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I. Operator-valued semicircular elements and
block random matrices

2



Consider Gaussian N × N-random matrices

AN =
(

aij

)N

i,j=1

i.e., AN is N × N-matrix, where aij are random variables whose

distribution is determined as follows:
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Consider Gaussian N × N-random matrices

AN =
(

aij

)N

i,j=1

i.e., AN is N × N-matrix, where aij are random variables whose

distribution is determined as follows:

• AN is selfadjoint, i.e., aji = āij
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Consider Gaussian N × N-random matrices

AN =
(

aij

)N

i,j=1

i.e., AN is N × N-matrix, where aij are random variables whose

distribution is determined as follows:

• AN is selfadjoint, i.e., aji = āij

• otherwise, all entries are independent and identically dis-

tributed with centered normal distribution of variance 1/N
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Convergence of typical eigenvalue distribution of Gaussian

N × N random matrices to Wigner’s semicircle

N = 4000
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Consider the empirical eigenvalue distribution of AN

µAN
(ω) =

1

N

N∑

i=1

δλi(ω)

λi(ω) are the N eigenvalues (counted with multiplicity) of AN(ω)
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Consider the empirical eigenvalue distribution of AN

µAN
(ω) =

1

N

N∑

i=1

δλi(ω)

λi(ω) are the N eigenvalues (counted with multiplicity) of AN(ω)

Then Wigner’s semicircle law says that

µAN
=⇒ µW almost surely,

i.e., for all continuous and bounded f

lim
N→∞

∫

R
f(t)dµAN

(t) =

∫

R
f(t)dµW (t) =

1

2π

∫ 2

−2
f(t)

√

4 − t2dt
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Show

lim
N→∞

µAN
(f) = µW(f) almost surely

in two steps:

• limN→∞ E[µAN
(f)] = µW(f)

•
∑

N Var[µAN
(f)] < ∞
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Convergence of averaged eigenvalue distribution of Gaussian

N × N random matrices to Wigner’s semicircle
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For

lim
N→∞

E[µAN
(f)] = µW(f)

it suffices to treat convergence of all averaged moments, i.e.,

lim
N→∞

E[

∫

tndµAN
(t)] =

∫

tndµW(t) ∀n ∈ N
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Note:

E[

∫

tndµAN
(t)] = E[

1

N

N∑

i=1

λn
i ] = E[tr(An

N)]
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Note:

E[

∫

tndµAN
(t)] = E[

1

N

N∑

i=1

λn
i ] = E[tr(An

N)]

but

E[tr(An
N)] =

1

N

N∑

i1,...,in=1

E[ai1i2ai2i3 · · · aini1]
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Note:

E[
∫

tndµAN
(t)] = E[

1

N

N∑

i=1

λn
i ] = E[tr(An

N)]

but

E[tr(An
N)] =

1

N

N∑

i1,...,in=1

E[ai1i2ai2i3 · · · aini1]︸ ︷︷ ︸

expressed in
terms of pairings
“Wick formula”
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Asymptotically, for N → ∞, only non-crossing pairings survive:

lim
N→∞

E[tr(An
N)] = #NC2(n)
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Asymptotically, for N → ∞, only non-crossing pairings survive:

lim
N→∞

E[tr(An
N)] = #NC2(n)

Define limiting semicircle element s by

ϕ(sn) := #NC2(n).

(s ∈ A, where A is some unital algebra, ϕ : A → C)
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Asymptotically, for N → ∞, only non-crossing pairings survive:

lim
N→∞

E[tr(An
N)] = #NC2(n)

Define limiting semicircle element s by

ϕ(sn) := #NC2(n).

(s ∈ A, where A is some unital algebra, ϕ : A → C)

Then we say that our Gaussian random matrices AN converge

in distribution to the semicircle element s,

AN
distr
−→ s
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What is distribution of s?

Claim:

ϕ(sn) =

∫

tndµW (t)
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What is distribution of s?

Claim:

ϕ(sn) =

∫

tndµW (t)

more concretely:

#NC2(n) =
1

2π

∫ +2

−2
tn

√

4 − t2dt
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What is distribution of s?

n = 2: ϕ(s2) =

n = 4: ϕ(s4) =

n = 6: ϕ(s6) =
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What is distribution of s?

n = 2: ϕ(s2) = 1

n = 4: ϕ(s4) =

n = 6: ϕ(s6) =
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What is distribution of s?

n = 2: ϕ(s2) = 1

n = 4: ϕ(s4) = 2

n = 6: ϕ(s6) =
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What is distribution of s?

n = 2: ϕ(s2) = 1

n = 4: ϕ(s4) = 2

n = 6: ϕ(s6) = 5
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What is distribution of s?

Claim:

ϕ(s2k) = Ck k-th Catalan number
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What is distribution of s?

Claim:

ϕ(s2k) = Ck k-th Catalan number

• Ck = 1
k+1

(
2k
k

)
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What is distribution of s?

Claim:

ϕ(s2k) = Ck k-th Catalan number

• Ck = 1
k+1

(
2k
k

)

• Ck is determined by C0 = C1 = 1 and the recurrence relation

Ck =
k∑

l=1

Cl−1Ck−l.

26



ϕ(s2k) =
k∑

l=1

ϕ(s2l−2)ϕ(s2k−2l)
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ϕ(s2k) =
k∑

l=1

ϕ(s2l−2)ϕ(s2k−2l).

Put

M(z) :=
∞∑

n=0

ϕ(sn)zn = 1 +
∞∑

k=1

ϕ(s2k)z2k
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ϕ(s2k) =
k∑

l=1

ϕ(s2l−2)ϕ(s2k−2l).

Put

M(z) :=
∞∑

n=0

ϕ(sn)zn = 1 +
∞∑

k=1

ϕ(s2k)z2k

Then

M(z) = 1 + z2
∞∑

k=1

k∑

l=1

ϕ(s2l−2)z2l−2ϕ(s2k−2l)z2k−2l
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ϕ(s2k) =
k∑

l=1

ϕ(s2l−2)ϕ(s2k−2l).

Put

M(z) :=
∞∑

n=0

ϕ(sn)zn = 1 +
∞∑

k=1

ϕ(s2k)z2k

Then

M(z) = 1 + z2
∞∑

k=1

k∑

l=1

ϕ(s2l−2)z2l−2ϕ(s2k−2l)z2k−2l

= 1 + z2M(z) · M(z)
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M(z) = 1 + z2M(z) · M(z)

Instead of moment generating series M(z) consider Cauchy

transform

G(z) := ϕ(
1

z − s
)

Note

G(z) =
∞∑

n=0

ϕ(sn)

zn+1
=

1

z

∞∑

n=0

ϕ(sn)
(1

z

)n
=

1

z
M(1/z),
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M(z) = 1 + z2M(z) · M(z)

Instead of moment generating series M(z) consider Cauchy

transform

G(z) := ϕ(
1

z − s
)

Note

G(z) =
∞∑

n=0

ϕ(sn)

zn+1
=

1

z

∞∑

n=0

ϕ(sn)
(1

z

)n
=

1

z
M(1/z),

thus

zG(z) = 1 + G(z)2
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For any probability measure µ on R corresponding Cauchy trans-

form

G(z) :=
∫

R

1

z − t
dµ(t)

is analytic function on complex upper half plane C+ and allows

to recover µ via Stieltjes inversion formula

dµ(t) = −
1

π
lim
ε→0

Im G(t + iε)
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For semicircle s:

zG(z) = 1 + G(z)2

implies

G(z) =
z −

√

z2 − 4

2
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For semicircle s:

zG(z) = 1 + G(z)2

implies

G(z) =
z −

√

z2 − 4

2

and thus

dµ(t) =
1

2π

√
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Consider now more general random matrices

• Keep the entries independent, but change distribution of en-

tries, globally or depending on position of entry

Arnold

Bai und Silverstein

Molchanov, Pastur, Khorunzhii (1996)

Khorunzhy, Khoruzhenko, Pastur (1996)

Shlyakhtenko (1996)

Guionnet (2002)

Anderson, Zeitouni (2006)
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• Keep the distributions normal, but allow correlations between

entries

– for weak correlations one still gets semicircle

Chatterjee (2006)

Götze + Tikhomirov (2005)

Schenker und Schulz-Baldes (2006)

– for stronger correlations other distributions occur

Boutet de Monvel, Khorunzhy, Vasilchuck (1996)

Girko (2001)

Hachem, Loubaton, Najim (2005)

Anderson, Zeitouni (2008)

Rashidi Far, Oraby, Bryc, Speicher (2008)



Consider block matrix

XN =






AN BN CN
BN AN BN
CN BN AN




 ,

where AN , BN , CN are independent Gaussian N ×N-random ma-

trices.
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Consider block matrix

XN =






AN BN CN
BN AN BN
CN BN AN




 ,

where AN , BN , CN are independent Gaussian N ×N-random ma-

trices.

What is eigenvalue distribution of XN for N → ∞?
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typical eigenvalue distribution for N = 1000
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averaged eigenvalue distributions
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This limiting distribution is not a semicircle, and it cannot be

described nicely within usual free probability theory.
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This limiting distribution is not a semicircle, and it cannot be

described nicely within usual free probability theory.

However, it fits well into the frame of

operator-valued free probability theory!
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What is an operator-valued probability space?

scalars −→ operator-valued scalars

C B
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What is an operator-valued probability space?

scalars −→ operator-valued scalars

C B

state −→ conditional expectation

ϕ : A → C E : A → B

E[b1ab2] = b1E[a]b2
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What is an operator-valued probability space?

scalars −→ operator-valued scalars

C B

state −→ conditional expectation

ϕ : A → C E : A → B

E[b1ab2] = b1E[a]b2

moments −→ operator-valued moments

ϕ(an) E[ab1ab2a · · · abn−1a]
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What is an operator-valued semicircular element?

Consider an operator-valued probability space

E : A → B

s ∈ A is semicircular if
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What is an operator-valued semicircular element?

Consider an operator-valued probability space

E : A → B

s ∈ A is semicircular if

• second moment is given by

E[sbs] = η(b)

for a completely positive map η : B → B
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What is an operator-valued semicircular element?

Consider an operator-valued probability space

E : A → B

s ∈ A is semicircular if

• second moment is given by

E[sbs] = η(b)

for a completely positive map η : B → B

• higher moments of s are given in terms of second moments

by summing over non-crossing pairings

49



E[sbs] = η(b)

s sb
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E[sbs] = η(b)

s sb

E[sb1sb2s · · · sbn−1s] =
∑

π∈NC2(n)

(

iterated application of η according to π

)
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sb1sb2sb3sb4sb5s
sb1sb2sb3sb4sb5s

sb1sb2sb3sb4sb5s

η(b1)·b2·η(b3)·b4·η(b5) η(b1)·b2·η
(

b3·η(b4)·b5
)

η

(

b1·η
(

b2·η(b3)·b4
)

·b5

)

sb1sb2sb3sb4sb5s sb1sb2sb3sb4sb5s

η
(

b1 · η(b2) · b3
)

· b4 · η(b5) η
(

b1 · η(b2) · b3 · η(b4) · b5
)
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E[sb1sb2sb3sb4sb5s] =η(b1) · b2 · η(b3) · b4 · η(b5)

+ η(b1) · b2 · η
(

b3 · η(b4) · b5
)

+ η

(

b1 · η
(

b2 · η(b3) · b4
)

· b5

)

+ η
(

b1 · η(b2) · b3
)

· b4 · η(b5)

+ η
(

b1 · η(b2) · b3 · η(b4) · b5
)
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E[ssssss] =η(1) · η(1) · η(1)

+ η(1) · η
(

η(1)
)

+ η

(

η
(

η(1)
))

+ η
(

η(1)
)

· η(1)

+ η
(

η(1) · η(1)
)
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We have the recurrence relation

E[s2k] =
k∑

l=1

η
(

E[s2l−2]
)

· E[s2k−2l].
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We have the recurrence relation

E[s2k] =
k∑

l=1

η
(

E[s2l−2]
)

· E[s2k−2l].

Put

M(z) :=
∞∑

n=0

E[sn]zn = 1 +
∞∑

k=1

E[s2k]z2k,

thus

M(z) = 1 + zη
(

M(z)
)

· M(z)
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Consider the operator-valued Cauchy transform

G(z) := E[
1

z − s
]

for z ∈ C+.

Note

G(z) = E[
1

z
·

1

1 − sz−1
] =

1

z
M(sz−1),

thus

zG(z) = 1 + η
(

G(z)
)

· G(z)
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Thus: operator-valued Cauchy-transform of s

G : C
+ → B

satisfies

• G analytic

• G solution of

zG(z) = 1 + η
(

G(z)
)

· G(z)

• G(z) ∼ 1
z1 for z → ∞
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back to random matrices

special classes of random matrices are asymptotically described

by operator-valued semicircular elements, e.g.

• band matrices (Shlyakhtenko 1996)

• block matrices (Rashidi Far, Oraby, Bryc, Speicher 2006)
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Example:

XN =






AN BN CN
BN AN BN
CN BN AN




 ,

where AN , BN , CN are independent Gaussian N ×N random ma-

trices

For N → ∞, XN converges to

s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 ,

where s1, s2, s3 is free semicircular family.
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s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 , s1, s2, s3 ∈ (Ã, ϕ)

s is an operator-valued semicircular element over M3(C) with

respect to
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s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 , s1, s2, s3 ∈ (Ã, ϕ)

s is an operator-valued semicircular element over M3(C) with

respect to

• A = M3(Ã), B = M3(C)
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s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 , s1, s2, s3 ∈ (Ã, ϕ)

s is an operator-valued semicircular element over M3(C) with

respect to

• A = M3(Ã), B = M3(C)

• E = id ⊗ ϕ : M3(Ã) → M3(C),
(

aij

)3

i,j=1
7→

(

ϕ(aij)
)3

i,j=1
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s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 , s1, s2, s3 ∈ (Ã, ϕ)

s is an operator-valued semicircular element over M3(C) with

respect to

• A = M3(Ã), B = M3(C)

• E = id ⊗ ϕ : M3(Ã) → M3(C),
(

aij

)3

i,j=1
7→

(

ϕ(aij)
)3

i,j=1

• η : M3(C) → M3(C) given by η(D) = E[sDs]
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s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 , s1, s2, s3 ∈ (Ã, ϕ)

Asymptotic eigenvalue distribution µ of XN is given by distribu-

tion of s with respect to tr3 ⊗ ϕ:

H(z) =
∫

1

z − t
dµ(t) = tr3 ⊗ ϕ

( 1

z − s
)
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s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 , s1, s2, s3 ∈ (Ã, ϕ)

Asymptotic eigenvalue distribution µ of XN is given by distribu-

tion of s with respect to tr3 ⊗ ϕ:

H(z) =
∫

1

z − t
dµ(t) = tr3 ⊗ ϕ

( 1

z − s
) = tr3

{

E[
1

z − s
]
}

,
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s =






s1 s2 s3
s2 s1 s2
s3 s2 s1




 , s1, s2, s3 ∈ (Ã, ϕ)

Asymptotic eigenvalue distribution µ of XN is given by distribu-

tion of s with respect to tr3 ⊗ ϕ:

H(z) =

∫
1

z − t
dµ(t) = tr3 ⊗ ϕ

( 1

z − s
) = tr3

{

E[
1

z − s
]
}

,

and G(z) = E[ 1
z−s] is solution of

zG(z) = 1 + η
(

G(z)
)

· G(z)

67



X =






A B C
B A B
C B A




 :
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X =






A B C
B A B
C B A




 : G(z) =






f(z) 0 h(z)
0 g(z) 0

h(z) 0 f(z)





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X =






A B C
B A B
C B A




 : G(z) =






f(z) 0 h(z)
0 g(z) 0

h(z) 0 f(z)






η
(

G(z)
)

=
1

3






2 f(z) + g(z) 0 g(z) + 2h(z)
0 2 f(z) + g(z) + 2h(z) 0

g(z) + 2h(z) 0 2 f(z) + g(z)




 ,
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X =






A B C
B A B
C B A




 : G(z) =






f(z) 0 h(z)
0 g(z) 0

h(z) 0 f(z)






η
(

G(z)
)

=
1

3






2 f(z) + g(z) 0 g(z) + 2h(z)
0 2 f(z) + g(z) + 2h(z) 0

g(z) + 2h(z) 0 2 f(z) + g(z)




 ,

zG(z) = 1 + η
(

G(z)
)

· G(z)
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X =






A B C
B A B
C B A




 : G(z) =






f(z) 0 h(z)
0 g(z) 0

h(z) 0 f(z)






η
(

G(z)
)

=
1

3






2 f(z) + g(z) 0 g(z) + 2h(z)
0 2 f(z) + g(z) + 2h(z) 0

g(z) + 2h(z) 0 2 f(z) + g(z)




 ,

zG(z) = 1 + η
(

G(z)
)

· G(z)

H(z) = tr3(G(z)) =
1

3
(2f(z) + g(z))
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Comparison of this solution with simulations
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some more examples
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




A B C
B A B
C B A













A B C D
B A B C
C B A B
D C B A


















A B C D E
B A B C D
C B A B C
D C B A B
E D C B A











,
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II. General operator-valued free probability
theory
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What can we say about the relation between two matrices,

when we know that the entries of the matrices are free?

X = (xij)
N
i,j=1 Y = (ykl)

N
k,l=1

with

{xij} and {ykl} free w.r.t. ϕ

⇓

X and Y are not free w.r.t. tr ⊗ ϕ in general

however: relation between X and Y is more complicated, but

still treatable

operator-valued freeness
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What can we say about the relation between two matrices,

when we know that the entries of the matrices are free?

X = (xij)
N
i,j=1 Y = (ykl)

N
k,l=1

with

{xij} and {ykl} free w.r.t. ϕ

⇓

X and Y are not free w.r.t. tr ⊗ ϕ in general

however: relation between X and Y is more complicated, but

still treatable in terms of

operator-valued freeness
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Let (C, ϕ) be non-commutative probability space.

Consider N × N matrices over C:

MN(C) := {(aij)
N
i,j=1 | aij ∈ C}

MN(C) = MN(C) ⊗ C

is a non-commutative probability space with respect to

tr ⊗ ϕ : MN(C) → C

but there is also an intermediate level
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Instead of

MN(C)

↓ tr ⊗ ϕ

C

consider ...
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MN(C) = MN(C) ⊗ C=: A

↓ id ⊗ ϕ=: E |
|

MN(C)=: B | tr ⊗ ϕ
|

↓ tr ↓

C
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MN(C) = MN(C) ⊗ C=: A

↓ id ⊗ ϕ=: E |
|

MN(C)=: B | tr ⊗ ϕ
|

↓ tr ↓

C
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Let B ⊂ A be a unital subalgebra. A linear map

E : A → B

is a conditional expectation if

E[b] = b ∀b ∈ B

and

E[b1ab2] = b1E[a]b2 ∀a ∈ A, ∀b1, b2 ∈ B

An operator-valued probability space consists of B ⊂ A and a

conditional expectation E : A → B
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Consider an operator-valued probability space (A, E : A → B).

The operator-valued distribution of a ∈ A is given by all

operator-valued moments

E[ab1ab2 · · · bn−1a] ∈ B (n ∈ N, b1, . . . , bn−1 ∈ B)
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Consider an operator-valued probability space (A, E : A → B).

The operator-valued distribution of a ∈ A is given by all

operator-valued moments

E[ab1ab2 · · · bn−1a] ∈ B (n ∈ N, b1, . . . , bn−1 ∈ B)

Random variables x, y ∈ A are free with respect to E (or free

with amalgamation over B) if

E[p1(x)q1(y)p2(x)q2(y) · · · ] = 0

whenever pi, qj are polynomials with coefficients from B and

E[pi(x)] = 0 ∀i and E[qj(y)] = 0 ∀j.
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Note: polynomials in x with coefficients from B are of the form

• x2

• b0x2

b’s and x do not commute in general!
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Note: polynomials in x with coefficients from B are of the form

• x2

• b0x2

• b1xb2xb3

b’s and x do not commute in general!
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Note: polynomials in x with coefficients from B are of the form

• x2

• b0x2

• b1xb2xb3

• b1xb2xb3 + b4xb5xb6 + · · ·

• etc.

b’s and x do not commute in general!

87



Operator-valued freeness works mostly like ordinary freeness, one

only has to take care of the order of the variables; in all expres-

sions they have to appear in their original order!

Example: If x and {y1, y2} are free, then one has

E[y1xy2] = E
[

y1E[x]y2

]

;

and more general

E[y1b1xb2y2] = E
[

y1b1E[x]b2y2

]

.
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Consider E : A → B.

Define free cumulants

κB
n : An → B

by

E[a1 · · · an] =
∑

π∈NC(n)

κB
π [a1, . . . , an]

• arguments of κB
π are distributed according to blocks of π

• but now: cumulants are nested inside each other according

to nesting of blocks of π
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Example:

π =
{

{1,10}, {2,5,9}, {3,4}, {6}, {7,8}
}

∈ NC(10),

1 2 3 4 5 6 7 8 9 10

κB
π [a1, . . . , a10]

= κB
2

(

a1 · κB
3

(

a2 · κB
2(a3, a4), a5 · κB

1(a6) · κ
B
2(a7, a8), a9

)

, a10

)
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For a ∈ A define its operator-valued Cauchy transform

Ga(b) := E[
1

b − a
] =

∑

n≥0

E[b−1(ab−1)n]

and operator-valued R-transform

Ra(b) : =
∑

n≥0

κB
n+1(ab, ab, . . . , ab, a)

= κB
1(a) + κB

2(ab, a) + κB
3(ab, ab, a) + · · ·

Then

bG(b) = 1 + R(G(b)) · G(b) or G(b) =
1

b − R(G(b))
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If x and y are free over B, then

• mixed B-valued cumulants in x and y vanish

• Rx+y(b) = Rx(b) + Ry(b)

• Gx+y(b) = Gx

[

b − Ry

(

Gx+y(b)
)]

subordination

If s is a semicircle over B then

Rs(b) = η(b)

where η : B → B is a linear map given by

η(b) = E[sbs].
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Back to our matrix example

Proposition and Exercise:

Assume {xij} and {ykl} are free in the n.c.p.s. (C, ϕ).

Then the matrices

X = (xij)
N
i,j=1, Y = (ykl)

N
k,l=1 ∈ MN(C)

are free with amalgamation over MN(C) ⊂ MN(C),

i.e., with respect to E = id ⊗ ϕ.
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A final remark

The analytic theory of operator-valued free probability lacks at

the moment some of the deeper statements of the scalar-valued

theory (like Nevalinna-like characterizations of operator-valued

Cauchy-transforms);

developing a reasonable analogue of complex function theory on

an operator-valued level is an active area in free probability at

the moment, see

Voiculescu: Free Analysis Questions, IMRN 2004

(see also recent work of Helton, Vinnikov, Belinschi, Popa)

94


