subfactor is said to have **finite depth**.

In addition to the two principal graphs, which only describe the two towers of relative commutants, one also needs to encode the data of how one tower is embedded into the next. This has been done in at least three ways: as a **paragroup** (Ocneanu), a λ-**lattice** (Popa), or a **planar algebra** (Jones). Any one of these notions is equivalent to the ‘standard invariant, and is a complete invariant, provided the subfactor is **extremal**. (Finite depth subfactors are known to be extremal, and thus determined by their standard invariant.)
(e) It is a fact that Γ is finite iff $\tilde{\Gamma}$ is finite, in which case the subfactor is said to have \textbf{finite depth}.

In addition to the two principal graphs, which only describe the two towers of relative commutants, one also needs to encode the data of how one tower is embedded into the next. This has been done in at least three ways: as a \textbf{paragroup} (Ocneanu), a λ-\textbf{lattice} (Popa), or a \textbf{planar algebra} (Jones). Any one of these notions is equivalent to the ‘standard invariant, and is a complete invariant, provided the subfactor is \textbf{extremal}. (Finite depth subfactors are known to be extremal, and thus determined by their standard invariant.)

We shall content ourselves with recording the following relations satisfied by the Jones projections $\{e_n : n \geq 1\}$ (which are easy consequences of the basic construction):
(e) It is a fact that Γ is finite iff $\tilde{\Gamma}$ is finite, in which case the subfactor is said to have **finite depth**.

In addition to the two principal graphs, which only describe the two towers of relative commutants, one also needs to encode the data of how one tower is embedded into the next. This has been done in at least three ways: as a **paragroup** (Ocneanu), a λ-**lattice** (Popa), or a **planar algebra** (Jones). Any one of these notions is equivalent to the ‘standard invariant, and is a complete invariant, provided the subfactor is **extremal**. (Finite depth subfactors are known to be extremal, and thus determined by their standard invariant.)

We shall content ourselves with recording the following relations satisfied by the Jones projections $\{e_n : n \geq 1\}$ (which are easy consequences of the basic construction):

\[
\begin{align*}
e_i^2 & = e_i \quad \forall i \\
e_i e_j & = e_j e_i \quad \text{if } |i - j| \geq 2 \\
e_i e_j e_i & = \tau e_i \quad \text{if } |i - j| = 1
\end{align*}
\]

where $\tau = [M : N]^{-1}$.
References

