Operator algebras - stage for non-commutativity
(Panorama Lectures Series)
III. von Neumann algebras

V.S. Sunder
Institute of Mathematical Sciences
Chennai, India
sunder@imsc.res.in

IISc, January 29, 2009
We shall initially discuss finite-dimensional C^*-algebras. Begin by recalling that:

A positive normalised linear functional is usually called a **state**.

1 A positive normalised linear functional is usually called a **state**.
We shall initially discuss finite-dimensional C^*-algebras. Begin by recalling that:

Definition: A linear functional \(\text{tr} \) on a C^*-algebra A is said to be

- a *trace* if \(\text{tr}(xy) = \text{tr}(yx) \) for all $x, y \in A$;
- *normalised*\(^1\) if A is unital and \(\text{tr}(1) = 1 \);
- *positive* if \(\text{tr}(x^*x) \geq 0 \) $\forall x \in A$;
- *faithful and positive* if A is a $*$-algebra and \(\text{tr}(x^*x) > 0 \) $\forall 0 \neq x \in A$.

\(^1\)A positive normalised linear functional is usually called a **state**.
Finite-dimensional C^*-algebras

We shall initially discuss finite-dimensional C^*-algebras. Begin by recalling that:

Definition: A linear functional ‘tr’ on a C^*-algebra A is said to be
- a *trace* if $\text{tr}(xy) = \text{tr}(yx)$ for all $x, y \in A$;
- *normalised*\(^1\) if A is unital and $\text{tr}(1) = 1$;
- *positive* if $\text{tr}(x^*x) \geq 0 \forall x \in A$;
- *faithful and positive* if A is a *-algebra and $\text{tr}(x^*x) > 0 \forall 0 \neq x \in A$.

For example, $M_n(\mathbb{C})$ admits a unique normalised trace ($\text{tr}(x) = \frac{1}{n} \sum_{i=1}^{n} x_{ii}$) which is also faithful and positive.

\(^1\) A positive normalised linear functional is usually called a **state**.
We shall initially discuss finite-dimensional C^*-algebras. Begin by recalling that:

Definition: A linear functional ‘tr’ on a C^*-algebra A is said to be
- a *trace* if $\text{tr}(xy) = \text{tr}(yx)$ for all $x, y \in A$;
- *normalised* if A is unital and $\text{tr}(1) = 1$;
- *positive* if $\text{tr}(x^* x) \geq 0 \forall x \in A$;
- *faithful and positive* if A is a *-algebra and $\text{tr}(x^* x) > 0 \forall 0 \neq x \in A$.

For example, $M_n(\mathbb{C})$ admits a unique normalised trace ($\text{tr}(x) = \frac{1}{n} \sum_{i=1}^{n} x_{ii}$) which is also faithful and positive.

**Proposition FDC*: The following conditions on a finite-dimensional unital *-algebra A are equivalent:

1. There exists a unital *-monomorphism $\pi : A \rightarrow M_n(\mathbb{C})$ for some n.
2. There exists a faithful positive normalised trace on A.

1 A positive normalised linear functional is usually called a **state**.
For a finite-dimensional \((C)^*\)-algebra \(M\) with faithful positive normalised\(^2\) trace \(\text{tr}\), let us write \(L^2(M, \text{tr}) = \{\hat{x}: x \in M\}\), with \(\langle \hat{x}, \hat{y} \rangle = \text{tr}(y^*x)\), as well as \(\lambda_M, \rho_M: M \rightarrow \mathcal{L}(L^2(M, \text{tr}))\) for the left and right regular representations, i.e., the maps (injective unital \(*\)-homomorphism and \(*\)-antihomomorphism, respectively) defined by

\[
\lambda_M(x)(\hat{y}) = \hat{xy} = \rho_M(y)(\hat{x}).
\]

\(^2\)It is a fact that every finite-dimensional \((C)^*\)-algebra is unital.
The standard form

For a finite-dimensional (C^*)-algebra M with faithful positive normalised\(^2\) trace \('tr'\), let us write $L^2(M, tr) = \{\hat{x} : x \in M\}$, with $\langle \hat{x}, \hat{y} \rangle = tr(y^*x)$, as well as $\lambda_M, \rho_M : M \to L(L^2(M, tr))$ for the left and right regular representations, i.e., the maps (injective unital *-homomorphism and *-antihomomorphism, respectively) defined by

$$\lambda_M(x)(\hat{y}) = \hat{x}\hat{y} = \rho_M(y)(\hat{x}) .$$

We shall usually identify $x \in M$ with the operator $\lambda_M(x)$ and thus think of M as (being in standard form and) a subset of $L(L^2(M, tr))$.

The reason for the ‘hats’ is that we wish to distinguish between the operator $x \in L(L^2(M, tr))$ and the vector $\hat{x} \in L^2(M, tr)$.

\(^2\)It is a fact that every finite-dimensional C^*-algebra is unital.
The standard form

For a finite-dimensional \((C)^*-\)algebra \(M\) with faithful positive normalised\(^2\) trace ‘tr’, let us write \(L^2(M, tr) = \{ \hat{x} : x \in M \} \), with \(\langle \hat{x}, \hat{y} \rangle = tr(y^*x)\), as well as \(\lambda_M, \rho_M : M \to L(L^2(M, tr))\) for the left and right regular representations, i.e., the maps (injective unital *-homomorphism and *-antihomomorphism, respectively) defined by

\[
\lambda_M(x)(\hat{y}) = \hat{xy} = \rho_M(y)(\hat{x}).
\]

We shall usually identify \(x \in M\) with the operator \(\lambda_M(x)\) and thus think of \(M\) as (being in standard form and) a subset of \(L(L^2(M, tr))\).

The reason for the ‘hats’ is that we wish to distinguish between the operator \(x \in L(L^2(M, tr))\) and the vector \(\hat{x} \in L^2(M, tr)\).

Fact: \(\lambda_M(M)' = \rho_M(M)\) and \(\rho_M(M)' = \lambda_M(M)\), where we define the commutant \(S'\) of any set \(S\) of operators on a Hilbert space \(H\) by

\[
S' = \{ x' \in L(H) : xx' = x'x \ \forall x \in S \}.
\]

\(^2\)It is a fact that every finite-dimensional \(C^*-\)algebra is unital.
Suppose $N \subset M$ is a unital inclusion of finite-dimensional C^*-algebras and tr is a faithful tracial state on M. Then $\hat{N} =: L^2(N, tr|_N)$ sits naturally as a subspace of $\hat{M} =: L^2(M, tr)$. Let us write e_N for the orthogonal projection of \hat{M} onto \hat{N}, and E_N for the so-called tr-preserving conditional expectation of M onto N defined by

$$E_N(m) = e_N(\hat{m})$$

\footnote{Actually E_N is even $N - N$-bilinear.}
Suppose $N \subset M$ is a unital inclusion of finite-dimensional C^*-algebras and tr is a faithful tracial state on M. Then $\hat{N} =: L^2(N, tr|_N)$ sits naturally as a subspace of $\hat{M} =: L^2(M, tr)$. Let us write e_N for the orthogonal projection of \hat{M} onto \hat{N}, and E_N for the so-called tr-preserving conditional expectation of M onto N defined by

$$\hat{E}_N(m) = e_N(\hat{m})$$

Proposition: (CE)

The map E_N satisfies and is characterised by the following properties:

- $tr|_N = tr \circ E$.
- $E_N(nm) = nE_N(m)$, i.e., E_N is N-linear.3

3 Actually E_N is even $N-N$-bilinear.
Write $\mathcal{P}_{\text{min}}(Z(M))$ for the set of minimal central projections of a finite-dimensional C^*-algebra. It is a fact that there is a well-defined function $m : \mathcal{P}_{\text{min}}(Z(M)) \to \mathbb{N}$, such that $Mq \cong M_{m(q)}(\mathbb{C}) \ \forall q \in \mathcal{P}_{\text{min}}(Z(M))$; thus the map $M \ni x \mapsto xq$ defines an irreducible representation of M; and in fact,

$\{\pi_q : q \in \mathcal{P}_{\text{min}}(Z(M))\}$ is a complete list, up to unitary equivalence, of pairwise inequivalent irreducible representations of M, and

$$M = \sum_{q \in \mathcal{P}_{\text{min}}(Z(M))} Mq \cong \bigoplus_{q \in \mathcal{P}_{\text{min}}(Z(M))} M_{m(q)}(\mathbb{C})$$
Write $\mathcal{P}_{\text{min}}(Z(M))$ for the set of minimal central projections of a finite-dimensional C^*-algebra. It is a fact that there is a well-defined function $m : \mathcal{P}_{\text{min}}(Z(M)) \to \mathbb{N}$, such that $Mq \cong M_{m(q)}(\mathbb{C}) \ \forall q \in \mathcal{P}_{\text{min}}(Z(M))$; thus the map $M \ni x \mapsto xq$ defines an irreducible representation of M; and in fact, \{\pi_q : q \in \mathcal{P}_{\text{min}}(Z(M))\}$ is a complete list, up to unitary equivalence, of pairwise inequivalent irreducible representations of M, and

$$M = \sum_{q \in \mathcal{P}_{\text{min}}(Z(M))} Mq \cong \bigoplus_{q \in \mathcal{P}_{\text{min}}(Z(M))} M_{m(q)}(\mathbb{C})$$

Every trace on the full matrix algebra $M_n(\mathbb{C})$ is a multiple of the usual trace. It follows that any trace ϕ on M is uniquely determined by the function $t_\phi : \mathcal{P}_{\text{min}}(Z(M)) \to \mathbb{C}$ defined by $t_\phi(q) = \phi(q_0)$ where q_0 is a minimal projection in Mq. It is clear that ϕ is positive (resp., faithful, resp., normalised) iff $t_\phi(q) \geq 0 \ \forall q$ (resp., $t_\phi(q) > 0 \ \forall q$, resp. $\sum_{q \in \mathcal{P}_{\text{min}}(Z(M))} m(q)t_\phi(q) = 1$).
If $N \subset M$ is a unital C^*-subalgebra of M, the associated *inclusion matrix* Λ is the matrix with rows and columns indexed by $\mathcal{P}_{\min}(Z(N))$ and $\mathcal{P}_{\min}(Z(M))$ respectively, defined by setting $\Lambda_{pq} = \sqrt{\frac{\dim qpMpq}{\dim qpNpq}}$. Alternatively, if we write ρ_p for the irreducible representation of N corresponding to p, then Λ_{pq} is nothing but the ‘multiplicity with which ρ_p occurs in the irreducible decomposition of $\pi_q|_N$’. This data is sometimes also recorded in a bipartite graph (usually called the *Bratteli diagram* of the inclusion) with even and odd vertices indexed by $\mathcal{P}_{\min}(Z(N))$ and $\mathcal{P}_{\min}(Z(M))$ respectively, with Λ_{pq} edges joining the vertices indexed by p and q.

\[\footnote{For a finite group G, clearly $C^*_{\text{red}}(G) = \mathbb{C}G.}\]

V.S. Sunder
IMSc, Chennai
If $N \subset M$ is a unital C^*-subalgebra of M, the associated *inclusion matrix* Λ is the matrix with rows and columns indexed by $\mathcal{P}_{\min}(Z(N))$ and $\mathcal{P}_{\min}(Z(M))$ respectively, defined by setting $\Lambda_{pq} = \sqrt{\frac{\dim qpM^{qp}}{\dim qpN^{qp}}}$. Alternatively, if we write ρ_p for the irreducible representation of N corresponding to p, then Λ_{pq} is nothing but the ‘multiplicity with which ρ_p occurs in the irreducible decomposition of $\pi_q|_N$’. This data is sometimes also recorded in a bipartite graph (usually called the *Bratteli diagram* of the inclusion) with even and odd vertices indexed by $\mathcal{P}_{\min}(Z(N))$ and $\mathcal{P}_{\min}(Z(M))$ respectively, with Λ_{pq} edges joining the vertices indexed by p and q.

For example, Bratteli diagram associated to $\mathbb{C}S_2 \subset \mathbb{C}S_3$ is seen to be given by:

For a finite group G, clearly $C^*_red(G) = \mathbb{C}G$.

\(^4\)For a finite group G, clearly $C^*_red(G) = \mathbb{C}G$.

\(\mathbb{C}S_2 \subset \mathbb{C}S_3\)
Proposition (bc): Suppose $N \subset M$ is a unital inclusion of finite dimensional C^*-algebras. Let tr be a faithful, unital, positive trace on M. Then,

1. The C^* algebra generated by M and e_N in $L(L^2(M, tr))$ is $\rho_M(N)'$.
2. The central support5 of e_N in $\rho_M(N)'$ is 1.
3. $e_Nxe_N = E(x)e_N$ for $x \in M$. (As usual, we identify m with $\lambda_M(m)$.)
4. $N = M \cap \{e_N\}'$.
5. If Λ is the inclusion matrix for $N \subset M$ then Λ^t is the inclusion matrix for $M \subset \rho_M(N)'$.

5The central support of a projection is the smallest central projection which dominates it.
The basic construction

Proposition (bc): Suppose $N \subset M$ is a unital inclusion of finite dimensional C^*-algebras. Let tr be a faithful, unital, positive trace on M. Then,

1. The C^* algebra generated by M and e_N in $\mathcal{L}(L^2(M, tr))$ is $\rho_M(N)'$.
2. The central support5 of e_N in $\rho_M(N)'$ is 1.
3. $e_Nxe_N = E(x)e_N$ for $x \in M$. (As usual, we identify m with $\lambda_M(m)$.)
4. $N = M \cap \{e_N\}'$.
5. If Λ is the inclusion matrix for $N \subset M$ then Λ^t is the inclusion matrix for $M \subset \rho_M(N)'$.

This *basic construction* - i.e., the passage from $N \subset M$ to $M \subset \rho_M(N)'$ - extends almost verbatim from inclusions of finite-dimensional C^*-algebras to one good infinite-dimensional case, that of the so-called *finite-depth subfactors* which we shall discuss in the next lecture!

5The central support of a projection is the smallest central projection which dominates it.
Propostion (bc): Suppose $N \subset M$ is a unital inclusion of finite dimensional C^*-algebras. Let tr be a faithful, unital, positive trace on M. Then,

1. The C^* algebra generated by M and e_N in $\mathcal{L}(L^2(M, tr))$ is $\rho_M(N)'$.
2. The central support\(^5\) of e_N in $\rho_M(N)'$ is 1.
3. $e_N x e_N = E(x)e_N$ for $x \in M$. (As usual, we identify m with $\lambda_M(m)$.)
4. $N = M \cap \{e_N\}'$.
5. If Λ is the inclusion matrix for $N \subset M$ then Λ^t is the inclusion matrix for $M \subset \rho_M(N)'$.

This basic construction - i.e., the passage from $N \subset M$ to $M \subset \rho_M(N)'$ - extends almost verbatim from inclusions of finite-dimensional C^*-algebras to one good infinite-dimensional case, that of the so-called finite-depth subfactors which we shall discuss in the next lecture!

We now proceed to infinite dimensions.

\(^5\)The central support of a projection is the smallest central projection which dominates it.
von Neumann algebras were introduced in - and referred to, by them, as - *Rings of Operators* in 1936 by F.J. Murray and von Neumann, because - in their own words:
von Neumann algebras were introduced in - and referred to, by them, as - *Rings of Operators* in 1936 by F.J. Murray and von Neumann, because - in their own words:

the elucidation of this subject is strongly suggested by

- **our attempts to generalise the theory of unitary group-representations, and**
- **various aspects of the quantum mechanical formalism**
von Neumann algebras were introduced in - and referred to, by them, as - *Rings of Operators* in 1936 by F.J. Murray and von Neumann, because - in their own words:

> the elucidation of this subject is strongly suggested by
> 1. our attempts to generalise the theory of unitary group-representations, and
> 2. various aspects of the quantum mechanical formalism

Definition 1: A von Neumann algebra is the commutant of a unitary group representation (say \(\pi \) of \(G \)): i.e.,

\[
M = \{ x \in \mathcal{L}(\mathcal{H}) : x\pi(g) = \pi(g)x \ \forall g \in G \}
\]

Note that \(\mathcal{L}(\mathcal{H}) \) is a \(C^* \)-algebra w.r.t. the ‘operator norm’

\[
\|x\| = \text{sup}\{\|x\xi\| : \xi \in \mathcal{H}, \|\xi\| = 1\}
\]

and ‘Hilbert space adjoint’.
Definitions: (a) $S' = \{ x' \in \mathcal{L} (\mathcal{H}) : xx' = x'x \ \forall x \in S \}$, for $S \subset \mathcal{L} (\mathcal{H})$

(b) SOT on $\mathcal{L} (\mathcal{H})$: $x_n \rightarrow x \iff \| x_n \xi - x \xi \| \rightarrow 0 \ \forall \xi$ (i.e., $x_n \xi \rightarrow x \xi$ strongly $\forall \xi$)

(c) WOT on $\mathcal{L} (\mathcal{H})$: $x_n \rightarrow x \iff \langle x_n \xi - x \xi, \eta \rangle \rightarrow 0 \ \forall \xi, \eta$ (i.e., $x_n \xi \rightarrow x \xi$ weakly $\forall \xi$)

(Our Hilbert spaces are always assumed to be separable.)
Definitions: (a) \(S' = \{ x' \in \mathcal{L}(\mathcal{H}) : xx' = x'x \ \forall x \in S \} \), for \(S \subset \mathcal{L}(\mathcal{H}) \)

(b) SOT on \(\mathcal{L}(\mathcal{H}) \): \(x_n \to x \iff \|x_n\xi - x\xi\| \to 0 \ \forall \xi \) (i.e., \(x_n\xi \to x\xi \) strongly \(\forall \xi \))

(c) WOT on \(\mathcal{L}(\mathcal{H}) \): \(x_n \to x \iff \langle x_n\xi - x\xi, \eta \rangle \to 0 \ \forall \xi, \eta \) (i.e., \(x_n\xi \to x\xi \) weakly \(\forall \xi \))

(Our Hilbert spaces are always assumed to be separable.)

von Neumann’s double commutant theorem (DCT):

Let \(M \) be a unital self-adjoint subalgebra of \(\mathcal{L}(\mathcal{H}) \). TFAE:

(i) \(M \) is SOT-closed

(ii) \(M \) is WOT-closed

(iii) \(M = M'' = (M')' \)
Definition 2: A von Neumann algebra is an M as in DCT above.
Definition 2: A von Neumann algebra is an M as in DCT above.

The equivalence of definitions 1 and 2 is a consequence of the spectral theorem and the fact that any norm-closed unital *-subalgebra A of $\mathcal{L}(\mathcal{H})$ is linearly spanned by the set $\mathcal{U}(A) = \{ u \in A : u^*u = uu^* = 1 \}$ of its unitary elements.
Definition 2: A von Neumann algebra is an M as in DCT above.

The equivalence of definitions 1 and 2 is a consequence of the spectral theorem and the fact that any norm-closed unital \ast-subalgebra A of $\mathcal{L}(\mathcal{H})$ is linearly spanned by the set $\mathcal{U}(A) = \{ u \in A : u^* u = uu^* = 1 \}$ of its \textbf{unitary} elements.

A von Neumann algebra is closed under all ‘canonical constructions’: for instance, if $x \to \{ 1_E(x) : E \in \mathcal{B}_C \}$ is the spectral measure associated with a normal operator x, then $x \in M \iff 1_E(x) \in M \ \forall \ E \in \mathcal{B}_C$.
Definition 2: A von Neumann algebra is an \(M \) as in DCT above.

The equivalence of definitions 1 and 2 is a consequence of the spectral theorem and the fact that any norm-closed unital \(*\)-subalgebra \(A \) of \(\mathcal{L}(\mathcal{H}) \) is linearly spanned by the set \(\mathcal{U}(A) = \{ u \in A : u^* u = uu^* = 1 \} \) of its unitary elements.

A von Neumann algebra is closed under all ‘canonical constructions’: for instance, if \(x \rightarrow \{ 1_E(x) : E \in \mathcal{B}_\mathbb{C} \} \) is the spectral measure associated with a normal operator \(x \), then \(x \in M \iff 1_E(x) \in M \forall E \in \mathcal{B}_\mathbb{C} \).

(*Reason: \(\Rightarrow \): Since \(1_E(uxu^*) = u1_E(x)u^* \) for all unitary \(u \) (the spectral measure is a canonical construction),

\[
x \in M, u' \in \mathcal{U}(M') \quad \Rightarrow \quad u'1_E(x)u'^* = 1_E(u'xu'^*) \\
\Rightarrow \quad 1_E(x) \in (\mathcal{U}(M'))' = M
\]
Definition 2: A von Neumann algebra is an M as in DCT above.

The equivalence of definitions 1 and 2 is a consequence of the spectral theorem and the fact that any norm-closed unital $*$-subalgebra A of $\mathcal{L}(\mathcal{H})$ is linearly spanned by the set $\mathcal{U}(A) = \{u \in A : u^*u = uu^* = 1\}$ of its unitary elements.

A von Neumann algebra is closed under all ‘canonical constructions’: for instance, if $x \rightarrow \{1_E(x) : E \in \mathcal{B}_C\}$ is the spectral measure associated with a normal operator x, then $x \in M \iff 1_E(x) \in M \forall E \in \mathcal{B}_C$.

(Reason: \Rightarrow: Since $1_E(uxu^*) = u1_E(x)u^*$ for all unitary u (the spectral measure is a canonical construction),

$$x \in M, u' \in \mathcal{U}(M') \Rightarrow u'1_E(x)u'^* = 1_E(u'xu'^*)$$

$$\Rightarrow 1_E(x) \in (\mathcal{U}(M'))' = M$$

\Leftarrow: Uniform approximability of bounded measurable functions implies (by the spectral theorem) that

$$M = [\mathcal{P}(M)] = (\text{span } \mathcal{P}(M))^\perp \quad (*)$$

where $\mathcal{P}(M) = \{p \in M : p = p^2 = p^*\}$ is the set of projections in M.

Suppose $M = \pi(G)'$ as before. Then

$$p \leftrightarrow \text{ran } p$$

establishes a bijection

$$\mathcal{P}(M) \leftrightarrow G\text{-stable subspaces}$$

So, for instance, eqn. (*) shows that

$$(\pi(G))'' = \mathcal{L}(\mathcal{H}) \iff M = \mathbb{C} \iff \pi \text{ is irreducible}$$
Murray-von Neumann equivalence

Suppose $M = \pi(G)'$ as before. Then

$$p \leftrightarrow \text{ran } p$$

establishes a bijection

$$\mathcal{P}(M) \leftrightarrow G\text{-stable subspaces}$$

So, for instance, eqn. (*) shows that

$$(\pi(G))'' = \mathcal{L}(\mathcal{H}) \leftrightarrow M = \mathbb{C} \leftrightarrow \pi \text{ is irreducible}$$

Under the correspondence, of sub-reps of π to $\mathcal{P}(M)$, (unitary) equivalence of sub-repreps of π translates to **Murray-von Neumann equivalence** on $\mathcal{P}(M)$:

$$p \sim_M q \iff \exists u \in M \text{ such that } u^*u = p, \quad uu^* = q$$
Suppose $M = \pi(G)'$ as before. Then

$$p \leftrightarrow \text{ran } p$$

establishes a bijection

$$\mathcal{P}(M) \leftrightarrow \text{G-stable subspaces}$$

So, for instance, eqn. (*) shows that

$$(\pi(G))'' = L(H) \leftrightarrow M = \mathbb{C} \leftrightarrow \pi \text{ is irreducible}$$

Under the correspondence, of sub-reps of π to $\mathcal{P}(M)$, (unitary) equivalence of sub-repreps of π translates to **Murray-von Neumann equivalence** on $\mathcal{P}(M)$:

$$p \sim_M q \iff \exists u \in M \text{ such that } u^*u = p, \; uu^* = q$$

More generally, define

$$p \preceq_M q \iff \exists p_0 \in \mathcal{P}(M) \text{ such that } p \sim_M p_0 \leq q$$
Proposition:

The following conditions are equivalent:

1. Either $p \preceq_M q$ or $q \preceq_M p$, $\forall p, q \in P(M)$.
2. M has trivial center: $Z(M) = M \cap M' = \mathbb{C}$

Such an M is called a factor.
Proposition:

The following conditions are equivalent:

1. Either \(p \preceq_M q \) or \(q \preceq_M p \), \(\forall p, q \in \mathcal{P}(M) \).
2. \(M \) has trivial center: \(Z(M) = M \cap M' = \mathbb{C} \)

Such an \(M \) is called a \textbf{factor}.

If \(M = \pi(G)' \), with \(G \) finite, then \(M \) is a factor iff \(\pi \) is isotypical.

In general, any von Neumann algebra is a \textbf{direct integral} of factors.
Call a projection $p \in \mathcal{P}(M)$ infinite rel M if $\exists p_0 \neq p \in \mathcal{P}(M)$ such that $p \sim_M p_0 \leq p$; otherwise, call p finite (rel M).
Call a projection $p \in \mathcal{P}(M)$ **infinite rel** M if $\exists p_0 \neq p \in \mathcal{P}(M)$ such that $p \sim_M p_0 \leq p$; otherwise, call p **finite** (rel M).

Say M is finite if 1 is finite.
Call a projection $p \in \mathcal{P}(M)$ **infinite rel** M if $\exists p_0 \neq p \in \mathcal{P}(M)$ such that $p \sim_M p_0 \leq p$; otherwise, call p **finite** (rel M).

Say M is **finite** if 1 is finite.

A factor M is said to be of:

1. **type I** if there is a minimal non-zero projection in M.

2. **type II** if it contains non-zero finite projections, but no minimal non-zero projection.

3. **type III** if it contains no non-zero finite projection.
Definition 3: M is a von Neumann algebra if

- M is a C^*-algebra (i.e., a Banach $*$-algebra satisfying $\| xx^* \| = \| x \|^2 \ \forall \ x$)

- M is a dual Banach space: i.e., \exists a Banach space M_* such that $M \cong M_*$ as a Banach space.
Definition 3: M is a von Neumann algebra if

- M is a C^*-algebra (i.e., a Banach $*$-algebra satisfying $\|x^* x\| = \|x\|^2 \ \forall \ x$)

- M is a dual Banach space: i.e., \exists a Banach space M_* such that $M \cong M_*$ as a Banach space.

Example: $M = L^\infty(\Omega, \mathcal{B}, \mu)$. Can also view it as acting on $L^2(\Omega, \mathcal{B}, \mu)$ as multiplication operators. (In fact, every commutative von Neumann algebra is isomorphic to an $L^\infty(\Omega, \mathcal{B}, \mu)$.)
Definition 3: M is a von Neumann algebra if

- M is a C^*-algebra (i.e., a Banach $*$-algebra satisfying $\|x^*x\| = \|x\|^2 \ \forall \ x$)

- M is a dual Banach space: i.e., \exists a Banach space M_* such that $M \cong M_*$ as a Banach space.

Example: $M = L^\infty(\Omega, \mathcal{B}, \mu)$. Can also view it as acting on $L^2(\Omega, \mathcal{B}, \mu)$ as multiplication operators. (In fact, every commutative von Neumann algebra is isomorphic to an $L^\infty(\Omega, \mathcal{B}, \mu)$.)

Fact: The predual M_* of M is unique up to isometric isomorphism. So, by Alaoglu - \exists a canonical locally convex (weak-*) top. on M w.r.t. which the unit ball of M is compact. This is called the σ-weak topology on M.
A linear map between von Neumann algebras is called **normal** if it is continuous w.r.t. the σ-weak topologies on domain and range.
A linear map between von Neumann algebras is called normal if it is continuous w.r.t. the σ-weak topologies on domain and range.

The morphisms in the category of von Neumann algebras are unital normal \ast-homomorphisms.
A linear map between von Neumann algebras is called **normal** if it is continuous w.r.t. the σ-weak topologies on domain and range.

The morphisms in the category of von Neumann algebras are unital normal \ast-homomorphisms.

The algebra $\mathcal{L}(\mathcal{H})$, for any Hilbert space \mathcal{H}, is a von Neumann algebra - with pre-dual being the space $\mathcal{L}_\ast(\mathcal{H})$ of trace-class operators.
A linear map between von Neumann algebras is called normal if it is continuous w.r.t. the σ-weak topologies on domain and range.

The morphisms in the category of von Neumann algebras are unital normal \ast-homomorphisms.

The algebra $\mathcal{L}(\mathcal{H})$, for any Hilbert space \mathcal{H}, is a von Neumann algebra - with pre-dual being the space $\mathcal{L}_\ast(\mathcal{H})$ of trace-class operators.

Any σ-weakly closed \ast-subalgebra of a von Neumann algebra is a von Neumann algebra, i.e., it is a von Neumann subalgebra.
A linear map between von Neumann algebras is called normal if it is continuous w.r.t. the σ-weak topologies on domain and range.

The morphisms in the category of von Neumann algebras are unital normal \ast-homomorphisms.

The algebra $L(H)$, for any Hilbert space H, is a von Neumann algebra - with pre-dual being the space $L_\ast(H)$ of trace-class operators.

Any σ-weakly closed \ast-subalgebra of a von Neumann algebra is a von Neumann algebra, i.e., it is a von Neumann subalgebra.

Gelfand-Naimark theorem: Any von Neumann algebra is isomorphic to a vN-subalgebra of some $L(H)$. (So the abstract and concrete (= tied down to Hilbert space) definitions are equivalent.)
We give a brief idea of the proof of the Gelfand Naimark theorem in the von Neumann algebra context. We assume, for simplicity, that all our von Neumann algebras have separable preduals. It is a fact that such an M admits a faithful normal state ϕ on M.

For such a ϕ, we construct the standard form of M. As in the finite-dimensional case, let us write $\hat{M} = \{\hat{x} : x \in M\}$. The hypothesis on ϕ guarantees that the equation $\langle \hat{x}, \hat{y} \rangle = \phi(y^* x)$ defines a genuine inner product on \hat{M}. Let $L^2(M, \phi)$ denote the Hilbert space completion of \hat{M}. A little C^*-trickery shows that the mapping $\hat{y} \mapsto c_y$ extends to a (necessarily) unique bounded operator $\lambda_M(x)$ on $L^2(M, \phi)$. It is fairly routine to then verify that λ_M is a normal isomorphism onto its image.

The same trickery shows why there is a difficulty in establishing a similar assertion regarding ρ_M and why things go through smoothly when ϕ is a trace—which situation is what we will be addressing the next two lectures. The full story of how one makes do with non-tracial states involves the celebrated and technically slightly complicated Tomita Takesaki theory, which we shall say nothing more about.
We give a brief idea of the proof of the Gelfand Naimark theorem in the von Neumann algebra context. We assume, for simplicity, that all our von Neumann algebras have separable preduals. It is a fact that such an M admits a faithful normal state ϕ on M.

For such a ϕ, we construct the standard form of M. As in the finite-dimensional case, let us write $\hat{M} = \{\hat{x} : x \in M\}$. The hypothesis on ϕ guarantees that the equation $\langle \hat{x}, \hat{y} \rangle = \phi(y^*x)$ defines a genuine inner product on \hat{M}. Let $L^2(M, \phi)$ denote the Hilbert space completion of \hat{M}. A little C^* trickery shows that the mapping $\hat{y} \mapsto \hat{x}\hat{y}$ extends to a (necessarily) unique bounded operator $\lambda_M(x)$ on $L^2(M, \phi)$. It is fairly routine to then verify that λ_M is a normal isomorphism onto its image.
We give a brief idea of the proof of the Gelfand Naimark theorem in the von Neumann algebra context. We assume, for simplicity, that all our von Neumann algebras have separable preduals. It is a fact that such an \(M \) admits a faithful normal state \(\phi \) on \(M \).

For such a \(\phi \), we construct the **standard form** of \(M \). As in the finite-dimensional case, let us write \(\hat{M} = \{ \hat{x} : x \in M \} \). The hypothesis on \(\phi \) guarantees that the equation \(\langle \hat{x}, \hat{y} \rangle = \phi(y^*x) \) defines a genuine inner product on \(\hat{M} \). Let \(L^2(M, \phi) \) denote the Hilbert space completion of \(\hat{M} \). A little \(C^* \) trickery shows that the mapping \(\hat{y} \mapsto \hat{xy} \) extends to a (necessarily) unique bounded operator \(\lambda_M(x) \) on \(L^2(M, \phi) \). It is fairly routine to then verify that \(\lambda_M \) is a normal isomorphism onto its image.

The same trickery shows why there is a difficulty in establishing a similar assertion regarding \(\rho_M \) and why things go through smoothly when \(\phi \) is a trace - which situation is what we will be addressing the next two lectures. The full story of how one makes do with non-tracial states involves the celebrated and technically slightly complicated **Tomita Takesaki theory**, which we shall say nothing more about.
References

