
Operator algebras - stage for non-commutativity
(Panorama Lectures Series)
III. von Neumann algebras

V.S. Sunder
Institute of Mathematical Sciences

Chennai, India
sunder@imsc.res.in

IISc, January 29, 2009

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series) III. von Neumann algebras



Finite-dimensional C ∗-algebras

We shall initially discuss finite-dimensional C∗-algebras. Begin by recalling that:

Definition: A linear functional ‘tr’ on a C∗-algebra A is said to be

a trace if tr(xy) = tr(yx) forall x , y ∈ A;

normalised1 if A is unital and tr(1) = 1;

positive if tr(x∗x) ≥ 0∀x ∈ A;

faithful and positive if A is a *-algebra and tr(x∗x) > 0 ∀ 0 6= x ∈ A.

For example, Mn(C) admits a unique normalised trace (tr(x) = 1
n

Pn
i=1 xii )

which is also faithful and positive.

Proposition FDC*: The following conditions on a finite-dimensional unital
*-algebra A are equivalent:

1 There exists a unital *-monomorphism π : A→ Mn(C) for some n.

2 There exists a faithful positive normalised trace on A.

2

1A positive normalised linear functional is usually called a state.
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The standard form

For a finite-dimensional (C)∗-algebra M with faithful positive normalised2 trace
‘tr’, let us write L2(M, tr) = {x̂ : x ∈ M}, with 〈x̂ , ŷ〉 = tr(y∗x), as well as
λM , ρM : M → L(L2(M, tr)) for the left and right regular representations, i.e.,
the maps (injective unital *-homomorphism and *-antihomomorphism,
repectively) defined by

λM(x)(ŷ) = cxy = ρM(y)(x̂) .

We shall usually identify x ∈ M with the operator λM(x) and thus think of M
as (being in standard form and) a subset of L(L2(M, tr)).

The reason for the ‘hats’ is that we wish to distinguish between the operator
x ∈ L(L2(M, tr)) and the vector x̂ ∈ L2(M, tr).

Fact: λM(M)′ = ρM(M) and ρM(M)′ = λM(M), where we define the
commutant S ′ of any set S of operators on a Hilbert space H by

S ′ = {x ′ ∈ L(H) : xx ′ = x ′x ∀x ∈ S})

2It is a fact that every finite-dimensional C∗-algebra is unital.
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Conditional expectations

Suppose N ⊂ M is a unital inclusion of finite-dimensional C∗-algebras and tr is
a faithful tracial state on M. Then N̂ =: L2(N, tr |N) sits naturally as a
subspace of M̂ =: L2(M, tr). Let us write eN for the orthogonal projection of
M̂ onto N̂, and EN for the so-called tr-preserving conditional expectation of M
onto N defined by

ÊN(m) = eN(m̂)

Proposition: (CE)
The map EN satisfies and is characterised by the following properties:

tr |N = tr ◦ E .

EN(nm) = nEN(m), i.e., EN is N-linear.3

3Actually EN is even N − N-bilinear.
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Minimal central projections

Write Pmin(Z(M)) for the set of minimal central projections of a
finite-dimensional C∗-algebra. It is a fact that there is a well-defined function
m : Pmin(Z(M))→ N, such that Mq ∼= Mm(q)(C) ∀q ∈ Pmin(Z(M)); thus the

map M 3 x
πq7→ xq defines an irreducible representation of M; and in fact,

{πq : q ∈ Pmin(Z(M))} is a complete list, up to unitary equivalence, of pairwise
inequivalent irreducible representations of M, and

M =
X

q∈Pmin(Z(M))

Mq ∼= ⊕q∈Pmin(Z(M))Mm(q)(C)

Every trace on the full matrix algebra Mn(C) is a multiple of the usual trace. It
follows that any trace φ on M is uniquely determined by the function
tφ : Pmin(Z(M))→ C defined by tφ(q) = φ(q0) where q0 is a minimal
projection in Mq. It is clear that φ is positive (resp., faithful, resp., normalised)
iff tφ(q) ≥ 0 ∀q (resp., tφ(q) > 0 ∀q, resp.

P
q∈Pmin(Z(M)) m(q)tφ(q) = 1).
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Bratteli diagrams

If N ⊂ M is a unital C∗-subalgebra of M, the associated inclusion matrix Λ is
the matrix with rows and columns indexed by Pmin(Z(N)) and Pmin(Z(M))

respectively, defined by setting Λpq =
q

dim qpMqp
dim qpNqp

. Alternatively, if we write ρp

for the irreducible representation of N corresponding to p, then Λpq is nothing
but the ‘multiplicity with which ρp occurs in the irreducible decomposition of
πq|N ’. This data is sometimes also recorded in a bipartite graph (usually called
the Bratteli diagram of the inclusion) with even and odd vertices indexed by
Pmin(Z(N) and Pmin(Z(M)) repectively, with Λpq edges joining the vertices
indexed by p and q.

For example, Bratteli diagram associated to CS2 ⊂ CS3
4 is seen to be given by:

4For a finite group G , clearly C∗
red (G) = CG .
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The basic constuction

Propostion (bc): Suppose N ⊂ M is a unital inclusion of finite dimensional
C∗- algebras. Let tr be a faithful, unital, positive trace on M. Then,

1 The C∗ algebra generated by M and eN in L(L2(M, tr)) is ρM(N)′.

2 The central support5 of eN in ρM(N)′ is 1.

3 eNxeN = E(x)eN for x ∈ M. (As usual, we identify m with λM(m).)

4 N = M ∩ {eN}′.
5 If Λ is the inclusion matrix for N ⊂ M then Λt is the inclusion matrix for

M ⊂ ρM(N)′.

2

This basic construction - i.e., the passage from N ⊂ M to M ⊂ ρM(N)′ -
extends almost verbatim from inclusions of finite-dimensional C∗-algebras to
one good infinite-dimensional case, that of the so-called finite-depth subfactors
which we shall discuss in the next lecture!

We now proceed to infinite dimensions.

5The central support of a projection is the smallest central projection which dominates it.
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von Neumann algebras

von Neumann algebras were introduced in - and referred to, by them, as -
Rings of Operators in 1936 by F.J. Murray and von Neumann, because - in
their own words:

the elucidation of this subject is strongly suggested by

our attempts to generalise the theory of unitary group-representations, and

various aspects of the quantum mechanical formalism

Definition 1: A von Neumann algebra is the commutant of a unitary group
representation (say π of G): i.e.,

M = {x ∈ L(H) : xπ(g) = π(g)x ∀g ∈ G}

Note that L(H) is a C∗-algebra w.r.t. the ‘operator norm’
‖x‖ = sup{‖xξ‖ : ξ ∈ H, ‖ξ‖ = 1} and ‘Hilbert space adjoint’.
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Double commutant theorem (DCT)

Definitions: (a) S ′ = {x ′ ∈ L(H) : xx ′ = x ′x ∀x ∈ S}, for S ⊂ L(H)

(b) SOT on L(H): xn → x ⇔ ‖xnξ − xξ‖ → 0 ∀ξ (i.e., xnξ → xξ strongly ∀ξ)

(c) WOT on L(H): xn → x⇔〈xnξ− xξ, η〉 → 0∀ξ, η (i.e., xnξ → xξ weakly ∀ξ)

(Our Hilbert spaces are always assumed to be separable.)

von Neumann’s double commutant theorem (DCT):

Let M be a unital self-adjoint subalgebra of L(H). TFAE:

(i) M is SOT-closed

(ii) M is WOT-closed

(iii) M = M ′′ = (M ′)′ 2
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von Neumann algebras (contd.)

Definition 2: A von Neumann algebra is an M as in DCT above.

The equivalence of definitions 1 and 2 is a consequence of the spectral theorem
and the fact that any norm-closed unital *-subalgebra A of L(H) is linearly
spanned by the set U(A) = {u ∈ A : u∗u = uu∗ = 1} of its unitary elements.

A von Neumann algebra is closed under all ‘canonical constructions’: for
instance, if x → {1E (x) : E ∈ BC} is the spectral measure associated with a
normal operator x , then x ∈ M⇔1E (x) ∈ M ∀ E ∈ BC.

(Reason: ⇒: Since 1E (uxu∗) = u1E (x)u∗ for all unitary u (the spectral
measure is a canonical construction),

x ∈ M, u′ ∈ U(M ′) ⇒ u′1E (x)u′∗ = 1E (u′xu′∗)

⇒ 1E (x) ∈
`
U(M ′)

´′
= M )

⇐: Uniform approximability of bounded measurable functions implies (by the
spectral theorem) that

M = [P(M)] = (span P(M))− (∗),

where P(M) = {p ∈ M : p = p2 = p∗} is the set of projections in M.
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Murray-von Neumann equivalence

Suppose M = π(G)′ as before. Then

p↔ran p

establishes a bijection

P(M)↔G -stable subspaces

So, for instance, eqn. (*) shows that

(π(G))′′ = L(H) ⇔ M = C ⇔ π is irreducible

Under the correspondence, of sub-reps of π to P(M), (unitary) equivalence of
sub-repreps of π translates to Murray-von Neumann equivalence on P(M):

p ∼M q ⇔ ∃u ∈ M such that u∗u = p, uu∗ = q

More generally, define

p �M q ⇔ ∃p0 ∈ P(M) such that p ∼M p0 ≤ q
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Factors

Proposition:

The following conditions are equivalent:

1 Either p �M q or q �M p, ∀p, q ∈ P(M).

2 M has trivial center: Z(M) = M ∩M ′ = C

Such an M is called a factor. 2

If M = π(G)′, with G finite, then M is a factor iff π is isotypical.

In general, any von Neumann algebra is a direct integral of factors.
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Murray von-Neumann classification of factors

Call a projection p ∈ P(M) infinite rel M if ∃p0 6= p ∈ P(M) such that
p ∼M p0 ≤ p; otherwise, call p finite (rel M).

Say M is finite if 1 is finite.

A factor M is said to be of:

1 type I if there is a minimal non-zero projection in M.

2 type II if it contains non-zero finite projections, but no minimal non-zero
projection.

3 type III if it contains no non-zero finite projection.
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Abstract Hilbert-space-free definition of von Neumann algebra

Definition 3: M is a von Neumann algebra if

M is a C∗-algebra (i.e., a Banach *-algebra satisfying ‖x∗x‖ = ‖x‖2 ∀ x)

M is a dual Banach space: i.e., ∃ a Banach space M∗ such that M ∼= M∗∗
as a Banach space.

Example: M = L∞(Ω,B, µ). Can also view it as acting on L2(Ω,B, µ) as
multiplication operators. (In fact, every commutative von Neumann algebra is
isomorphic to an L∞(Ω,B, µ).)

Fact: The predual M∗ of M is unique up to isometric isomorphism. So, - by
Alaoglu - ∃ a canonical locally convex (weak-*) top. on M w.r.t. which the
unit ball of M is compact. This is called the σ-weak topology on M.
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Equivalence of all three definitions

A linear map between von Neumann algebras is called normal if it is
continuous w.r.t. the σ-weak topologies on domain and range.

The morphisms in the category of von Neumann algebras are unital normal
∗-homomorphisms.

The algebra L(H), for any Hilbert space H, is a von Neumann algebra - with
pre-dual being the space L∗(H) of trace-class operators.

Any σ-weakly closed ∗-subalgebra of a von Neumann algebra is a von Neumann
algebra, i.e., it is a von Neumann subalgebra.

Gelfand-Naimark theorem: Any von Neumann algebra is isomorphic to a
vN-subalgebra of some L(H). (So the abstract and concrete (= tied down to
Hilbert space) definitions are equivalent.)
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The standard form on a von Neumann algebra

We give a brief idea of the proof of the Gelfand Naimark theorem in the von
Neumann algebra context. We assume, for simplicity, that all our von
Neumann algebras have separable preduals. It is a fact that such an M admits
a faithful normal state φ on M.

For such a φ, we construct the standard form of M. As in the
finite-dimensional case, let us write M̂ = {x̂ : x ∈ M}. The hypothesis on φ
guaranteess that the equation 〈x̂ , ŷ〉 = φ(y∗x) defines a genuine inner product
on M̂. Let L2(M, φ) denote the Hilbert space completion of M̂. A little C∗

trickery shows that the mapping ŷ 7→cxy extends to a (necessarily) unique
bounded operator λM(x) on L2(M, φ). It is fairly routine to then verify that λM

is a normal isomorphism onto its image.

The same trickery shows why there is a difficulty in establishing a similar
assertion regarding ρM and why things go through smoothly when φ is a trace -
which situation is what we will be addressing the next two lectures. The full
story of how one makes do with non-tracial states involves the celebrated and
technically slightly complicted Tomita Takesaki theory, which we shall say
nothing more about.
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