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Vector bundles

We begin with a brief re-cap of classical topological K-theory, which studies
the classification of vector bundles up to so-called stable equivalence.
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Vector bundles

We begin with a brief re-cap of classical topological K-theory, which studies
the classification of vector bundles up to so-called stable equivalence.

By a vector bundle of rank n on a compact Hausdorff space X is meant an
ordered pair (E, p) consisting of a topological space E and a continuous map
p: E — X, which satisfy some requirements which say loosely that:

e for each x € X, the fibre E, = 77(x) over x has the structure of a vector
space of dimension n

@ the fibres are all ‘tied together in a continuous manner’, the precise
formulation being referred to as local triviality.

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series



Vector bundles

We begin with a brief re-cap of classical topological K-theory, which studies
the classification of vector bundles up to so-called stable equivalence.

By a vector bundle of rank n on a compact Hausdorff space X is meant an
ordered pair (E, p) consisting of a topological space E and a continuous map
p: E — X, which satisfy some requirements which say loosely that:

e for each x € X, the fibre E, = 77(x) over x has the structure of a vector
space of dimension n

@ the fibres are all ‘tied together in a continuous manner’, the precise
formulation being referred to as local triviality.

The prime examples are the tangent bundle TM and the cotangent bundle
TM* over a compact manifold. For example,

TS" ' ={(x,v) € S" " xR": x-v =0}
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Vector bundles

We begin with a brief re-cap of classical topological K-theory, which studies
the classification of vector bundles up to so-called stable equivalence.

By a vector bundle of rank n on a compact Hausdorff space X is meant an
ordered pair (E, p) consisting of a topological space E and a continuous map
p: E — X, which satisfy some requirements which say loosely that:

e for each x € X, the fibre E, = 77(x) over x has the structure of a vector
space of dimension n

@ the fibres are all ‘tied together in a continuous manner’, the precise
formulation being referred to as local triviality.

The prime examples are the tangent bundle TM and the cotangent bundle
TM* over a compact manifold. For example,

TS" ' ={(x,v) € S" " xR": x-v =0}

We will, however, be concerned primarily with complex vector bundles here.
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Serre-Swan theorem

If (E, p) is a vector bundle on X, a section of E is a continuous function
s: X — E such that s(x) € Ex V x € X. The set I'(E) of sections of E is
naturally a vector space - with

(as + Bt)(x) = as(x) + Bt(x) ,

and with the linear combination on the right interpreted in the vector space E;.
In fact, [(E) is naturally a module over C(X) - with

(F-s)(x) =f(x)s(x) .
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Serre-Swan theorem

If (E, p) is a vector bundle on X, a section of E is a continuous function
s: X — E such that s(x) € Ex V x € X. The set I'(E) of sections of E is
naturally a vector space - with

(as + Bt)(x) = as(x) + Bt(x) ,

and with the linear combination on the right interpreted in the vector space E;.
In fact, [(E) is naturally a module over C(X) - with

(F-s)(x) =f(x)s(x) .

Theorem: (Serre-Swan theorem: )

If (E, p) is a vector bundle over a compact Hausdorff space X, then I'(X) is a
finitely generated projective module over C(X) (i.e., there exist finitely many
elements sy, --- ,s, € [(X) such that [(E) = >_7; C(X) - s7).
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Serre-Swan theorem

If (E, p) is a vector bundle on X, a section of E is a continuous function
s: X — E such that s(x) € Ex V x € X. The set ['(E) of sections of E is
naturally a vector space - with

(as + Bt)(x) = as(x) + Bt(x) ,

and with the linear combination on the right interpreted in the vector space E;.
In fact, [(E) is naturally a module over C(X) - with

(F-s)(x) =f(x)s(x) .

Theorem: (Serre-Swan theorem: )

If (E, p) is a vector bundle over a compact Hausdorff space X, then I'(X) is a
finitely generated projective module over C(X) (i.e., there exist finitely many
elements sy, --- ,s, € [(X) such that [(E) = >_7; C(X) - s7).

Further, every finitely generated projective module over C(X) is of this form.
O
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Projections and unitaries

Notice next that if A is any unital C*-algebra, so is M,(A) (in a natural way);
the algebraic operations are the natural ones, while the norm may be obtained

thus: if A< L(H), then Mn(A) = Mo(L(H)) = L(H & He """ H). We
shall identify M,(A) with the ‘northwest corner’ of M,;1(A) via x ~ { S 0 }
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Projections and unitaries

Notice next that if A is any unital C*-algebra, so is M,(A) (in a natural way);
the algebraic operations are the natural ones, while the norm may be obtained

thus: if A < £(H), then Ma(A) — Ma(L(H)) = L(H & H® "™ H). We
shall identify M,(A) with the ‘northwest corner’ of M,,1(A) via x ~ { S 0 }
Write Pn(A) = P(M,(A)), and U,(A) = U(M,(A)) where P(B)) (resp.,
U(B))) denotes the set {p € B : p = p*> = p*}, (resp.,

{u € B: u"u= uu™ =1}) of projections (resp., unitary elements) in any
C*-algebra B.
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Projections and unitaries

Notice next that if A is any unital C*-algebra, so is M,(A) (in a natural way);
the algebraic operations are the natural ones, while the norm may be obtained

thus: if A < £(H), then Ma(A) — Ma(L(H)) = L(H & H® "™ H). We
shall identify M,(A) with the ‘northwest corner’ of M,,1(A) via x ~ { S g }
Write Pn(A) = P(M,(A)), and U,(A) = U(M,(A)) where P(B)) (resp.,
U(B))) denotes the set {p € B : p = p*> = p*}, (resp.,

{u € B: u"u= uu™ =1}) of projections (resp., unitary elements) in any
C*-algebra B.

Regard P,(A) (resp., Un(A)) as being included in Ppi1(A) (resp., Unt1(A)) via
the identification

PiA 3o~ | b 0 | € Peala).

(resp. u~ [ g (1) ]) and write Poo(A), M (A) and Us(A) for the indicated

increasing union.
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Towards defining Ko(A)

A finitely generated projective module over A is of the form
Vo = {€ € Mixn(A) : £ = £p}

for some p € P,(A), and some positive integer n - where of course the A action
on V, is given by

(a-&)i=ati .

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series



Towards defining Ko(A)

A finitely generated projective module over A is of the form

Ve = {€ € Mixa(A) : £ = ¢p}
for some p € P,(A), and some positive integer n - where of course the A action
on V, is given by

(a-&)i=ati .

It is not hard to see that if p, g € Poo(A), then a linear map x: V, — V; is
A-linear if and only if there exists a matrix X = ((x;j)) € M (A) such that

x-v=v-X and X = pxq

where we think of elements of V, and V; as row vectors. (This assertion is an
instance of the thesis ‘what commutes with all left-multiplications must be a
right-multiplication’, many instances of which we will keep running into.) In
particular, modules V, and V; are isomorphic iff there exists a u € Moo (A)
such that v*u = p and uu™ = g; write p ~ g when this happens.
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Towards defining Ko(A)

A finitely generated projective module over A is of the form
Vo = {€ € Mixn(A) : £ = £p}

for some p € P,(A), and some positive integer n - where of course the A action
on V, is given by
(a-8)i=agi .
It is not hard to see that if p, g € Poo(A), then a linear map x: V, — V; is
A-linear if and only if there exists a matrix X = ((x;j)) € M (A) such that
x-v=v-X and X = pxq

where we think of elements of V, and V; as row vectors. (This assertion is an
instance of the thesis ‘what commutes with all left-multiplications must be a
right-multiplication’, many instances of which we will keep running into.) In
particular, modules V, and V; are isomorphic iff there exists a u € Moo (A)
such that v*u = p and uu™ = g; write p ~ g when this happens.

Proposition The set [Co(A) = Poc(A)/ ~ is an abelian monoid (=semigroup
with identity) with respect to addition defined by

[Pl +[a] =[p@ 4],
the identity element being [0].
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The K groups

If S is an abelian semigroup, the set {a — b: a, b € S} of formal differences in
S - with the convention that a— b=c—d iffa+d+f =c+ b+ f for some
f € S - turns out to be an abelian group, called the Grothendieck group of S.
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The K groups

If S is an abelian semigroup, the set {a — b: a, b € S} of formal differences in
S - with the convention that a— b=c—d iffa+d+f =c+ b+ f for some
f € S - turns out to be an abelian group, called the Grothendieck group of S.

Definition: If A is a unital C*-algebra, then
(i) Ko(A) is defined to be the Grothendieck group of Ko(A):

(ii) Ki(A) is defined to be the quotient of the group Us(A) by the normal
subgroup Uso(A)© (defined by the connected component of its identity

element).
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Some basic properties

It turns out that Ki(A) is also an abelian group, with the group law being given
in two equivalent ways, thus: if u € Un(A), v € Uk(A), then

wi=tatd =1 § 9, 1] ¢ § -weu

where we write 1, for the identity in M(A).
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Some basic properties

It turns out that Ki(A) is also an abelian group, with the group law being given
in two equivalent ways, thus: if u € Un(A), v € Uk(A), then

u 0 1, 0 |,
wi=tatd =1 § 9, 1] ¢ § -weu
where we write 1, for the identity in M(A).
Some fundamental properties of the K-groups, which we shall briefly discuss
below, are:
@ Functoriality
o Normalisation

o Stability

@ Homotopy invariance
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Some basic properties (contd.)

Functoriality: Ki,i = 0,1 define covariant functors from the category of
C*-algebras to abelian groups; i.e., if € Hom(A, B) is a morphism of
C*-algebras, there exist group homomorphisms Ki(¢) = ¢. : Ki(A) — Ki(B)
satisfying the usual functoriality requirements - of being well-behaved with
respect to compositions and identity morphisms: i.e.,

Ki(¢ o) = Ki(#) o Ki(v) , Ki(ida) = idi,(a) -
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Some basic properties (contd.)

Functoriality: Ki,i = 0,1 define covariant functors from the category of
C*-algebras to abelian groups; i.e., if € Hom(A, B) is a morphism of
C*-algebras, there exist group homomorphisms Ki(¢) = ¢. : Ki(A) — Ki(B)
satisfying the usual functoriality requirements - of being well-behaved with
respect to compositions and identity morphisms: i.e.,

Ki(¢ o) = Ki(#) o Ki(v) , Ki(ida) = idi,(a) -

Normalisation:
Ko(C) = Z , K¢(C) = {0} .
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Some basic properties (contd.)

Functoriality: Ki,i = 0,1 define covariant functors from the category of
C*-algebras to abelian groups; i.e., if € Hom(A, B) is a morphism of
C*-algebras, there exist group homomorphisms Ki(¢) = ¢. : Ki(A) — Ki(B)
satisfying the usual functoriality requirements - of being well-behaved with
respect to compositions and identity morphisms: i.e.,

Ki(¢ o) = Ki(#) o Ki(v) , Ki(ida) = idi,(a) -

Normalisation:

Ko(C) =Z , Ki(C) = {0} .

a 0

Stability: If ¢ : A — M,(A) is defined by ¢(a) = { 0 0

] then ¢, is an

isomorphism.
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Some basic properties (contd.)

Functoriality: Ki,i = 0,1 define covariant functors from the category of
C*-algebras to abelian groups; i.e., if € Hom(A, B) is a morphism of
C*-algebras, there exist group homomorphisms Ki(¢) = ¢. : Ki(A) — Ki(B)
satisfying the usual functoriality requirements - of being well-behaved with
respect to compositions and identity morphisms: i.e.,

Ki(¢ o) = Ki(#) o Ki(v) , Ki(ida) = idi,(a) -

Normalisation:

Ko(C) =Z , Ki(C) = {0} .

a 0

Stability: If ¢ : A — M,(A) is defined by ¢(a) = { 0 0

] then ¢, is an
isomorphism.
Homotopy invariance: If {¢; : t € [0,1]} is a continously varying family of

homomorphisms from A into B (or equivalently, if there exists a
homomorphism A3 a+— (t — ¢:(a)) € C([0,1], B)), then (¢0)« = (P1)+-
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Use of homotopy of invariance

Example: If X is a contractible space, then K;(C(X)) = Ki(C).
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Use of homotopy of invariance

Example: If X is a contractible space, then K;(C(X)) = Ki(C).

Proof: Let {h; : t € [0,1]} be a homotopy with h; = idx and
ho(x) = x0 € X ¥x € X. Consider ¢.(= hi =) : C(X) — C(X) defined by
¢¢(f) = f o hy. Then ¢1 = idc(x) while ¢o(f) is the constant function
identically equal to f(xo) So, if j denotes the inclusion map j : C — C(X), and
if we write f(xo) = evo(f), we have commutative diagrams of maps:

cx) & c(x)

J
ewl / lew
C id C

and

Since ¢g = ¢ = id”™, the second diagram shows that j* is an isomorphism with
inverse evg .
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Non-unital C*-algebras

Before proceeding further, we need to discuss non-unital C*-algebras. (This
corresponds to studying vector bundles over locally compact non-compact
spaces.) If Ais any C™-algebra - with or without identity - then A=AxC
becomes a unital C*-algebra thus:

(xA) - (v, 1)
[[EPVI|

(xy + Ay + px, Ap)
sup{||xa+ Aa|| : a € A, ||| = 1}

(Addition and involution are componentwise, and (0, 1) is the identity.) Further
€ : A — C defined by €(x,A) = A is a homomorphism of unital C*-algebras,
with ker(€) = A; thus A is an ideal of co-dimension 1 in A.
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Non-unital C*-algebras

Before proceeding further, we need to discuss non-unital C*-algebras. (This
corresponds to studying vector bundles over locally compact non-compact
spaces.) If Ais any C™-algebra - with or without identity - then A=AxC
becomes a unital C*-algebra thus:

(xA) - (v, 1)
[[EPVI|

(xy + Ay + px, Ap)
sup{||xa+ Aa|| : a € A, ||| = 1}

(Addition and involution are componentwise, and (0, 1) is the identity.) Further
€ : A — C defined by €(x,A) = A is a homomorphism of unital C*-algebras,
with ker(€) = A; thus A is an ideal of co-dimension 1 in A.

Example: In case A = Co(X) is the algebra of continuous functions on a locally
compact space X vahich ‘vanish at infinity’, the ‘unitisation’ A can be identified
with C(X), where X = (X U {co}) is the one-point compactification of X, and

e(f) = f(=0).)
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Non-unital C*-algebras

Before proceeding further, we need to discuss non-unital C*-algebras. (This
corresponds to studying vector bundles over locally compact non-compact
spaces.) If Ais any C™-algebra - with or without identity - then A=AxC
becomes a unital C*-algebra thus:

(xA) - (v, 1)
[[EPVI|

(xy + Ay + px, Ap)
sup{||xa+ Aa|| : a € A, ||| = 1}

(Addition and involution are componentwise, and (0, 1) is the identity.) Further
€ : A — C defined by €(x,A) = A is a homomorphism of unital C*-algebras,
with ker(€) = A; thus A is an ideal of co-dimension 1 in A.

Example: In case A = Co(X) is the algebra of continuous functions on a locally
compact space X vahich ‘vanish at infinity’, the ‘unitisation’ A can be identified
with C(X), where X = (X U {co}) is the one-point compactification of X, and

€(f) = f(o0).)
For a possibly non-unital A, define

K,(A) = ker K,‘(E).
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Six term exact sequence

Six term exact sequence: If

0-JLASB -0

is a short exact sequence of C*-algebras, then there exists an associated six
term exact sequence of K-groups

Ko(J) & Ko(A) =5 Ko(B)
ol ' 1 o
Ki(B) & Ki(A) & Ki(J)

where the two connecting homomorphisms O; are ‘natrural’.
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Six term exact sequence

Six term exact sequence: If

0-JLASB -0

is a short exact sequence of C*-algebras, then there exists an associated six
term exact sequence of K-groups

Ko(J) & Ko(A) =5 Ko(B)
ol ' 1 o
Ki(B) & Ki(A) & Ki(J)

where the two connecting homomorphisms O; are ‘natrural’.

It is worth noting the special case when the short exact sequence splits - i.e.,
when there exists a *-homomorphism s : B — A such that 7w o s = idg; in this
case, also 7 is surjective, whence both connecting maps must be the zero
maps, so the six-term sequence above splits into two short exact sequences
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Bott periodicity

Example: Consider the short exact sequence

evp

0— Go((0,1]) & C([0,1]) 2 C — 0

Since Ki(ew) : Ki(C([0,1]) = Ki(C) it follows from the six term exact
sequence that
Ki(Go((0,1])) = 0.
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Bott periodicity

Example: Consider the short exact sequence

0— Go((0,1]) & C([0,1]) 2 C — 0

Since Ki(ew) : Ki(C([0,1]) = Ki(C) it follows from the six term exact
sequence that
Ki(Go((0,1])) = 0.

Next, the six term exact sequence for the short exact sequence

0— Go((0,1)) L C((0,1) 4 C —0

is seen to be

Ko(Go((0,1))) %= o Ko(C)
o7 _ 1 0o ;
Ky (C) € 0 & K (G((0,1)))

so Ki(G(R)) = Ki(Co((0,1))) = Ki+1(C) (mod 2).
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Bott periodicity

Example: Consider the short exact sequence
0— Go((0,1]) & C([0,1]) 2 C — 0
Since Ki(ew) : Ki(C([0,1]) = Ki(C) it follows from the six term exact
sequence that
Ki(Go((0,1])) = 0.
Next, the six term exact sequence for the short exact sequence
0— Go((0,1)) L C((0,1]) 4 C -0

is seen to be

Ko(Go((0,1))) %= o Ko(C)
o7 _ 1 0o ;
Ky (C) € 0 & K (G((0,1)))

SO K,'(Co(R)) = K,‘(Co((o7 1))) = K,'+1((C) (mod 2).
Similar reasoning, applied to Go(R; A), essentially yields the Bott periodicity

theorem:
Ki(G(R; A)) = Kiy1(A) mod 2.
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The K groups for spheres

Applied inductively to A = Co(R"), we conclude that

Z if (n—i)iseven
0 otherwise

Ki(Go(R™)) = {
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The K groups for spheres

Applied inductively to A = Co(R"), we conclude that
: my ~ J Z if (n—1i)is even
Ki(Go(RT)) = { 0 otherwise

The short exact sequence
0GR L C(S) ™ C—0

is split by the inclusion morphism 7 : C — C(S"), so that we have a short
exact sequence

0 — Ki(G(R")) & K(C(S") ™ Ki(C) — 0
which also splits and we may deduce that

Ki(C(5") = Ki(G(R™)) @ Ki(C) -
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The virtue of traces

The simplest non-abelian C*-algebras are the M,(C)’s, and we may conclude
from the ‘stability’ of K-groups that

Z if n=0

Ki(Ma(C)) = Ki(C) = { 0 if n=1
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The virtue of traces

The simplest non-abelian C*-algebras are the M,(C)’s, and we may conclude
from the ‘stability’ of K-groups that

Z if n=0

Ki(Ma(C)) = Ki(C) = { 0 if n=1

We shall give another proof that Ko(M,(C)) = Z. Consider the map
T Mo (Ma(C)) — C by

T((xi7)) = Z Tr(xi) ,

where Tr denotes the usual trace (= sum of diagonal entries) on the matrix
algebra.
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The virtue of traces

The simplest non-abelian C*-algebras are the M,(C)’s, and we may conclude
from the ‘stability’ of K-groups that

Z if n=0

Ki(Ma(C)) = Ki(C) = { 0 if n=1

We shall give another proof that Ko(M,(C)) = Z. Consider the map
T Mo (Ma(C)) — C by

T((xi7)) = Z Tr(xi) ,

where Tr denotes the usual trace (= sum of diagonal entries) on the matrix
algebra.

Then 7 is seen to be a positive (7(X*X) > 0 VX) faithful (i.e.,
X # 0= 7(X*X) > 0) and tracial (7(XY) = 7(YX)) linear functional.
Further T ‘respects the inclusion of Myx(M,(C)) into Mi+1(M,(C)) in the sense
that
X 0
= o g

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series



The virtue of traces (contd.)
The fact that 7 is a trace implies that the equation

#([p]) = 7(p)
gives a well defined map 7 : Ko(M,(C)) — Z4 = {0,1,2,...}.
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The virtue of traces (contd.)

The fact that 7 is a trace implies that the equation
#([p]) = (p)
gives a well defined map 7 : Ko(M,(C)) — Z4 = {0,1,2,...}.

The fact that 7 is faithful implies that 7 is an isomorphism of monoids; and
since the Grothendieck group of Z is just Z, it follows that 7 gives rise to a
unique isomorphism 74 : Ko(Mn(C)) — Z such that 74([p1]) = 1, where

p1 € P1(M,(C)) is a rank one projection.
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The virtue of traces (contd.)

The fact that 7 is a trace implies that the equation

#([p]) = 7(p)
gives a well defined map 7 : Ko(M,(C)) — Z4 = {0,1,2,...}.

The fact that 7 is faithful implies that 7 is an isomorphism of monoids; and
since the Grothendieck group of Z is just Z, it follows that 7 gives rise to a
unique isomorphism 74 : Ko(Mn(C)) — Z such that 74([p1]) = 1, where

p1 € P1(M,(C)) is a rank one projection.

The above argument can be made to work in much greater generality, thus:

Suppose 71 is a positive, faithful, tracial linear functional on a general
C*-algebra. Then, the map defineby 7,((x;j)) = >_7_; T1(xii) is seen to yield a
faithful positive tracial functional 7, on the C*-algebra M,(A); and the 7,'s
‘patch up’ to yield a positive faithful tracial functional on M. (A) which
‘respects the inclusion of M,(A) into M,11(A)" and to consequently define an
isomorphism 74 of Ko(A) onto its image in R.
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Reduced C*-algebra of a discrete group

We wish to discuss one non-trivial example where some of these considerations
help. Given a countable group T, let ZZ(F) denote a Hilbert space with a
distinguished o.n. basis {&; : t € I'} indexed by I, and let A denote the
so-called left-regular unitary representation of I on £2(I") defined by

)\s(gt) = ggt A4 S, t e I
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Reduced C*-algebra of a discrete group

We wish to discuss one non-trivial example where some of these considerations
help. Given a countable group T, let ZZ(F) denote a Hilbert space with a
distinguished o.n. basis {&; : t € I'} indexed by I, and let A denote the
so-called left-regular unitary representation of I on £2(I") defined by

)\s(gt) = ggt A4 S, t e I

Define Cjy(I), the reduced C*-algebra of I to be the C*-subalgebra of
L(£3(T)) generated by A(T).
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Reduced C*-algebra of a discrete group

We wish to discuss one non-trivial example where some of these considerations
help. Given a countable group T, let ZZ(F) denote a Hilbert space with a
distinguished o.n. basis {&; : t € I'} indexed by I, and let A denote the
so-called left-regular unitary representation of I on £2(I") defined by

)\s(gt) = ggt A4 S, t e I
Define Cjy(I), the reduced C*-algebra of I to be the C*-subalgebra of
L(£3(T)) generated by A(T).
It is a fact that the equation
T1(x) = (x&1,61)

- where &; denotes the basis vector indexed by the identity element 1 in I -
defines a faithful positive tracial state on Ceq(I).
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K theory distinguishes the C (F,)s

We have the following beautiful result on the K-theory of some of these
algebras.
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K theory distinguishes the C (F,)s

We have the following beautiful result on the K-theory of some of these
algebras.

Theorem:(Pimsner-Voiculescu)
Let F, be the free group on n generators {u1, -+, u,}, and
An = Ciy(Fn),n > 2. Then,

(a) Ko(An) 2 Z is generated by [14,] where 14, € P1(An) C P (An); and

(b) Ki(An) =2 Z" is generated by {[u1],- -, [un]} where
uj C UL(An) C Uso(An). O
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K theory distinguishes the C (F,)s

We have the following beautiful result on the K-theory of some of these
algebras.

Theorem:(Pimsner-Voiculescu)
Let F, be the free group on n generators {u1, -+, u,}, and
An = Ciy(Fn),n > 2. Then,

(a) Ko(An) 2 Z is generated by [14,] where 14, € P1(An) C P (An); and

(b) Ki(An) =2 Z" is generated by {[u1],- -, [un]} where
uj C UL(An) C Uso(An). O

Corollary: (i) A, has no non-trivial idempotents; and
(i) Ap2 An = m=n.

Proof: (i) Assertion (a) of the theorem implies that every p € P (A) is
equivalent to the identity of some Mi(A,). If T be the faithful trace on A,
defined earlier, note that 7(1) = 1 (since & is a unit vector), so

pePi(A),p,l—p#0=0<7(p)<1;

this completes the proof.

(ii) follows immediately from (b) of the theorem. 0
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K theory recognises genus

Another very pretty result along these lines is:
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K theory recognises genus

Another very pretty result along these lines is:

Theorem:(Kasparov)

Let X, denote a compact surface of genus g, and B = Cy(m1(Xg)). Then
(i) Bg has no non-trivial idempotents; and

(i) By = B = g = k. O
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K theory recognises genus

Another very pretty result along these lines is:

Theorem:(Kasparov)

Let X, denote a compact surface of genus g, and B = Cy(m1(Xg)). Then

(i) Bg has no non-trivial idempotents; and

(i) Bs 2 Bk = g = k. O

We conclude with a brief mention of Kasparov's homotopy invariant bifunctor
KK(-,-) which:
© assigns abelian groups to a pair of C*-algebras
@ is covariant in the second variable and contravariant in the first variable.
@ Ko(B) = KK(C,B) VB
Q@ Ki(B) = KK(C, G(R, B)) VB

This KK-theory has led to a much better understanding of K theory and led to
the computation of the K-groups of many algebras.
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