Chapter 1

Hilbert space

1.1 Introduction

This book is about (bounded, linear) operators on (always separable and com-
plex) Hilbert spaces, usually denoted by 3, X, M and variants thereof. Vectors
in Hilbert spaces will usually be denoted by symbols such as z, ¥y, 2z and their
variants, such as y,, z’. The collection of all bounded complex-linear operators
on H will be denoted by B(H), whose elements will usually be denoted by
symbols such as A, B, E, F,P,Q, T, U,V,X,Y, Z.

The only prerequisites needed for reading this book are: a nodding ac-
quaintance with the basics of Hilbert space theory (eg: the definitions of or-
thonormal basis, orthogonal projection, unitary operator, etc., all of which are
briefly discussed in this chapter); a first course in Functional Analysis - the
spectral radius formula, the Open Mapping Theorem and the Uniform Bound-
edness Principle, the Riesz Representation Theorem (briefly mentioned in Ap-
pendix) which identifies C(X)* with the space M (%) of finite complex mea-
sures on the compact Hausdorff space £, and outer and inner regularity of
finite positive measures on ¥; some basic measure theory, such as the Bounded
Convergence Theorem, and the not so basic Lusin’s theorem (also briefly dis-
cussed in Appendix) which leads to the conclusion - see Lemma A2 in the
Appendix — that any bounded measurable function on X is the pointwise a.e.
limit of a sequence of continuous functions on ¥, and also — see Lemma Al in
the Appendix — that C(X) ‘is’ dense in L*(X, u). Also, in the section on von
Neumann-Schatten ideals, basic facts concerning the Banach sequence spaces
co, P and the duality relations among them will be needed /used. All the above
facts may be found in [Hal], [Hall], [Sun] and [AthSun]. Although these stan-
dard facts may also be found in other classical texts written by distinguished
mathematicians, the references are limited to a very small number of books,
because the author knows precisely where which fact can be found in the union
of the four books mentioned above.
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1.2 Inmner Product spaces

While normed spaces permit us to study ‘geometry of vector spaces’, we are
constrained to discussing those aspects which depend only upon the notion of
‘distance between two points’. If we wish to discuss notions that depend upon
the angles between two lines, we need something more — and that something
more 18 the notion of an inner product.

The basic notion is best illustrated in the example of the space R? that
we are most familiar with, where the most natural norm is what we call || - |[».
The basic fact from plane geometry that we need is the so-called cosine law
which states that if A, B, C are the vertices of a triangle and if 8 is the angle
at the vertex C, then

2(AC)(BC)cosf = (AC)? + (BC)? — (AB)? .

If we apply this to the case where the points A, B and C are represented by
the vectors z = (z1,72), ¥ = (y1,¥2) and (0, 0) respectively, we find that

2(|z|[ - |yl - cos® = ||z[I* + [|¥!]* = ||z — y]|?
= 2 (z1y1 + oo ).

Thus, we find that the function of two (vector) variables given by

Z,y) = T1y1 + Tayo (1.2.1)

simultaneously encodes the notion of angle as well as distance (and has the
explicit interpretation (z,y) = ||z|| ||y|| cos@). This is because the norm can
be recovered from the inner product by the equation

fell = (z,2)} . (1.2.2)
The notion of an inner product is the proper abstraction of this function
of two variables.

DEFINITION 1.2.1. (a) An inner product on a (complex) vector space V is a
mapping VXV 3 (z,y) = (x,y) € C which satisfies the following conditions,
forallz, y,z€eV and a € C:
(1) (positive definiteness) (z, &) > 0 and {(z,2) =0 & z=0;
(it) (Hermitian symmetry) (z,y) = (y,z);
(i) (linearity in first variable} {az + B2,y) = alz,y) + Blz, y).

An inner product space is a vector space equipped with a (distinguished)
inner product.

(b) An inner product space which is complete in the norm coming from the
inner product (as in Equation (1.2.2)) is called a Hilbert space. In this book,
however, we shall only be concerned with Hilbert spaces which are separable
when viewed as metric spaces, with the metric coming from the norm induced
by the inner-product — see Proposition 1.2.4 and Corollary 1.2.5.
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EXAMPLE 1.2.2. (1) If z = (21,...,2n),w = (w1, ..., w,) € C", define

T

(z,w) = Z 2 W5 3 (1.2.3)

i=1
it 1s easily verified that this defines an inner product on C%.

(2) The equation

(f,9) = flz)gl(z) do (1.2.4)

(0,1]

is easily verified to define an inner product on C|0, 1].

As in the (real) case discussed earlier of R?, it is generally true that any
inner product gives rise to a norm on the underlying space via equation (1.2.2).
Betfore verifving this fact, we digress with an exercise that states some easy
consequences of the definitions.

EXERCISE 1.2.3. Suppose we are given an inner product space V; for r € V,
define ||x|| as in equation (1.2.2), and verify the following identities, for all
r,y,z€V, aeC:

(1) (w,y+az) = (z,y) + alr,2);

@) llz+yll* = llz[I* + [lgll® + 2Re(z,y);

(3) two wectors in an inner product space are said to be orthogonal if
their inner product is 0; deduce from (2) above and an easy induction ar-
gument that if {x(,x2,...,T,} 8 a set of pairwise orthogonal vectors, then
||Z?:1 371"-”2 - 2:;1 [|35"i||2 :

@) llz+yll* + lle—yll* = 2 ({I=]]* + |lyll*); draw some diagrams and
convince yourself as to why this identity s called the parallelogram identity.

(5) (Polarisation identity) 4{x,y) = Zf;:n e+ iRy, 2 + iRy), where,
of course, 1 = /—1.

The first (and very important) step towards establishing that any inner
product defines a norm via equation (1.2.2) is the following celebrated inequal-

1ty.
PROPOSITION 1.2.4. (Cauchy-Schwarz inequality)
If x,y are arbitrary vectors in an itnner product space V, then

[z < il - [lyl] -

Further, this wmequality s an egquality if and only if the vectors x and y are
linearly dependent.

Proof. It y = 0, there is nothing to prove; so we may, without loss of generality,
assume that ||y|| = 1 (since the statement of the proposition is unaffected upon
scaling ¥y by a constant).
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Notice now that, for arbitrary a € C,

0 < o~ ayll’

—_—

= {[z]|* + |a|® ~ 2Re (a(y, z)) .

A little exercise in the calculus shows that this last expression is minimised
for the choice o9y = {z,y), for which choice we find, after some minor algebra,
that

0 < [lz—aoyll® = |lz|l* = |{z,9)|?

thereby establishing the desired inequality.
The above reasoning shows that the inequality becomes an equality only
if x = agy, and the proof is complete.

1

COROLLARY 1.2.5. Any inner product gives rise to a norm  wvia Fquation

(1.2.2).

Proof. Positive-definiteness and homogeneity with respect to scala,r multiplica-
tion are obvious; as for the triangle inequality,

lz+yll* = llzli* + lgll® + 2 Re (z,y)
< 2l + Nl + 20zl iyl

and the proof is complete.

EXERCISE 1.2.6. (1) Show that

ii zﬁﬁz (Zﬁ: |zt‘lﬂ) (i \’U—fﬂz) , Vz,weCr.
1=1 i=1 i—1

(In view of the notation used in (2) below, we shall write £2 for C* with the
‘standard inner product’ defined above.)

(2) Deduce from (1) that the series S .o, a;f; converges, for any o, 3 €
={v={(v, -y Yny--) ECYV Y |n|? < o0}, and that

> adi| < (X lal) (X 8P)  vases
g=1 i=1 1==1

deduce that € is indeed (a vector space, and in fact) an inner pmduét space,
with respect to inner product defined by

(o, B) = Z ;B . (1.2.5)

'Recall that (a) a norm on a vector space V is a function V 3 z v |iz|| € [0, 00) which
satisfies (i} (positive-definiteness} (x| = 0 & = = 0; (i) (homogeneity) |az| = |af||x|| and
(12i) (triangle inequality) {|lz + y|| < ||lz|| + |lyil for all z,y € V and a € C; (b) a vector space
equipped with a norm is a normed space; and (c¢) a normed space which is complete with
respect to the norm is called a Banach space.

. amaa s
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(3) Write down what the Cauchy-Schwarz inequality transiates into in Frample
1.2.2 (2).

(4) Show that the inner product is continuous as a mapping fromV xV
into C. (In view of Corollary 1.2.5, this makes sense.)

1.3 Hilbert spaces : examples

Our first step is to arm ourselves with a reasonably adequate supply of examples
of Hilbert spaces.

ExaMpPLE 1.3.1. (1) C" is an example of a finite-dimensional Hilbert space,
and we shall soon see that these are essentially the only such examples.

(2) €2 is an infinite-dimensional Hilbert space —see Exercise 1.2.6(2). Nev-
ertheless, this Hilbert space is not ‘too big’, since 1t is at least equipped with
the pleasant feature of being a separable Hilbert space —1.e., it is separable as a
metric space, meaning that it has a countable dense set. (Verify this assertion!)

(3) More generally, let 5 be an arbitrary set, and define
2(8) = {z = ((z)ses € €5 T peq fosf* < 00}

(The possibly uncountable sum might be interpreted as follows: a typical
element of £2(9) is a family z = ((z,)) of complex numbers which is indexed
by the set S, and which has the property that z; = 0 except for s coming from
some countable subset of § (which depends on the element z) and which is
such that the possibly non-zero x,’s, when written out as a sequence in any
(equivalently, some) way, constitute a norm-square-summable sequence. )

Verify that £2(S), in a natural fashion, 1s a Hilbert space.

(4) This example will make sense to the reader who is already familiar
with the theory of measure and Lebesgue integration; the reader who is not,
may safely skip this example; the subsequent exercise will effectively recapture
this example, at least in all cases of interest.

Suppose (X,B,u) is a measure space. Let £2(X, B, ) denote the space
of B-measurable complex-valued functions f on X such that [, |f[*dy < oo.
Note that | +g|2 < 2(|f]* + |g]?), and deduce that £?(X, B, u) is a vector
space. Note next that |fg] < (jf1° +]| g|?), and so the right-hand side of the
following equation makes sense, if f, g € £L*(X, B, u):

o9 = fxfﬁdﬂ- (1.3.6)

It is easily verified that the above equation satishes all the requirements of an
inner product with the solitary possible exception of the positive-definiteness
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axiom: if (f, f} = 0, it can only be concluded that f = 0 a.e — meaning that
{z : f(z) # 0} is a set of u-measure 0 (which might very well be non-empty).

Observe, however, that the set N = {f € £L2(X,B,u) : f = 0 a.e.} is a
vector subspace of L£2(X, B, £); and a typical element of the quotient space
LY(X,B,u) = L%(X,B,n)/N is just an equivalence class of square-integrable
functions, where two functions are considered to be equivalent if they agree
outside a set of u-measure 0.

For simplicity of notation, we shall just write LA(X) or L?(u) for
L[?(X,B, 1), and we shall denote an element of L?*(u) simply by such symbols
as f, g, etc., and think of these as actual functions with the understanding that
we shall identify two functions which agree u-almost everywhere. The point of
this exercise is that equation (1.3.6) now does define a genuine inner product
on L*{X); most importantly, it is true that .2 (X) is complete and is thus a
Hilbert space.

EXERCISE 1.3.2. (1) Suppose X is an inner product space. Let X be a comple-
tion of X regarded as a normed space. Show that X is actually a Hilbert space.
(Thus, every inner product space has a Hilbert space completion. )

(2) Let X = C[0,1] and define

Srg) = /Df(m)g—(:.g'jdm.

Verify that this defines a genuine, i.e., positive-definite, inner product on
Cl0,1]. The completion of this inner product space s a Hilbert space - see
(1) above ~ which may be identified with what was called L#({0,1], B,m) in Ez-
ample 1.3.1(4), where (B is the o-algebra of Borel sets in 0, 1] and) m denotes
the s0-called Lebesgue measure on [0, 1].

1.4 Orthonormal bases

In the sequel, N will always denote a (possibly empty, finite or infinite) count-
able set.

DEFINITION 1.4.1. A collection {zn :n € N} in an inner product space is said
to be orthonormal if

1 ifm=n
<$m:$ﬂ> o 5??1’-’1 —'{U lf?ﬂ.%ﬂ vminEN'
Thus, an orthonormal set is nothing but a set of unit vectors which are

palrwise orthogonal; we shall write z | y if two vectors x,y in an inner product
space are orthogonal, i.e., satisfy {z,y) = 0.

EXAMPLE 1.4.2. (1} In ffl, for 1 < i < n, let e; be the element whose i-
th co-ordinate is 1 and all other co-ordinates are 0; then {ei,...,e,} is an
orthonormal set in ¢2.
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(2) In ¢2. let e, be the element whose n-th co-ordinate is 1 and all other
co-ordinates are 0, for 1 < n < oo; then {e, :n=1,2,...} is an orthonormal
set in £2.

(3) In the inner product space C[0,1] — with inner product as de-
scribed in Exercise 1.3.2 — consider the family {e, : n € Z} defined by
en(z) = exp(2minz), and show that this is an orthonormal set; hence this is also

an orthonormal set when regarded as a subset of L?([0, 1}, m) — see Exercise
1.3.2(2).

PROPOSITION 1.4.3. Let {ey,ea,...,en} be an orthonormal set in an inner
product space X, and let x € X be arbitrary. Then,

@) ifz = Y, aie;, o €C, then oy = (z,€;) Vi

(i) (x — D {z,eide; ) L eg; VI<j<m

(i7i) (Bessel’s inequality ) > .., [(z,e)|® < 12]]?.

Proof. (i) If x is a linear combination of the ¢;’s as indicated, compute {x, ¢;},
and use the assumed orthonormality of the €;’s, to deduce that a; = (z, ;).
(1) This is an immediate consequence of (i).
(i53) Write y = S, (x, e;)e;, z = x — y, and deduce from (two applica-
tions of) Exercise 1.2.3(3) that

|

[zl [iyl)? + 112

y||2

> laenf

[V

We wish to remark on a few consequences of this proposition; for one
thing, (i) implies that an arbitrary orthonormal set is linearly independent;
for another, if we write \/{e, : n € N} for the vector subspace spanned by
[en : m € N} — this is the set of linear combinations of the e;’s, and is the
smallest vector subspace containing {e, : n € N} - it follows from (z) that we
know how to write any element of \/{e, : n € N} as a linear combination of
the e,,'s.

We shall find the following notation convenient in the sequel: if o is a
subset of an inner product space X, let \V S (reps., [§]) denote the smallest
subspace (resp. closed subspace) containing 8; it should be clear that this could
be described in either of the following equivalent ways: (a) |8] is the intersection
of all closed subspaces of X which contain 8, and (b) [8] = V8. (Verify that
(a) and (b) describe the same set.) -.

LEMMA 1.4.4. Suppose {e, : n € N} is a countable orthonormal/set in a Hilbert
space H. Then the following conditions on an arbitrary famaly {an, :m € N} of
complex numbers are eguivalent:

(i) the sum > .y Onén makes sense as a finite sum in case N is a
finite set, and as an ‘unconditionally’ norm-convergent series in H if N is
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infinite, meaning: if ¢ : N — N is any bijection, and if we define z(¢)r =
Zi:l Qp(n)Ep(n), then the sequence {z(d)r : k € N} is norm-convergent and
the limit of this sum is independent of the bijection ¢ used; the symbol of a
sum of elements of a Hilbert space, and C, in particular, which is indezed by
arbitrary countably infinite sets (other than N, when, of course, series may be
conditionally convergent) will always be used to denote only such ‘uncondition-
ally convergent series’.

(”) ZHEN ‘ﬂﬂﬂl2 < 00.
(t4i) there is a vector x € [{e, :n € N}| such that (z,e,) = a, ¥n € N.

Proof. If N is finite, the first two assertions are obvious, while the third is seen
by choosing = = 3\ anén.

S0 suppose that N is infinite, and that ¢, 2(¢)x are as above.

(¢) = (241): Fix a bijection ¢ as in (¢). Condition (z) says that ||z(¢)r —
z(¢}|| — 0 for some 2(@) € H. As {(z(P)k, en) = (2(P)e, €n) = an¥k, £ > ¢~ 1(n),
we find that (z(¢), e,) = a, ¥n. Since each 2(¢)x € [{e, : n € N}, it is clear
that also x(¢) € [{en, :n € N}|.

(221) = (¥%) is an immediate consequence of Bessel’s inequality.

(42) = (¢): Condition (i) is seen to imply that {z{¢)x : k € N} is a
Cauchy sequence and hence convergent in H. The argument given in the proof
of (¢) = (i11) applies with ¢ replaced by any other bijection 1. And z(¢) — z (1))
would be an element of [{e, : n € N}] which would be orthogonal to each e,
and hence to a dense subspce of [{e, : n € N}|, thereby forcing the equality
r(¢) = x(1), as asserted.

We are now ready to establish the fundamental proposition concerning
orthonormal bases in a Hilbert space.

PROPOSITION 1.4.5. The following conditions on a countable orthonormal set
{en : n € N} in a Hilbert space H are equivalent: (in items (ii), (i) and
(1v), the sums indexed by the set N are to be understood as indicated in Lemma
1.4.4(7)).

(i) {en : n € N} is a maximal orthonormal set, meaning that it is not
strictly contained in any other orthonormal set;

(ﬂ) TeEH = 2 = EnEﬁr(m’ En)‘en;
(ﬂ’i) Ly Y S :}{ = <$a y) — ZneN<$: Eﬂ)(‘ﬁﬂ:y);
(w)z e H = (lz]° = 3 vz en)l*.

Such an orthonormal set is called an orthonormal basis of JH.

Proof. (i) = (i) : It is a consequence of Bessel’s inequality which states that
Y nen 1{Z,en)]? < oo and (the implication (#4) < (i) of) the last lemma that
there exists a vector, call it zo € H, such that zp = ., (z,en)en. [f z # xo,
and if weset e = [~ (r—=o), then it is easy to see that {e, : n € N}U{e}
1s an orthonormal set which contradicts the assumed maximality of the given
orthonormal set.
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(1) => (i41) : This is obvious if NV is finite, so assume without loss of gener-
ality that N = NForn e N, let z, = > ;_,(z,e:)e; and yn = S oAy, eides,
and note that, by the assumption (ii), continuity of the inner-product, and the
assumed orthonormality of the e;’s, we have

(:IT, y) = lim (xn: yn>

To—* DO

lim ;(ﬂa ei) (Y, ei)

> OO

T

= lim (x,e;){€iy)

n— o0
t=1
— Z<$;Ei><ei, y) :
i=1

(131) = (iv) : Put y = .

(iv) = (i) : Suppose {e; : ¢ € I U J} is an orthonormal set with J a
non-empty index set disjoint from I; then for j € J, we find, in view of (iv),
that

L=llell2 = S ejedl? = 05

hence it must be that J is empty — i.e., the maximality assertion of (1) is indeed
implied by (iv).

The reason for only considering countable orthonormal sets lies in the
following proposition.

PROPOSITION 1.4.6. The following conditions on a Hilbert space H are equiv-
alent:

(1) H is separable;
(i) Any orthonormal set in H is countable.

Proof. (i) = (ii) : Suppose D is a countable dense set in J{ and suppose
{e; 1 € I} is an orthonormal set in JH. Notice that

it = llei—elP=2. a4

Since D is dense in H, we can, for each ¢ € I, find a vector x; € D such

that ||z; — e;]| < 3? The identity (1.4.7) shows that the map I 3 i z; € D
is necessarily 1-1; since D is countable, we may conclude that so is I.

(#3) = (3) : If T is a countable (finite or infinite) set and if {e;:i€1}is
an orthonormal basis for H, let D be the set whose typical element is of the
form ) .. ;aje;, where J is a finite subset of I and «; are complex numbers
whose real and imaginary parts are both rational numbers; it can then be seen
that D is a countable dense set in H.
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COROLLARY 1.4.7. Any orthonormal set in a Hilbert space is contained in an
orthonormal basis— meaning that if {e; : i € I} is any orthonormal set in a
Hilbert space H, then there ezists an orthonormal set{e; : i € J} such that
INJ =0 and{e;:i€IUJ} is an orthonormal basis for H. (If {e; : i € I} is
already an orthonormal basis, then J =10.)

In particular, every Hilbert space admits an orthonormal basis.

Proof. This is an easy consequence of Zorn’s lemma.

REMARK 1.4.8. (1) Although we have formally defined an orthonormal ba-
sis only in separable Hilbert spaces, Proposition 1.4.5 is true verbatim
without the countability hypothesis. The details of this generalisation —
which necessitates a digression into what is meant by sums of families of
vectors indexed by arbitrary, possibly uncountable, sets — may be found
in [Sun|, for instance. Thus, non-separable Hilbert spaces are those whose
orthonormal bases are uncountable. It is probably fair to say that any true
statement about a general non-separable Hilbert space can be established
as soon as one knows that the statement is valid for separable Hilbert
spaces; it is probably also fair to say that almost all useful Hilbert spaces
are separable. So, the reader may safely assume that all Hilbert spaces in
the sequel are separable; among these, the finite-dimensional ones are, in a
sense, ‘trivial’, and one only need really worry about infinite-dimensional
separable Hilbert spaces.

(2) Every separable non-zero Hilbert space is isometrically isomorphic to ex-
actly one of the family {2 : n € N}U{¢?}, where N = {1,2,...}. Thus the
cardinality of an orthonormal basis is a complete invariant ‘up to isometric
1somorphism’. It is clear this is an invariant. For finite-dimensional spaces,
the cardinality of an orthonormal basis is the usual vector space dimen-
sion, and vector spaces of differing finite dimension are not isomorphic.
Also, no finite-dimensional Hilbert space can be isometrically isomorphic
to £4 as the unit ball of £2 is not compact. (Reason: the orthonormal

basis{e, : n € N} can have no Cauchy subsequence as |le,, — .| = V2 if
REMARK 1.4.9. (1) It follows from Proposition 1.4.5 (¢i) that if {e; : i € I}
1s an orthonormal basis for a Hilbert space H, then H = [{e; : 4 € I}];

conversely, it is true - see Corollary 1.4.14 — that if an orthonormal set is
total (meaning that the vector subspace spanned by the set is dense in the
Hilbert space), then such an orthonormal set is necessarily an orthonormal
basis. (Reason: apply Theorem 1.4.13(z¢), with M as the closed subspace
spanned by the orthonormal set.)

(2) Each of the three examples of an orthonormal set that is given in Example
1.4.2, is in fact an orthonormal basis for the underlying Hilbert space. This
is obvious in cases (1) and (2). As for (3), it is a consequence of the Stone-
Weierstrass theorem that the vector subspace of finite linear combinations
of the exponential functions {exp(2ninx) : n € Z} (usually called the set
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of trigonometric polynomials) is dense in {f € C[0,1] : f(0) = f(1)}
(with respect to the uniform norm — i.e., with respect to || - |{s); in view
of Exercise 1.3.2 (2), it is not hard to conclude that this orthonormal
set is total in L%{[0,1],m) and hence, by remark (1) above, this is an
orthonormal basis tor the Hilbert space in question.

Since exp(+2ninx) = cos{2mnx) + isin(27ne), and since it is easily
verified that cos(2mrmz) | sin(2mnz) Vm,n = 1,2, ..., we find easily that

{1 =ey}U{V2cos(2nnz), V2sin(2rnz):n=1,2,...}

is also an orthonormal basis for L?([0, 1], m). (Reason: this is orthonormal,
and this sequence spans the same vector subspace as 1s spanned by the
exponential basis.) (Also, note that these are real-valued functions, and
that the inner product of two real-valued functions is clearly real.) It
follows, in particular, that if f is any (real-valued) continuous function
defined on [0,1], then such a function admits the following Fourier series
(with real coefficients):

flz) = ap+ Z (a, cos(2mnx) + by, sin(2wnz) )
n=1

where the meaning of this series is that we have convergence of the se-
quence of the partial sums to the function f with respect to the norm in
L?[0,1]. Of course, the coeflicients a,, b, are given by

0 = /ﬂlf(;c)d;r

&
3
I

1
2/ flz)cos(2rnz ) dx , ¥ n >0,
0
1
b, = 2/ f(x)sin(2mnz)dx , Vn >0
0

The theory of Fourier series was the precursor to most of modern func-
tional analysis; it is for this reason that if {e; : ¢ € I} is any orthonormal
basis of any Hilbert space, it is customary to refer to the numbers {x,¢;} as
the Fourier coefficients of the vector x with respect to the orthonormal basis

{Ei:’iEI}.

It is a fact that any two orthonormal bases for a Hilbert space have the
same cardinality, and this common cardinal number is called the dimension of
the Hilbert space; the proof of this statement, in its full generality, requires
facility with infinite cardinal numbers and arguments of a transfinite nature,
and may be found in [Sun]; our interest will be confined to separable Hilbert

spaces; the proof in that case of the dimension being an invariant has been
outlined in Remark 1.4.9.
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We next establish a lemma which will lead to the important result which
1s sometimes referred to as ‘the projection theorem’.

LEMMA 1.4.10. Let M be a closed subspace of a Hilbert space H; (thus M
may be regarded as a Hilbert space in its own right;) let {e; : i € I} be any
orthonormal basis for M, and let {e; : j € J} be any orthonormal set such that
{e; 14 € I UJ} is an orthonormal basis for H, where we assume that the index
sets I and J are disjoint. Then, the following conditions on a vector x € H are
equivalent:

(i)x LyVYyecM;

(ﬂ) I == ZjEJ<$,Ej>Ej

Proof. The implication (i) = (¢) is obvious. Conversely, it follows easily
from Lemma 1.4.4 and Bessel’s inequality that the ‘series’ Y. ,{(z,¢;)e; and
>_ics{T,€e5)e; converge in H. Let the sums of these ‘series’ be denoted by y
and z respectively. Further, since {e; : ¢ € TUJ} is an orthonormal basis for K,
it should be clear that z = y + z. Now, if z satisfies condition (¢) of the lemma,
it should be clear that y = 0 and that hence, x = 2, thereby completing the
proof of the lemma.

We now come to the basic notion of orthogonal complement.

DEFINITION 1.4.11. The orthogonal complement S+ of a subset S of a Hilbert
space is defined by

= {zeH:zLyVyecS}.
EXERCISE 1.4.12. If Sy C S C H are arbitrary subsets, show that

Sy D8t = \/S = ([SP+

Also show that S is always a closed subspace of K.

We are now ready for the basic fact concerning orthogonal complements
of closed subspaces.

THEOREM 1.4.13. Let M be a closed subspace of a Hilbert space H. Then,
(1) ML is also a closed subspace;

(1) (ML) = M;

(1) any vector z € H can be uniquely expressed in the form x = y + 2,
where y € M, z € M+;

(w) if T,y,2 are as in (3) above, then the equation Px = vy defines a
bounded operator P € B(XH) with the property that

|Pz||? = (Pz,z) = ||lz||* — |z — Px||? , Vo € K .

Proof. (i) This is easy — see Exercise 1.4.12.
(i2) Let I,J,{e; : ¢ € TU J} be as in Lemma 1.4.10. We assert, to start
with, that in this case, {e; : j € J} is an orthonormal basis for M. Suppose
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this is not true; since this is clearly an orthonormal set in M*, this means
that {e; : € J} is not a maximal orthonormal set in M+, which implies the
existence of a unit vector x € ML such that (z,e;) = 0V j€ J;suchanz
will satisfy condition (i) of Lemma 1.4.10, but not condition (%).

If we now reverse the roles of M, {e; : i € I} and M*,{e; : j € J}, we
find from the conclusion of the preceding paragraph that {e; : ¢ € I} is an

orthonormal basis for (ML)J’, from which we may conclude the validity of (i)
of this theorem.

(#43) The existence of y and 2 was demonstrated in the proof of Lemma
1.4.10; as for uniqueness, note that if z = y; +2; is another such decomposition,
then we would have

y—1yp = 21—2 € MM

bt weMnNML = wlw =||w?=0 = w=0.

(v) The uniqueness of the decomposition in (%i¢} is easily seen to imply
that P is a linear mapping of K into itself; further, in the notation of (iéi), we
find (since y L z) that

l2lI> = [lyll® +12ll* = ||Pll® + |lz — Pz|l* ;

this implies that |[Pz|| < ||z|| V £ € }, and hence P € B(H).
Also, since y 1L 2z, we find that

1Pz|* = |lyll* = (y,y+2) = (Pr,2),

thereby completing the proof of the theorem.

The following corollary to the above theorem justifies the final assertion
made in Remark 1.4.9(1).

COROLLARY 1.4.14. The following two conditions on an orthonormal set {e; :
i € I'} in a Hilbert space H are equivalent:

(1) {e; :i € I} is an orthonormal basis for H;

(ii) {e; : ¢ € I} is total in H — meaning, of course, that H = [{e;: 1 €

.

Proof. As has already been observed in Remark 1.4.9 (1), the implication (i) =
(1) follows from Proposition 1.4.5(it).

Conversely, suppose (¢) is not satisfied; then {e; : ¢ € I} is not a maximal
orthonormal set in H; hence there exists a unit vector x such that x 1 e; V2 € I;
if we write M = [ {e; : 4 € I} ], it follows easily that x € M=, whence
ML £ {0}; then, we may deduce from Theorem 1.4.13(2) that M # H - i.e.,
(iz} is also not satished.

A standard and easily proved fact is that the following conditions on a
linear map T : H — K between Hilbert spaces are equivalent:
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(1} T is continuous; i.e. ||z, — z|| = 0= |Tz, — Tx| — 0

(2) T is continuous at 0; i.e. ||z,|| = 0 = || Tz.| — 0;
(3) sup{||Tz| : ||z|]| <1} =inf{C > 0: |Tz}| < C||z]| vz € H} < .

On account of (3) above, such continuous linear maps are called bounded
operators and we write B(HH,X) for the vector space of all bounded operators
from H to X. It is a standard fact that B(3,X) is a Banach space if ||T|| is
defined as the common value of the two expressions in item (3) above.

We write B(H) for B(3,H), and note that B(H) is a Banach algebra
when equipped with composition product AB = Ao B.

It is customary to write H* = B(H,C). We begin by identifying this
Banach dual space H*.

THEOREM 1.4.15. (Riesz lemma)
Let H be a Hilbert space.
(a}) If y € H, the egquation

dy(z) = (z,9) (1.4.8)

defines a bounded linear functional ¢, € H*; and further, |I¢y||sc- = ||yllac -

(b) Conversely, if ¢ € H*, there exrists a unique element y € H such that
¢ = ¢, asin {a} above.

Proof. (a) Linearity of the map ¢, is obvious, while the Cauchy-Schwarz in-
equality shows that ¢, is bounded and that ||¢,]| < ||y|]. Since ¢, (y) = |ly]|l%,
it easily follows that we actually have equality in the preceding inequality.

(b) Suppose conversely that ¢ € H*. Since ||¢,, — &y, || = ||y1 — y2]| for all
y1, Y2 € H, the uniqueness assertion is obvious; we only have to prove existence.
Let M = ker ¢. Since existence is clear if ¢ = 0, we may assume that ¢ # 0,

i.e., that M # H, or equivalently that M+ £ 0.

Notice that the map ¢ is 1-1 from M~ into C; since ML # 0, it follows
that M+ is one-dimensional. Let z be a unit vector in ML. The y that we seek —
assuming it exists — must clearly be an element of M (since ¢(z) = 0 Yz € M).
Thus, we must have y = az for some uniquely determined scalar 0 # o e C.
With y defined thus, we find that ¢,(2}) = @; hence we must have o = ¢(z).
Since any element in H is uniquely expressible in the form z + vz for some

x € M, and scalar v € C, we find easily that we do indeed have ¢ = quz.

It must be noted that the mapping y — ¢, is not quite an isometric
isomorphism of Banach spaces; it is not a linear map, since ¢o, = Oihy; it
is only ‘conjugate-linear’. The dual (& priori Banach) space H* is actually a
Hilbert space if we define

(Py, b2) = (2,4} ;

that this equation satisfies the requirements of an inner product are an easy
consequence of the Riesz lemma (and the conjugate-linearity of the mapping
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y — ¢, already stated); that this mner product actually gives rise to the norm
on H* is a consequence of the fact that ||yl| = |[¢y]l.

EXERCISE 1.4.16. (1) Where is the completeness of H used in the proof of the
Riesz lemma; more precisely, what can you say about X™ if you only know that
X is an (not necessarily complete) inner product space? (Hint: Consider the
completion of X.)

(2) If T € B(H,X), where H,X are Hilbert spaces, prove that

|7l = sup{|(Tz,y)l:zec H,yeX, |lz|[ <1yl <1} .

A mapping B : H x X = C is called a bounded sesquilinear form if

B(Zﬂﬁﬂ:mZBjyj) = Z:XHEBJB(I:H yj)! Vl‘l’h ﬁj = C,iri = :}Cﬂ Yj S
=1 = i=1 4=
T e (1.4.9)
and

| Bl := sup{|B(z, y)| : lzll, |yl < 1} < oo (1.4.10)

The following is an easy consequence of the Riesz lemma (see Theorem
1.4.15)) and so its proof is omitted.

PROPOSITION 1.4.17. (1) B : H x X — C is a bounded sesquilinear form if

and only if there exists a unique bounded operator T € B(H, X} such that
B(z,y) = (Tz,y) Vz,y; furthermore, |T| = || B]|.

(2) Every sesquilinear form defined on H X H satisfies the polarisation iden-
tity:

3 _ , :
AB(x,y) = Z(\/jl jB(:I.' +v-1 jy,ﬂﬁ +v-1 jy)

It is a consequence of the open mapping theorem that the following con-
ditions on a T' € B(H,X) are equivalent:

(1) There exists an S € B(K, ¥) such that ST = id, TS = idx.
(2) T is a set-theoretic bijection, i.e., both 1-1 and onto.

We call such an operator T invertible, and write S = T—'. It is a fact
(see [Sun]) that the collection GL(J(,X) of such invertible operators is open
in the norm-topology of B(H,X), and that the mapping T — T~ is a norm-
continuous map of GL(H,X) onto GL(X, H).

Reeall that the spectrum of a T € B(H) is defined to be o(T) = {A € C:
T — A\ ¢ GL(H)}. It follows from the previous paragraph that o(T) is a closed
set. It is also true that o(T") is a non-empty compact set for any T' € B (H).

An elementary fact about spectra that will be needed later 1s a special
case of a more general spectral mapping theorem.
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PROPOSITION 1.4.18. If p € Clt| is any polynomial with complex coefficients,
and if T '€ B(H), then o(p(T)) = p(a(T)).

Proof. Fix a A € C. If p is a constant, the proposition is obvious, so we assume
p is a polynomial of degree n > 1. Then the algebraic closedness of C permits
a factorisation of the form p(t) — A = o, [T, (t — ;). Clearly, then p(T)— A =
an [T (T — pi) (where the order of the product is immaterial as the factors
commute pairwise). We need the fairly easy fact that if Ty, ..., T, are n pairwise
commuting operators, then their product 77 ...T;, is invertible if and only if
each T; is invertible. (Verify this!) Hence conclude that

A ¢ a(p(T)) & p; ¢ o(T)V4

or equivalently, that A € o{p(T)) if and only if there exists some i such that
pi € o(T). This is equivalent to saying that A € p(o(T)); and thus, indeed

7(p(T)) = p(a(T)).

It 1s a tact that A € o(T) = |A| < ||T|| and that the spectrum is always
compact. The non-emptiness is a more non-trivial fact. (This statement for all
finite-dimensional H is equivalent to the fact that C is algebraically closed, i.e.,
that every complex polynomial is a product of linear factors.)

Another proof that simultaneously establishes the fact that ¢(T') is non-
empty and compact is the (not surprisingly complex analytic) proof of the
so-called spectral radius formula:

spr(T) :=sup{|A| : A € o(T)} = lim 1T . (1.4.11)

This says two things: () that the indicated limit exists, and (¢¢) that the value of
the limit is as asserted. Part (i4) shows that the spectral radius is non-negative,
and hence that spectrum is always non-empty. We will shortly be using part
(¢) to establish that spr(7") = ||T|| if T is ‘normal’, which is a key ingredient in
the proof of the spectral theorem.

Most of this required background material can be found in the initial
chapters of most standard books (such as [Sun]) covering the material of a first
course 1n Functional Analysis.

1.5 Adjoints

An immediate consequence of the Riesz lemma (Lemma 1.4.15) is:

PROPOSITION 1.5.1. If T € B(H,X), there ezists a unique operator T* <
B(X,H) — called the adjoint of the operator T — such that

Ty, x) = {(y,Tz) Vz € H,y € K.

Proof. Notice that the right side of the displayed equation above defines a
bounded sesquilinear form on X x H, and appeal to Proposition 1.4.17 to lay
hands on the desired operator T*. ]
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| We list below some simple properties of this process of taking adjoints.
PrROPOSITION 1.5.2. (1) For all a € C,5,51,5; € B(H,X),T € B(M, H),

we have:
(@81 + So)* = aS{+ Ss
(8*) = 5;
(ST = T*S*,
idy, = tdy .

2) |T|)2 = |T*T)| and hence, also |T*] = |T|| ;
(3) ker(T™) = rant(T) := (ran(T))*; equivalently, ker(T*) = ran(T).
Proof. (1) Most of these identities follow from the fact that the adjoint 1s
characterised by the equation it satisfies. Thus, for instance,
(@81 + 82) 'y} = {y, (a5 +52)x)
= aly, Siz) + {y, Sax)
= a(Sty, ) + (Szv, )
= {(@S] +53)y, z)-
The other three statements are even more straight-forward to verity.
(2) On the one hand,

IT|I> = sup{||Tz||*: ||z <1}
= sup{{I"*Tz,zx):|xl| £1}
< {77,
while on the other,
IT*T| = sup{|(T"Tx1,x2)| : [|z1|ll; lz2]t < 1}
< sup{|Te T2 o, Izl < 1)
< 17"

(Observe that the Cauchy-Schwarz inequality |{z,y}| < x|} ly]| has
been used in the proofs of both inequalities above — in the third line of the
first, and in the second line of the second.) The desired equality tollows,
and the sub-multiplicativity of the norm then implies that |[T*[| < ||T.
By interchanging the roles of T' and T*, we find that, indeed ||T™{| = ||T.

(3)

ycker(T") & T y=0
& (Try,z) =0Vz
& {y,Tz) =0V
N

y € ran— (T .
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The polarisation identity has the following immediate corollaries:

COROLLARY 1.5.3. (1) If T € B(H), then

T=0 ¢ (Tr,z) =0Vz c K.

(2)
T=T" & Te,xYe RvVze K.

This corolllary leads to the definition of an important class of operators:

DEFINITION 1.5.4. An operator T € B(H) is said to be self-adjoint (or Hermi-
tian) of T = T*,

A slightly larger class of operators, which is the correct class of operators
for the purposes of the spectral theorem, is dealt with in our next definition.

DEFINITION 1.5.5. An operator Z € B{H) is said to be normal if Z*Z = ZZ*.
PROPOSITION 1.5.6. Let Z € B(H).
(1) Z 1s normal if and only if | Zz| = || Z*z|| Vz € K.

(2) If Z is normal, then || Z2|| = ||Z*Z|| = || Z||?; more generally, 1227 =
1Z||*" and consequently spr(Z) = 1 Z]|.

Proof. (1)

72 =272" & (Z'Zx,x)={ZZ'z,x)Vre K
& || Zz|]? = )| Z*z|]? vz € K.

(2) Suppose Z is normal. Then,

1Z%] = sup{||Z%| : ||zf = 1}
= sup{||Z*Zz|| : |z =1} (by part (1) above)
= [[Z7Z]
= |1Z|?

where we have used Proposition 1.5.2(2) in the last step; an easy induction
argument now yields the statement about 27, which implies that |Z|| =

limy, 00 [| 227 || 2% = spr(Z2).
O

We now have the tools at hand to prove a key identity.

PROPOSITION 1.5.7. If X € B(H) is self-adjoint, and p € Clt] is any polynomial
with complex coefficients, then

1P{(X)| = [lpllacx) == sup{|p(t)] : t € o(X)}. (1.5.12)
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Proof. Notice that ¢ = {p|*> = pp is a polynomial with real coefficients, and
hence g(X) is self-adjoint. Deduce from Proposition 1.5.6 (2) and the spectral
mapping theorem (Proposition 1.4.18) that

Ip(X)I? = {p(X)*p(X)|
= Ip(X)p(X)]|
g(X)]
sup{| Al : A € o(¢(X))}
sup{|q(t)| : t € o(X)}

— da(X)

2
— p U{X} 3

1

as desired.

Just as every complex number has a unique decomposition into real and
imaginary parts, it is seen that each Z € B{H) has a unique Cartesian de-
composition Z = X + 7Y, with X and Y being self-adjoint (these being
necessarily given by X = 3(Z+2Z*) and ¥ = %(Z — Z*), so that, in fact,
{(Xz,z) = Re {(Zxz,z) and (Yz,z)} = Im {Zx,x)). For this reason, we some-
times write X = Re Z,Y =1m Z.

For future reference, we make some observations on the Cartesian decom-
position of a normal operator.

PrROPOSITION 1.5.8. Let Z = X +iY be the Cartesian decomposition of an
operator. Then, the following conditions are equivalent:

(1) Z is normal.
2) | Z2]|? = | X|]? + |V z||? Vo € .
(3) XY =YX.
Proof. First notice that for Z = X + 1Y, we have

|1Zz]|*? = | Xz +iYz|’
— HX::L‘H2 +- HY:ITH2 — 2Re (i{Xx,Yx))
while
1Z*z||*> = | Xz—iYz|?
= || Xz||* +[|[Yz|* + 2Re (i{Xz,Yx)),
so that

|Z*z||” = | Zz||* & Re (i{X=,Yz)) =0 & | Zz|* = [ Xz|* + |V z|.
Notice finally that

Re i{Xz, Yz} =0& (Xz,Yz) € R
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and that (since X,Y are self-adjoint)

(Xz,Yz) eRVz e H & XY = (XY)* =YX

The truth of the lemma is evident now.

1.6 Approximate eigenvalues

DEFINITION 1.6.1. A scalar A € C is said to be an approximate eigenvalue of
an operator Z € B{H) if there exists a sequence {x, : n € N} C S(H) such thai
lim, o [{Z — A)zy|| = 0. Here and in the sequel, we shall employ the symbol

S{H) to denote the unit sphere of H; thus, S(H) = {x € H: x| = 1}.

The importance — as emerges from [Hal] — of this notion in the context of
the spectral theorem (equivalently, the study of self-adjoint or normal opera-
tors) lies in the following result:

THEOREM 1.6.2. Suppose Z € B(H) ts normal. Then:

(1) Z € GL{H) & Z is bounded below; t.e., there is an ¢ > 0 such that
|Zz|| > €||z|| Yz € H, equivalently, inf{||Zz| : = € S(H)} = € > 0
(assuming H # 0).

(2) X\ € o(Z) if and only if A is an approximate eigenvalue of Z.
Proof. (1) If Z is invertible, then note that

fzll = 1Z7 Zz|| < |27 ||| Z=|| V=

which shows that [|Zz! > ||Z~1]|~!|jz|| Yz and that Z is indeed bounded
below.

If, conversely, Z is bounded below, deduce two consequences, viz.,

(a) Z* is also bounded below {by part (1) of Proposition 1.5.6)) and
hence ker(Z*){= ker(Z)) = {0} so that ran(Z) is dense in H (by
part (3) of Propositionl.5.2).

(b) Z has a closed range {Reason: If Zz,, — y then {Zz, : n € N}, and
consequently also {z,, : n € N}, must be a Cauchy sequence, forcing

y = Z(liMy_ 400 Tn).)

It follows from (a) and (b) above that Z is a bijective linear map of H
onto itself and hence invertible.

(2) Note first that (Z — A) inherits normality from Z, then deduce from (1)
above that A € o{(Z) if and only if there exists a sequence z,, € S(H) such
that ||[{Z — Mz,|l < + V¥n, L.e, A is an approximate eigenvalue of z, as
desired.
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COROLLARY 1.6.3.
X=X" = o(X)CR.

Proof. If there exists a sequence {z, : n € N} C S(H) satisfying the condition
(X — Az, — 0, then also {{X — Az, z,) — 0 and hence

A= lim (Ax,,z,) = im (Xz,,2,) € R

TL—r O L—F A0

(by Corollary 1.5.3 (2)).

For later reference, we record an immediate consequence of Theorem 1.6.2
(2) and Proposition 1.5.8 (2).

COROLLARY 1.6.4. Suppose A = a + i3 and Z = X + iY are the Cartesian
decompositions of a scalar A and a normal operator Z respectively. Then the
following conditions are equivalent:

(1) X € a(Z);

(2) There exists a sequence {x, : n € N} such that ||(X — a)x,|| = 0 and
(Y = B)za|| — 0.

1.7 Important classes of operators

1.7.1 Projections

REMARK 1.7.1. The operator P € B(H) constructed in Theorem 1.4.13(4) is
referred to as the orthogonal projection onto the closed subspace M. When it is
necessary to indicate the relation between the subspace M and the projection
P, we will write P = Py and M = ran P {note that M is indeed the range of
the operator P); some other facts about closed subspaces and projections are
spelt out in the following exercises.

EXERCISE 1.7.2. (1) Show that (SL)l = [8], for any subset S C H.

(2) Let M be a closed subspace of H, and let P = Py,
(a) Show that Pyyn = 1 — Py ;
(b) Let x € H; the following conditions are equivalent:
(i) x € M;
(ii) & € ran P (:= PX);
(1ti) Pr = x;
(iv) ||Pzl| = |lz.
(c) Show that M+ = ker P = {z € H: Pz = 0}.
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(3) Let M and N be closed subspaces of H, and let P = Py, @ = Px; show that
the following conditions are equivalent:

(i) N C M;
(1t) PQ =Q;
(i) M+ C N+,
(i) (1-Q)(1—P) = 1-P;
(iii) QP = Q.

(4) With M, N, P,Q as in (3) above, show that the following conditions are
equivalent:

(1)) M LN —ie, NCML,;
(1) PQ=0;
(1) QP = Q.

(5) When the equivalent conditions of (4) are met, show that:
(a) MUN] = M4+N = {z+y:2€M,yecN}; and that
(c) (P + Q) s the projection onto the subspace M + N.

(6) Show, more generally, that
(a) if {M; 1 < ¢ < n} is a family of closed subspaces of H

which are pairwise orthogonal, then their ‘vector sum’ defined by
YoM o= {30z 2 oz € M; Vi) is a closed subspace and the
projection onto this subspace is given by > .. Py,; and that

(b) if {M,, : n € N} is a family of closed subspaces of H which are pairwise
orthogonal, and if M = [| ), M|, then Py is given by the sum of the
series ) . -n Pn,, which is interpreted in the SOT-sense (see Definition
2.2.4): meaning that (3, .n Pv, )T = 3, cn PM.. T, with the series on the
right side converging in the norm for each x € H.

Self-adjoint operators are the building blocks of all operators, and they
are by far the most important subclass of all bounded operators on a Hilbert
space. However, in order to see their structure and usefulness, we will have to
wailt until after we have proved the fundamental spectral theorem. This will
allow us to handle self-adjoint operators with exactly the same facility with
which we handle real-valued functions.

Nevertheless, we have already seen one important special class of self-
adjoint operators as shown by the next result.



- 1.7. Important classes of operators 23

PROPOSITION 1.7.3. Let P € B(H). Then the following two conditions are
equivalent:
(i) P = Py is the orthogonal projection onto some closed subspace M C H;

(i) P = P? = P*.

Proof. (i} = (it) : If P = P, the definition of an orthogonal projection shows
that P = P?; the self-adjointness of P follows from Theorem 1.4.13(4) and
Corollary 1.5.3 (2).

(11) = (1) : Suppose (i1) is satisfied; let M = ran P, and note that

€M = ZJye€H suchthat = Py
= Pr=Ply=Py==x; (1.7.13)

on the other hand, note that

yeMt & (yP2)=0vVze X
& (Py,zy=0Vze€H (since P=P")
& Py = 0 (1.7.14)

hence, if 2 € H and z = Pmz, ¥y = Pyaz, we find from equations (1.7.13) and
(1.7.14) that Pz = Pz + Py =z = Py 2.

Direct Sums and Operator Matrices

If {M,, : n € N} are pairwise orthogonal closed subspaces — see Exercise
1.7.2(5}(d) —and f M = [lJ,cnxMn] we say that M is the direct sum of
the closed subspaces M;, 1 <7 < n, and we write

M=P M, ; (1.7.15)
n=1

conversely, whenever we use the above symbol, it will always be tacitly assumed
that the M;’s are closed subspaces which are pairwise orthogonal and that M
is the (closed) subspace spanned by them.

To clarify matters, let us first consider the direct sum of two subspaces.
(We are going to try and mimic the success of operators on C? being identifiable
with the operation of matrices acting on column vectors by multiplication.)

So suppose H = H; © H,. We shall think of a typical element z € H as
il ], with z; € H,;. Let P, = Py, so Pix = z; 1n the

2

above notation. If we think of P, as being an element of B(3},J{;), then it is
easily seen that its adjoint is the isometric element V; of B(H;, H) described
thus:

a column vector £ = [

X

lelz[ 01] andVg:rzz[ 0 ]

L2
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Given a T' € B(H), define T;; = P,TV,; € B(3{;,H;) and observe that we have
Ty Thg T3
Tx = : .
v [ Ty Ty ] [ T2 ]

If we refer to ((7;;)) as the matrix corresponding to T, then the matrices
corresponding to P, and P, are seen to be

idge, O 0 0
[0 o]a“d{omm}'

More generally, if H = @, yH;, K = D;cnK:, there exists a unique
matrix ((7;;)) with Tj; € B(H;,X;) such that whenever £ € H; satisty
ngw 1€;]12 < oo (so that the series Zjem ¢; converges in H (to £, say), then
TE =) .cn (Z jen 1€ j) — with the inner series converging in X; for each i € N
to ny, say, with 3. ¢ [m]|° < oo and T€ = 3", m:. In the special case when
each H; and X; is one-dimensional, this reduces to saying that if T' € B(H, X)
and if {z; : j € N} (resp., {y; : ¢ € N}) is an orthonormal basis in H (resp.,
X}, then the operator T' can be described by matrix multiplication in the fol-
lowing sense: if the vector » € H (resp., y € X} is thought of as the countably
infinite column matrix |[z] = [8;] with 8; = (z,z;) (resp., [y] = [a;] with
o; = (y,¥:)), and if [T] is the matrix ({(¢;;)) with countably infinitely many
rows and columns with ¢;; = (T'z;,y;), then Tz =y & a; = 3 #;8; Vi,

EXERCISE 1.7.4. (1) Verify the assertions of the previous paragraphs. (Hint:
The computation in the case of finite direct sums will show what needs to
be done tn the infinite case.)

(2) With the notation of the paragraph preceding this exercise, verify that the
familiar E;; matriz whose only non-zero entry is a 1 in the (i, j)-th spot
is the matriz of the operator denoted by (Z; ® y;) in Erercise 3.2.11, and
defined in the paragraph preceding that exercise.

(3) Verify the following fundamental rules concerning the system {F;;}:
(1) E; = Eji ;
(2) EijEwn = djEq

where the Kronecker symbol is defined by

1 if p=
5pq:{ fp=gq

0 otherwise

1.7.2 Isometric versus Unitary

The two propositions given below identify two important classes of operators
between Hilbert spaces.



1.7. Important classes of operators 25

PROPOSITION 1.7.5. Let H, K be Hilbert spaces; the following conditions on an
operator U € B(H,X) are equivalent:

(¢) if {e; : 1 € I} is any orthonormal set in H, then also {Ue; : ¢ € I} is an
orthonormal set in IC;

(22) there is an orthonormal basis {e; 11 € I} for H such that {Ue; : 1 € I} 1is
an orthonormal set in X;

() Uz, Uy) = (z,y) YV z,y €
() [|Uzi| = |lz|]| V z € 3
(’U) U = 15{.
An operator satisfying these equivalent conditions is called an isometry.

Proof. (i) = (1) : There exists an orthonormal basis for J.
(1) = (1i1) : f z,y € H and if {e; : ¢ € I} is as in (i1}, then

{Ux,Uy) = <U(Z($, Ei>8i) , U(Z{yiej)ej) >
iel

jei
= Z<$aﬁz’><ﬁj=y><UﬁirUﬁi>
ijel
— Z($,€i>(ﬁiay>
ic]
= {x,y) .

(i¢¢) = (iv) : Put y = .
(iv) = (v) : If z € H, note that

(U Uz, z) = |[Uz|]* = |lz]|* = (1xz,7),

and appeal to the fact that a bounded operator is determined by its quadratic
form — see Corollary 1.5.3.
(v) = (¢} : If {e; : ¢+ € I'} is any orthonormal set in H, then

(UEE‘,UEJ'> — (U*Uﬂi,ﬂj) — (Ei,ﬂj> = 51'3: .

PROPOSITION 1.7.6. The following conditions on an isometry U € B(H,X)
are equivalent:

() if {e; : ¢ € I} is any orthonormal basis for H, then {Ue; : i € I} is an
orthonormal basis for X;

(i1) there is an orthonormal set {e; : i € I'} in H such that {Ue; : i € I}
is an orthonormal basis for X,

(40e) UU* = 1y,

(2v) U s invertible;
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(v) U maps H onto K.

An i1sometry which satisfies the above equivalent conditions is said o be
unitary.
Proof. (i) = (i) : Obvious.

(41) = (441) : If {e; : 1 € I} is as in (ii), and if z € K, observe that

UU*:C — L}'DP"'“(Z<I,‘:,| UEi>U’Ei)
i€l
= Y {z,Ue)UU Ve,
€]
= Z(:r, Ue;Ue; (since U is an isometry)
1el
= .

(¢¢2) = (¢v) : The assumption that U is an isometry, in conjunction with
the hypothesis (4i7), says that U* = U~

(iv) = (v) : Obvious.

(v) = () : If {e; : © € I} is an orthonormal basis for H, then {Ue; : i € I}
is an orthonormal set in H, since U is isometric. Now, if 2 € X, pick ¢ € H
such that z = Uz, and observe that

[2]1* = ||U=z||?

= |lzlf*

u
¢
&
s

and since z was arbitrary, this shows that {Ue; : i € I'} is an orthonormal basis

for X.

Thus, unitary operators are the natural isomorphisms in the context of
Hilbert spaces. The collection of unitary operators from H to X will be denoted
by U(H,XK); when H = XK, we shall write U(H)} = U(H,H). We list some

elementary properties of unitary and isometric operators in the next exercise.

EXERCISE 1.7.7. (1) Suppose that H and K are Hilbert spaces and suppose
{e; i€ I} (resp., {f; : ¢ € I}) is an orthonormal basis (resp., orthonormal
set) in H (resp., X), for some index set I. Show that:

(a) dim H < dim X; and

(b} there exists a unique isometry U € B{H,X) such that Ue; = f; Vi e I.

(2} Let H and X be Hilbert spaces. Show that:
(a) there exists an isometry U € B(H,XK) if and only if dim H < dim X;
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(b) there exists a unitary U € B(H,X) if and only if dim H = dim X.

(3) Show that W(IH) is a group under multiplication, which is a (norm-) closed
subset of the Banach space B(H).

(4) Suppose U € U(H,XK); show that the association

B(H) > T L UTU* € B(X) (1.7.16)

defines a mapping (adU) : B(H) — B(X) which is an “isomelric isomorphism
of Banach *-algebras’, meaning that:

(a) adU is an isometric tsomorphism of Banach spaces: t.e., ad U 1s a
linear mapping which is 1-1, onto, and is norm-preserving; (Hint: verify that
it is linear and preserves norm and that its inverse is given by adU™.)

(b) adU s a product-preserving map between Banach algebras; i.e.,
(@dUNT1T) = ((adU) (Th)) (ad U)(T2)), for all T, Ty € B(3H);

(¢c) adU is a *-preserving map between *-algebras; i.e.,

((adUXNT)) = (adU)T*) YT € B(H).

(5) Show that the map U — (adU) is a homomorphism from the group U(H)
into the group Aut B(H) of all automorphisms (= isometric isomorphisms of
" the Banach *-algebra B(H) onto itself); further, verify that if U, — U in
UWH, X), then (ad U ) {(T) = (adU)(T) in B(K) for all T € B(H).

A unitary operator between Hilbert spaces should be viewed as ‘imple-
menting an inessential variation’; thus, if I/ € U(H,X) and if T' € B(H), then
the operator UTU* € B(X) should be thought of as being ‘essentially the
same as 1", except that it is probably being viewed from a different observer’s
perspective. All this is made precise in the following definition.

DEFINITION 1.7.8. Two operators T € B{H) and § € B(X) (on two possibly
different Hilbert spaces) are said to be unitarily equivalent if there exists a

unitary operator U € UW(H, K) such that S =UTU™”.

_ We conclude this section with a discussion of some examples of isometric
operators, which will illustrate the preceding notions quite nicely.

EXAMPLE 1.7.9. To start with, notice that if H is a finite-dimensional Hilbert
space, then an isometry U € B{H) is necessarily unitary. (Prove this!) Hence,
the notion of non-unitary isometries of a Hilbert space into itself makes sense
only in infinite-dimensional Hilbert spaces. We discuss some examples of a non-
- unitary isometry in a separable Hilbert space.

(1) Let H = £° (= ¢#(N) ). Let {e, : n € N} denote the standard or-
thonormal basis of H (consisting of sequences with a 1 in one co-ordinate and 0
in all other co-ordinates). In view of Exercise 1.7.7(1)(b), there exists a unique
 isometry S € B(H) such that Se, = en11 Vn € N; equivalently, we have

S(ﬂfl,ﬂﬁg,...) — (U,{Il,ikz,. )
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For obvious reasons, this operator is referred to as a ‘shift’ operator; in order
to distinguish it from a near relative, we shall refer to it as the unilateral shift.
It should be clear that § is an isometry whose range is the proper subspace
M = {e1}+, and consequently, S is not unitary.

A minor computation shows that the adjoint S* is the ‘backward shift’:

S*ay,az,...) = (a2, a3,...)

and that $S* = Py (which is another way of seeing that S is not unitary).
Thus S* is a left-inverse, but not a right-inverse, for 5. (This, of course, is
typical of a non-unitary isometry.)

Further — as is true for any non-unitary isometry — each power 5", n = 1,
1S & non-unitary isometry.

(2) The ‘near-relative’ of the unilateral shift, which was referred to earlier,
is the so-called bilateral shift, which is defined as follows: consider the Hilbert
space H = £2(Z) with its standard basis {e, : n € Z} for H. The bilateral
shift is the unique isometry B on H such that Be, = epy; ¥n € Z. This
time, however, since B maps the standard basis onto itself, we find that B is
unitary. The reason for the terminology ‘bilateral shift’ is this: denote a typical
element of H as a ‘bilateral’ sequence (or a sequence extending to infinity
in both directions); in order to keep things straight, let us underline the O-
th co-ordinate of such a sequence; thus, if z = > . «pe,, then we write
z=(...,0-1,00,01,...); we then find that

B(...,0_y,a0,0q,...) = (...,a_p,0_1,00,...) .

—_—

(3) Consider the Hilbert space H = L*([0, 1], m) (where, of course, m de-
notes ‘Lebesgue measure’) — see Remark 1.4.9(2) — and let {e,, : n € Z} denote
the exponential basis of this Hilbert space. Notice that |e,(z)| is identically
equal to 1, and conclude that the operator defined by

(Wiz) = er(@)flx) VfeX

is necessarily isometric; it should be clear that this is actually unitary, since its
inverse is given by the operator of multiplication by e_;.

It is easily seen that We,, = e,11 Vn € Z. If U : £4(Z) — H is the unique
unitary operator such that I/ maps the n-th standard basis vector to e,, for
each n € 7Z, it follows easily that W = UBU™. Thus, the operator W of this
example is unitarily equivalent to the bilateral shift (of the previous example).

More is true; let M denote the closed subspace M = [{e,, : n > 1}]; then
M is invariant under W — meaning that W{M) C M; and it should be clear that

the restricted operator Wiy € B(M) is unitarily equivalent to the unilateral
shift.
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(4) More generally, if (X, B, u} is any measure space and if ¢ : X — C is
any measurable function such that |¢| = 1 u-a.e., then the equation

Myf = ¢f ,f € I*(X,B,p)

defines a unitary operator on L*(X, B, u) (with inverse given by Mj).




Chapter 2

The Spectral Theorem

2.1 (C*-algebras

It will be convenient, indeed desirable, to use the language of (*-algebras.

DEFINITION 2.1.1. A C™ -algebra 1s a Banach algebra A equipped with an adjoint

operation A 2 5 — 5% € A which satisfies the following conditions for all
S5TcA

(S 4+ 52)" = aS7T+.5;
(8% = S
(ST)" = T*5
|T|1? = ||T*T|| (C* — identity).

All our (*-algebras will be assumed to have a multiplicative identity,
which is necessarily self-adjoint (as 1* is also a multiplicative identity), and has
norm one — thanks to the C*-identity {||1||? = ||1*1]} = ||1]|). (We ignore the
~trivial possibility 1 = 0, i.e., A = {0}.)

EXAMPLE 2.1.2. (1) B{H) is a C""-algebra, and in particular M, (C) ¥n, so
also C = M, (C).

(2) Any norm-closed unital *-subalgebra of a C*-algebra is also a C*-algebra
with the induced structure from the ambient C*-algebra.

(3) For any subset S of a ("*-algebra, there is a smallest C*-subalgebra of
A, denoted by C*(S5), which contains S. (Reason: C*{5) may be defined
somewhat uninformatively as the intersection of all C*-subalgebras that
contain Y, and described more constructively as the norm-closure ot the
linear span of all ‘words’ in the alphabet {1} USUS* :={1}Uu{zr:x €
S or x* € §}.) The latter description in the previous sentence shows that
C*({z}) is a commutative ‘singly generated’ C*-subalgebra if and only if
r satisfies z*xr = zx™; such an element of a ("*-algebra, which commutes
with 1ts adjoint, is said to be normal.
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(4) If 3 is any compact space, then C(X) is a commutative C*-algebra — with
respect to pointwise algebraic operations, f* = f and || f|| = sup{|f(z)| :
r € %} If & C R (resp., C), then the Weierstrass polynomial approxima-
tion theorem (resp., the Stone-Weierstrass theorem) shows that C(X) is a

commutative unital (*-algebra which is singly generated — with generator
given by fo(t) =t Vt € X.

DEFINITION 2.1.3. A representation of ¢ C*-algebra A on a Hilbert space H is

Just a *-preserving unital algebra homomorphism of A into B{JH).
Representations m; : A — B(H;), i = 1,2, are said to be equivalent if there

erists a unitary operator U : Hy — Ho such that ma(a) = Um{a)U* Va € A.

REMARK 2.1.4. It is true that any representation — and more generally, any
unital *-algebra homomorphism between C™*-algebras — is contractive. This is
essentially a consequence of (a) the C*-identity, which shows that it suffices to
check that ||7{z)|| < ||lz|| Y& = «* (b) the fact that the norm of a self-adjoint
operator Is its spectral radius, (see the last part of Proposition 1.5.6 (2)), and
(c) the obvious fact that a unital homomorphism preserves invertibility and
hence ‘shrinks spectra’. Thus,

()13

|w(z) m(z)]| = || (z )|

— spr(r(z’z)) < spr(z*z) < 2"z = |z

But we will not need this fact in this generality, so we shall say no more about
it.

The observation that sets the ball rolling for us is Proposition 1.5.7.

PROPOSITION 2.1.5. Let ¥ C R be a compact set and let fo € C(2) be given by
fot) =t vt € . If X € B(H) is a self-adjoint operator such that o(X) C %,
then there exists a unigue representation w: C(2) = B(H) such that n(fy) =
X . Conversely given any representation m : C(3) — B(H), it is the case that
7n(fo) is a self-adjoint operator X satisfying o(X) C 3.

Proof. To begin with, if X &€ B{H) is a self-adjoint operator such that
o(X) C I, then it follows from the inequality (1.5.12) that ||p(X)| B <

Pllewxyy £ |Iplloy for any polynomial p. It is easily deduced now, from
Weierstrass’ theorem, that this mapping C|¢t] 3 p — p(X) € B(H) extends
uniquely to the desired *-homomorphism from C(%} to B(H).

Conversely, it is easily seen that fy — A is not invertible in C(X) if and

only if A € ¥ and as 7 preserves invertibility, we find that

o(X) =0o(r(fo)) Colfo) =2

as desired. (Strictly speaking, we have only defined spectra of operators, while
we are here talking of the spectra of elements of unital Banach algebras — C(30),
to be precise — but the definition is more or less the same.)
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REMARK 2.1.6. Representations m; : C{X) — B(};) are equivalent if and
only if the operators m;(fo),7 = 1,2 are unitarily equivalent. This is because a
representation of a singly generated C*-algebra is uniquely determined by the
image of the generator.

2.2 Cyclic representations and measures

Assume, for the rest of this book, that ¥ is a separable compact metric space.
Suppose 7 : C(X) — B(XH) is a representation of C'(X) on a separable Hilbert
space.

DEFINITION 2.2.1. A representation © : C(2) — B{(H) is said to be cyclic
if there exits a vector x € H such that n(C(3))x is a dense subspace of JH.
In such a case, the vector x is called a cyclic vector for the representation. If
such a wvector exists, one can always find a unit vector which is cyclic for the
representatlion.

Before proceeding, it will be wise to spell out a trivial, but nevertheless
very useful, observation.

LEMMA 2.2.2. If §; = {3:51) : 7 € A} is a set which linearly spans a dense sub-

space of a Hilbert space H; fori=1,2, and if {mgl},:rg)) = (:rf),mf}} for all
ik € A, then there exists a unique unitary operator U : H; — Ha such that
Um;-l) — :[:5-2) Vi € A.

Proof. The hypotheses guarantee that the equation

1 2
(S a) = s
£=1 =1

unambiguously defines a linear bijection Uy between dense linear subspaces of
the two Hilbert spaces preserving inner product, and hence extends uniquely
to a unitary operator UU with the desired property. Uniqueness of such a U
follows from the fact that the difference between two such U’s would have a
dense linear subspace in its kernel.

PROPOSITION 2.2.3. (1) If p is a finite positive measure defined on the Borel
subsets of Y2, then the equation

(mu(f)) (9) = fg Vf € C(2), g € L*(Z, )

defines a cyclic representation 7, of C(X) with cyclic vector go = 1.

(2} Conversely, if m : C(X) — B(H) is a representation with a cyclic vector
x, then there exists a finite positive measure y defined on the Borel subsets
of ¥ and a unitary operator U : H — L*(Z, u) such that Uz = go and
Un(f)U* = m(f) V] € C(D).
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(3) In the setting of (1) above, there exists a unique representation w, :

L*(E, u) — B(LA(S, 1)) such that (i) Tulows) = mr and (i) if {fn -
n € N} is such that sup, |[frlliex,) < o and fo = f u-a.e., then
17 (fr)g — Tu(£)gll 2,y — O Vg € L3(Z, ).

Further, the measure p is a probability measure precisely when the cyelic

vector ¢ 18 a unit vector.

Proof. (1) It is fairly clear that C(X) 5 f — w,(f)} € B(H) is a representa-

(2)

(3)

tion of C(E) and ”?Tu(f)”B(LE(E,,u}) < Hf”L‘x'(E,;L)' Clearly each “?I"H(f) 1S
normal, and it follows from Theorem 1.6.2 (2) that

Aesp(mu(f) © ufwe X :|fw)— A <e}) >0 Ve >0,

and in particular, |7, (f)| = spr{m.(f)) = |fllzeemy < 1 fllos- it is a
basic fact from measure theory — see Lemma Al in the Appendix ~ that

go is indeed a cyclic vector for the representation ,.

Consider the functional ¢ : C'(¥) — € defined by &(f) = (x(f)z,z). Tt
is clear that if f € C(X) is non-negative, then also fz ¢ C(X) is non-
negative and, in particular, real-valued, and hence

$(f) = (m(f3)z, 7(f3)z) > 0.

Thus ¢ is a positive ~ and clearly bounded — linear functional on C(X),
and the Riesz representation theorem — which identifies the dual space
of C(X) with the set M(X) of finite complex measures — guarantees the
existence of a positive measure u defined on the Borel sets of ¥ such that

o{f) = [ fdu. It follows that for arbitrary f,g € C(Z), we have

w(f)z, wlg)zy = (n(gf)z, )
= 9(9])

/gfd;u

= (W#(f)g{):ﬂg(g)g@ X

An appeal to Lemma 2.2.2 now shows that there exists a unitary oper-
ator U : H — L*(X, p) such that Un(f)z = 7.(f)go Vf € C(T). Set-
ting f = 1, we find that Uz = ¢o. And for all g € C(X), we see that

Un(fYU*mu(glgo = Un(f)n(g)z = m,(f)m,(g)ry with the result that,
indeed, Un(f)U* = n,(f), completing the proof of (2).

Simply define 7,(¢)g = ¢g Vg € L*(Z, u). Then (i) is clearly true, while
(#2) is just a restatement of the bounded convergence theorem of measure
theory. The uniqueness assertion regarding =, follows from the demanded
(1) and Lemma A2 in the Appendix.




2.2. Cyclic representations and measures 39

It would make sense to introduce a definition and a notation for a notion
that has already been encountered more than once.

DEFINITION 2.2.4. A sequence {X,, : n € N} in B(H) is said to converge in the
strong operator topology — henceforth abbreviated to SOT — if { X,z : n € N}
converges in the norm of H for every x € H. It is a consequence of the ‘uniform
boundedness principle’ that in this case, the equation

Xr= lim X,x

T—r O

defines a bounded operator X € B(H). We shall abbreviate all this by wriling
SOT '

X, — X.

We record a couple of simple but very useful facts concerning SO conver-
gence. But first, recall that a set & C H is said to be total if the linear subspace
spanned by 8 is dense in H. (eg: any orthonormal basis (onb) is total.)

LEMMA 2.2.5. (1) The following conditions on a sequence {X,, : n € N} C
B(H) are equivalent:

(a) X, 23 X for some X € B(H);
(b) sup, 1 X, | < oo, and there exists some total set 8 C H such that
X,x converges for all x € §;

(c) sup, || X,| < o0, and there exists a dense subspace M C H such that
X,x converges for all x € M.

(2) If sequences Xn, 2 X and Y, VY in B{H), then also X,)Y, skl

XY,

Proof. (1) The implication (a} = (b) follows from the uniform boundedness
principle, while (b) = (c) is seen on setting M = \/ 8, the vector subspace
spanned by 8. As for {¢) = (a), if sup,, || X»|| < K(> 0), note that the
equation Xz = lim,, X,z defines a linear map X : M — H with || Xz| <
K||z| YV € M; the assumed density of M ensures that X admits a unique
extension to an element of B(}), also denoted by X, with || X|| < K and
Xpx — Xz ¥V € M. Now, if x € H and ¢ > 0, choose 2’ € M such
that ||z — 2| < ¢/3K, then choose an ng € N such that ||(X,, — X)z/|| <
€/3 Vn > no and compute thus, for n > ng:

|(Xn — X)zl| < [[(Xn—X)(z—2)| + [(Xn - X)a|
< (2K)&+§

— €.

(2) Begin by deducing from the uniform boundedness principle that there
exists a constant K > 0 such that | X,.|| < K and ||Y,,| < K for all n. Fix
r € H and an ¢ > (). Under the hypotheses, we can find an ng € N such



36 Chapter 2. The Spectral Theorem

that ||(Y, — Y)z| < ¢/2K and ||(X, — X)Yz| < €/2 for all n > ny. We
then see that for every n > nyg

i

(XnYn — XY)z|] (XnYn — XnY + XnY — XY)z|,
| Xn (Y = Y)z|| + [i{(Xn — X)Y x|

€,

A IA

thus proving that indeed X,Y, 207 xY.

The following important consequence of Proposition 2.2.3 is ‘one half’

of the celebrated Hahn-Hellinger classification of separable representations of
C(%). (See Remark 2.3.3.)

THEOREM 2.2.6. If r : C(X) = B(KH) is a representation on a separable Hilbert
space H, there exists a countable collection {p, : n € N} (for some countable
set N} of probability measures defined on the Borel-c-algebra By such that
is (unitarily) equivalent to ®r,  : C(X) - B( P L*(Z, pn))-

Proof. Note that H is separable, as is the Hilbert space underlying any cyclic
representation of C{X) (since the latter is separable). Also observe that m(C(X))
is closed under adjoints, as a consequence of which, if a subspace of M C H is
left invariant by the entire *-algebra 7 (C(%)), then so is M1. It follows from the
previous sentence and a simple use of Zorn’s lemma, that there exists a count-
able (possibly finite) collection {z, : n € N} (for some countable set N} of unit
vectors such that H = @,y (7(C(X))xn). Clearly each M,, = (n(C(¥))zn)
is a closed subspace that is invariant under the algebra w(C(%)}) and yields a

cyclic subrepresentation 7, (-} = 7(-}|n, . It follows from Proposition 2.2.3 (2)
that

T = @neﬁr T ~ P 7,

for the probability measures given by

/ f dpin = (7(f)Tnr Tn) -
b

LEMMA 2.2.7. In the notation of Proposition 2.2.3(8), the following conditions
on a bounded sequence {f,} in L°(u) are equivalent:

(1) the sequence {f,} converges in (u-) measure to 0;
(2) Filfn) =5 0.

Proof. (1) = (2): This is an immediate consequence of a version of the domi-
nated convergence theorem.



2.2. Cyclic representations and measures 37

(2) = (1): Since the constant function gy = 1 belongs to L%(%, u), it
follows from the inequality

u{lfn— fl2€)) < €2 [ fo — fI2dy
{|fﬂ f|}f}
< € f fn - fIdu

that indeed p({|f., — f| > €}) =+ 0 Ve > 0.

THEOREM 2.2.8. Let m : C(X) = B(H) and {i, : n € N} be as given in
Theorem 2.2.6. Choose some set {e¢, : n € N} of strictly positive numbers
such that 3 _n€n = 1, and define the probability measure u on (L, Bs) by
B=2 . cn €nlin- Then, we have:

(1} For E € By we have u(E) = 0 & pun(E) = 0 Vn € N. Further, ¢ €
Lm(zw lu') = ¢ € Lm(zj Ju'n) vn € N and sup, l|¢|le(pn} = ”‘M‘Lm(p}-

(2) The equation # = B, ,cn Tpu,, defines an isometric representation T :
L>®(2,u) — B(H) such that the following conditions on a uniformly
norm-bounded sequence {¢,, : n € N} in L°(u) are equivalent:

(a) ¢r, = 0 in measure w.r.t. u.

(b) ¢ — 0 in measure w.r.t. p,, for all m.
SOT

(c) T(¢p) — 0.

Proof. Before proceeding with the proof, we wish to underline the (so far un-
written) convention that we use throughout this book: we treat elements of
different LP-spaces as if they were functions (rather than equivalence classes of
functions agreeing almost everywhere.).

(1) Since €, > 0Vn € N, it follows that u(E) =0& pu(E)=0Vn € N.

Since a countable union of null sets is also a null set, it is clear that
if ¢ € L>°(u), we may find a g-null set F which will satisfy the condition
@]l Loy = sup{lo(A)! : A € E\ F}. For E € By we have u(E) =0 &

un(E) =0VYn € N. Let F, = FU{%= = 0}. Clearly,

#n(ﬂmEN Fm) < pp(Fr) =0 Vn
so, also p(,.cn Fm) = 0. Since ((),,cn Fm) O F, we see thus that

[l Loy = sup{lg(N)]: AL\ ﬂme.hr F,}

= sup{ HN)] A€ UmEN(E\Fm)}
= sup sup{|¢(})]: A € S\ Fn}

= sup ||@]| Lo (um) -
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(2) If ¢ € L% (y), then

sup ||y, (&)
meN

sup ||@| zoe (..
me N

= ||@llee(ny by part (1) of this Theorem

17 (D)

|

so 7 is indeed an 1sometry.

Suppose sup, ey || @nllpee(n) < C < oo.

(a) = (b) : This follows immediately from i, < €, .

(b) = (a) : Let 4,¢ > 0. We assume, for this proof, that the index
set IV is the whole of N; the case of finite &V is trivially proved. First choose
N’ € N such that 3 °_ /. €ém < €/2. Then choose an ng so large that
n > ng = Um({|dn]| > 8}) < €¢/2N’¢,,; and conclude that for an n > ng,
we have

N’ o0
p{[8nl > 6} < Y empm{igal > 6D+ D em
m=1 m=N"+1
Al € c
) fnzz:lﬁmszEw; I §

I

(8) = (c): As ||7(dn)|| < C Vn, using Lemma 2.2.5 it is enough to
prove that limp—ec 7(¢n )}z = 0 whenever z = ((zm)) € B, _; L*(tm) is
such that z,, = 0V m # k for some one £. By Lemma 2.2.7, the condition
(b) is seen to imply that |7, (6n)zk | — 0; but | #(én)all = |7, (én)ai]
and we are done.

(¢) = (b): If condition (c) holds, it can be seen by restricting to

the subspace L*(pm) that 7, (¢n) A 0, and it now follows by applying

Lemma 2.2.7 that the sequence ¢,, — 0 in measure with respect to g, for
each m € N.

2.3 Spectral Theorem for self-adjoint operators

Throughout this section, we shall assume that X € B(H)} is a self-adjoint
operator and that ¥ = ¢(X). In the interest of minimising parentheses, we shall
simply write C*(X) rather than C*({ X }} for the (unital) C*-algebra generated
by X. As advertised in the preface, we shall prove the following formulation of
what we would like to think of as the spectral theorem.
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THEOREM 2.3.1. /Spectral theorem for self-adjoint operators/

(1) (Continuous Functional Calculus) There exists a unique isomelric ¥
algebra isomorphism

C(X) > fr f(X) € C7(X)

of C() onto C*(X) such that fo(X) =X

(2) (Measurable Functional Calculus) There exists a measure p defined on
Bs. and a unique isometric *-algebra homomorphism

L=(Z,u) > f > f(X) € B(XH)

of L®(X, 1) into B(H) such that (i) fo(X) = X, and (it) a norm-bounded
sequence {fn : n € N} in L%(X, u) converges in measure w.r.t. p (to f,
say) if and only if the sequence { f,(X) : n € N} SOT converges (to f(X)).

Proof. (1) It follows from Proposition 2.1.5 that there exists a unique repre-
sentation 7w : C(X) — B{H) such that 7(fo) = X. As for the ‘isometry’

assertion, observe that for any p € C[t], the spectral mapping theorem
ensures that

H’J’T(P)HB(:}{) = spr(p(X)) = lplls = HP“C(E)

and the Weierstrass approximation theorem now guarantees that

I7{ sy = | flley Vf € C(F)

as desired.

(2) As f — f(X) is a representation, say n, of C'(¥), if 4 and 7 are as in
Theorem 2.2.8 (2), the equation 7(¢) = ¢(X) defines a measurable func-
tional calculus with the desired properties. Thanks to Lemma A2 in the
Appendix, there can be at most one isometric (unital) *-homomorphism
of (X, 1) into B(H), i.e., a measurable functional calculus, which (i)
extends the continuous functional calculus 7 and (¢4) maps uniformly
bounded sequences converging in measure (w.r.t. u) to SOT convergent
sequences.’ So we see that there indeed exists a unique *-homomorphism
from L°°(X, i) into B(J{)} with the desired property. |

COROLLARY 2.3.2. If u;,i = 1,2 are two probability measures satisfying the
conditions imposed on p in Theorem 2.3.1, then py and po are mutually ab-
solutely continuous. In particular, the Banach algebra L>(3, 1) featuring wn

Theorem 2.3.1 (2) is uniquely determined by the operator X, even if itself 1s
not.

1Recall that & C B — see Corollary 1.6.3 — and that fp denotes the function fo : 2 — R
defined by fo(t) =¢.
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Proof. Suppose 7; : L%, p;) — B(H), 1 = 1,2 are isometric *-isomorphisms
which (i) extend the continuous functional calculus (call it 7 : C(Z) —
C*({X})}), and (ii) satisfy the convergence in measure — sequential SOT con-
vergence homeomorphism property as in part (2) of Theorem 2.3.1. Define
v = (1 + p2)/2. Then convergence in measure w.r.t v implies convergence in
measure w.r.t. p; for 1 = 1,2 since u; < 2v.

Suppose 1 (F) = 0 for some F € Be.

Then appeal to Lemma A2 of the Appendix to find a sequence {f, : n €
N} € C(X¥) such that || f,.|| £ 1 v-a.e. and such that f,, — 1g in measure w.r.t.
v. Then also f,, — 1g in measure w.r.t. y;,1 = 1,2. Then the assumptions
imply that

m2(1Eg)

{

SOT — lim 7o f)
SOT — lim#,(fn)

TT1(1E)
0

and hence us(F) = 0. By toggling the roles of 1 and 2, we find that 1, and us
are mutually absolutely continuous, thereby proving the corollary.

The last assertion is an off-shoot of the statement that the ‘identity map’ is
an isometric isomorphism between L°° spaces of mutually absolutely continuous
probability measures.

REMARK 2.3.3. (1) Our proof of the spectral theorem, for self-adjoint opera-
tors, actually shows that if ¥ is a compact metric space and 7 : C(¥) —
B(H) is a representation, i.e., a unital *-homomorphism, on a separa-
ble Hilbert space, there exists a probability measure u defined on By —
which is unique up to mutual absolute continuity — and a representation
i L=(u) — B(H) which is uniquely determined by (i) 7 ‘extends’ ,
and (i) a norm-bounded sequence {f, : n € N} C L°(u) converges to 0
in (@) measure if and only if #(f,,) SOT-converges to 0.

(2) Further, if 7 is isometric, so is % and in particular, if U is a non-empty
open set in &, then u(U) 5 0, or equivalently #(1y) # 0.

(3) All this is part of the celebrated Hahn-Hellinger theorem which says: the
representation m is determined up to unitary equivalence by the mea-
sure class (w.r.t. mutual absolute continuity) of ; and a measurable
spectral multiplicity function m : ¥ — ({0} UN) := {0,1,2,-- , R},
which is determined uniquely up to sets of x4 measure zero; in fact if
E, = m™1(n), n € {0} UN, then 7 is unitarily equivalent to the represen-
tation on eneﬁl LZ(EH,MEH) ® H,, given by $neﬂ Tulp, ® idg¢_, where
H,, is some (multiplicity) Hilbert space of dimension n.
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2.4 The spectral subspace for an interval

This section is devoted to a pretty and useful characterisation, from [Hal|, of the
spectral subspace for the unit interval. We first list some simple facts concerning
spectral subspaces (= ranges of spectral projections). We use the following
notation below: for a self-adjoint operator X, let Mx(E) = ran 1g(X). We also
use the as yet undefined notions {but only the definition) of order and positivity
— see Proposition 2.8.12, especially part (b) and the final paragraph in it — in
the following Proposition.

PrROPOSITION 2.4.1. Let X € B{(H) be self-adjoint. Then,
(1) allal? < (Xz,2) < blall? Yz € Mx([a, b));
(2) X1igoey(X) 2 0;
(3) €>0,z€ Mx(R\ (to — €, to +€)) = |(X — to)z| = ellz]];
(4) to € o(X) & Mx({to — €, to +¢€)) # {0} Ve > 0; and
(5) Mx({to}) = ker(X —tg).

Proof. (1) Notice first that *-homomomorphisms of C*-algebras are order-
Preserving since

r<y = y—2z2>0 (ie,3zsuchthat y—z=2"2)
= () m(x) =y —x) = n(z)"7m(z) 2 0
= w{z) < 7(y)

Hence
ﬂ’]‘[ﬂa.,b] (t) < tl[u,b] (t) < bl[u,b] (t) = al[a}b](x) < Xl[a,b](x) < bl[a,b] (X)

and the desired result follows from the fact that 1, y(X)z = = Vo €

MX([uu b])

(2) This follows from (1) since 1jg,00)(X) = Ljo,1x 1 (X)-

(3) It follows from (1) that if z € Mx(R\ (to —€,t0 + €} = M(x_tﬂ)Z([ o))
(by the spectral mapping theorem), then €*|z|?* < {(X — to)°x :1:) =
(X — to)=x|*.

(4) If p is as in Theorem 2.3.1 (2), observe that

to & 0(X) (X —to) € GL(K)

(fo —to) is invertible in L>(a(X), u)

Je > 0 such that |fo —to| = € p — a.e.

Je > 0 such that u((tg —€,tp +€)) =0

Je > 0 such that Mx ({to — €,tp +¢€)) = {0} .

t ¢t ¢80
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(5) Clearly X commutes with 15(X) VX and hence the subspace M x(F) is
invariant under X for all &/, X. It follows from (1) above that {Xoz, z) =
tollz||* Vo € Mx{to} where Xg = X|ny(qt,}) and hence ker(X — #5) O
Mx ({to}). Conversely, if z € ker (X — ty), then for any € > 0, we have
(X = L) IR\ (tg—e,t0+0) (X @) = IR\ (20— e.t04+0) (X)(X — to){(z) = 0, whence
IH\{tU—E,tg+E)(X)I: =0 b}r (3) above. So z € Mx(tﬂ — E,t[] + E); since ¢
was arbitrary, we have z € ()., Mx(to —€,tg+¢) = Mx ({to}), so indeed
ker (X —to) = Mx({to}).

Now we come to the much advertised pretty description by Halmos of
Mx([-1,1]).

PROPOSITION 2.4.2. Let X = X* be as above, and let £ € H. The following
conditions are equivalent:

(1) x € Mx([-1,1)).
(2} [iX"z|| < |z| ¥n € N.
(3) {||X™z|| : n € N} is a bounded set.

Proof. (1) = (2): The operator X leaves the subspace Mx ([—1,1]) invariant,
and its restriction X to this spectral subspace satisfies -1 < X; < 1 (by
Proposition 2.4.1(1) and hence || X, || = spr(X;) < 1 whence also || X"|| < 1, as
desired.

(2) = (3) is obvious.

(3) = (1): If we let z; = Li_1,1){X)z, we need to show that z = x; for
this, note that

I — I — (1 — 1{__1,1]()())‘17

— 1@\[_111](}():1?
= lim Ipy (X)z

= OO0

where we write the symbol I,, to denote the interval (—1 — %,1 + ,_,—1]:), so it
suflices to show that 1g\; (X)z = 0 ¥n. Indeed, if there exists some n such
that ¥y, = 1p\7, (X)x # 0, it would follow from Proposition 2.4.1 (3) that

[ Xynl > (1+2)(lyall and that hence | X™z|| > ||1gy s, (X)X ™z]| = | X™yn| >
(14 $)™{|ynll- So the sequence {IX™z| : m € N} is not a bounded set if any
Yn 7 0.

COROLLARY 2.4.3. (1) z € Mx([tg — €, 1y + €]} < {(i‘::—tﬂ)ﬂm :n &€ N} s
bounded.

(2) If a Y € B{H) commutes with X, ie., Y.X = XY, then Y leaves Mx (I)
mvariant for every bounded interval I.

Proof. (1) This follows by applying Proposition 2.4.2 to (X — tg)/e rather
than to the operator X.
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(2) fYX = XY and if I is a compact interval (which can always be written
in the form [tg — €,tg + €]), it follows from (1) above that

X — 1ty
€

= {Y (X _tﬂ) T nEN} is bounded

€

— { (X_tﬂ) Yz:nc N} is bounded

€

€ Mx([to—€,to+¢€) = {( ) I:HEN} is bounded

= Yz c M}:([t(] —€,1g + E]),

so Y leaves the spectral subspaces corresponding to compact intervals
invariant.

If 7 is an open interval, there exist an increasing sequence {I, :
n € N} of compact intervals such that [ = {J, .y In. But then 1;(X) =

SOT — limy, 400 17, (X) and Mx(I) = (|J,, Mx(1,}). The previous para-
egraph shows that Y leaves each M x(I,,), and hence also M{[}), invariant.

Similar approximation arguments can be conjured up if 7 is of the
form [a,b) or (a,b]. (For example, [a,b— 2]+ [a,b) and [a + =, b] T {(a, b].)

2.5 Finitely many commuting self-adjoint operators

We assume in the rest of this chapter that Xy,..., X,,... are commuting self-
adjoint operators on H.

DEFINITION 2.5.1. Consider the set Xy = X(X,...,Xx) consisting of those
(A1,..., x) € R* for which there erists a sequence {x, : n € N} of unit vectors
in H such that limy, 00 | (X5 — M)zn|| =0 for 1 < ¢ < k. Thus Xy consists
of k-tuples of scalars which admit a sequence of ‘simultaneous approxrimate

ergenvectors’ of the X;’s, and will be referred fo simply as the joint spectruun
ﬂle,... ,Xk.

If (A1,..., ) € Xy, it is clear that A\; € o(X;) for 1 < i < k, and in
particular 2y C Hf:1 og(X;) and is hence bounded.

LEMMA 2.5.2. (1) 3y is a compact set for k > 0; and
(2) If k > 0 then pr(Zk) = L(Xy), where pr;, : R¥ — R denotes the projec-

tion onto the k-th coordinate; in particular, 2y # §.

Proof. (1) We have already seen above that X is bounded, so we only need
to prove that it is closed. So suppose ()\gﬂ), e )\iﬂ) ) € ¥ foreach n € N
and A — A; for each 1 < j < k. Pick any € > 0. Then (A", ..., \{")) €
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¥k = dz € S(H) such that [|{X; — )\gﬂ})mil < ¢/2for 1 < j <k (and for

all n). Next, )\g-”) — A; = dn such that \)\;ﬂ) — Xj| < €/2. Thus, for any
e > 0, we have shown that 3z € S(X) such that

(X5 — A5zl < (X, — /\E,-”)):nﬂ + IA?) —dji<efor1 <j<k

and indeed (Aq,..., s} € Xk and Xy is closed.

We shall prove the result by induction on k. For k = 1, assertion (2)
follows from Theorem 1.6.2 (2) and the non-emptiness of o(X1).

Suppose now that the Theorem is valid for k, and suppose we
are given commuting self-adjoint operators X1,..., Xk, Xp11. Let us
prove that Axr1 € o(Xg41) implies that there exists (AL,...,Ax) €
E(X],. .- ,X;;;) such that (}\1, e :)\ka}‘k—i—l) - E(le = :Xkka—%l)-

For each n € N, let M,, = My, ,(Aes+1 — %,}kk+1 + %), where we
continue to use the notation Mx(E) := 1g(X) of the last section. By
Proposition 2.4.1 {4), we see that M,, # {0} ¥n. By Corollary 2.4.3 (2),
each X, leaves M,, invariant. Define X;(n) = Xjjm, V1 <1 < k,n € N
Deduce by induction hypothesis that Zx(n) := B (X1{n),..., Xk(n)) #
0 ¥n. Since {M,, : n € N} is a decreasing sequence of subspaces, it is clear
that also {3k (n) : n € N} is a decreasing sequence of non-empty compact
sets. The finite intersection property then assures us that we can find a
(M, ..., M) in the non-empty set [\, oy Zk(n). Hence, by definition of
the joint spectrum of commuting self-adjoint operators, we can find unit
vectors z, € M, such that [[(X; —A)za]| = [[(Xi(n) = X)zn|| < & for 1 <
i < k, and n € N. On the other hand, it follows from the definition of M,
that [[(Xer1 — Aka1)Znll < 2. Thus, [|[(X; —Xi)zall < ~V1<i<k+1for
every n < N; in other Wﬂl‘dﬂ, (}\1, vouy )\k} )‘k*H) < E(Xl, ceey Xk, X;,:_|_1).
Since L{Xx11) = 0(Xks1) # 0 the proof is complete.

PROPOSITION 2.5.3. For any polynomial p € C[t1,...,t;], the operator Z =
p(X1,...,Xg) ts normal, and

(1) o(Z) = p(Zx); and
(2) ||1p(X1,..., Xx)|| = |pllz., where the p on the right is the evaluation func-

tion on X given by the polynomial p.

Proof. (1) Let ¢g= Z(p+p),r = =(p—p) and X1 = q(X1,.--, X)), Yet1 =

r(Xiy,...,Xg). Then clearly gq,r < R[tq,...,tk|, so that Xgy1 and Yiiq
are self-adjoint operators commuting with X,, ..., X} and with each other
as well (so Z is indeed normal). Since it follows from Corollary 1.6.4 that
A=a+if € 0(Z) & a € oc(Xks1) and 8 € o(Yy41), we see that it
suffices to prove the case when p = ¢ is real-valued and Z = Xj41 15 &
self-adjoint operator which is a real polynomial in X1, ..., X% (and hence
commutes with each X; ).
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Suppose Axy1 € 0(Xgs1). It then follows from Lemma 2.5.2
that there exists (A1,...,Ax) € Xy such that (Ay,..., g, Agy1) €
Y(Xi,..., Xk, Xxr1). Thus there exists a sequence {z, : n € N} of unit
vectors in H such that {|(X; — X))z, = 0V1 <i < k+ 1. It follows easily
from this requirement for the first &£ ¢’s that then, necessarily, we must have
1p(X1s  Xk)—B(As -  Ae)|Tal] — O while also |(Xis1 — Aea1)znll =
0, which forces Agy1 = p(A1,-- -, Ax); in view of the arbitrariness of Ax4i,
this shows that o{Xry1) C p(Xy). Conversely, it must be clear that if
(A1,..., A} € Xy, then p((A1,...,Ax)}) is an approximate eigenvalue of
p(Xq, -+, Xi) and thus, indeed, o(p(X,,--- , X&) = p(E(X1, -+, X&)

(2) This follows immediately from (1} above and Proposition 1.5.6 (2).

COROLLARY 2.5.4. With the notation of Proposition 2.5.3, we have:

(1) The ‘polynomial functional calculus’ extends uniquely to a tsometric *-

algebra tsomorphism

C(E)s fo f(Xy, -, X)) e C{ X1, ..., Xk D) ;

(2) There exists a probability measure u on By and an isometric *-algebra
monomorphism 7 : L>{u) — B(H) such that (i} & ‘extends’ 7, and (it} a
norm-bounded sequence {f, : n € N} in L™(u) converges to the constant
function 0 in (u) measure if and only if 7(fn) SOT-converges to 0.

Proof. (1) This follows from Proposition 2.5.3(2) and a routine application
of the Stone-Weierstrass theorem, to show that the collection of complex
polynomial functions on a compact subset X of R*, by virtue of being a
self-adjoint unital subalgebra, of functions which separates points of X, is

dense in C{33).
(2) This is a consequence of item (1) above and Remark 2.3.3.

2.6 *The Spectral Theorem for a normal operator

We are now ready to generalise Theorem 2.3.1 to the case of a normal operator.
This is essentially just the specialisation of Corollary 2.5.4 for & = 2.

Thus, assume that Z = X +iY € B(H) is the Cartesian decomposition
of a normal operator and that ¥ = ¢(Z). In view of Proposition 2.5.3 (1}, we
see that ¥ = {s + it : (s,¢) € L(X,Y)}, and we may and will identify ¥ C C
with 2(X,Y) C R?.

In the following formulation of the spectral theorem for the normal oper-
ator Z (as above), the functions f;,i = 1,2 denote the functions f; : ¥ -+ R
defined by fi1(2) = Re z, fo(2z) = Im z. We omit the proof as it is just Corollary
2.54 for k = 2.
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THEOREM 2.6.1. (1) (Continuous Functional Calculus) There exists a unique
isometric *-algebra isomorphism

C(E) > f — f(Z) € C*(Z)

of C(B) onto C*(Z) such that fi(Z) = X, f2(Z) =Y.

(2) (Measurable Functional Calculus) There exists o measure defined on
By and a unique isometric *-algebra homomorphism

L®(Z,pu) > f = f(Z) € B3

of L® (T, 1) into B(H) such that (i) f1(Z) = X, f2(Z) =Y, and (@)
a norm-bounded sequence {fn : n € N} in L>(X, u) converges in (u)-
measure to f if and only if the sequence {fn(Z) : n € N} SOT-converges

to f(Z).

Now we proceed to the conventional formulation of the spectral theorem
in terms of spectral or projection-valued measures P : B¢ — B(H).

THEOREM 2.6.2. Let N be a normal operator on a separable Hilbert space H.
Then there exists a unique mapping P := Py : Be — B(H) such that:

(1) P{E) is an orthogonal projection for all EE € Be;

(2) E — P(E) is a projection-valued measure; i.c., whenever {En :n € N }C
Be is a sequence of pairwise disjoint Borel sets, and E = [[,cn En, then
P(E) =Y, o P(Ey), the series being interpreted as the SOT-limit of the

sequence of partial sums;

(3) for x € H, the equation P, (E) = (P(E)z,x) defines a finite positive
scalar measure with Py -(C) = ||z{|?;

(4) for =,y € H, the equation P, ,(F) = (P(E)z,y) defines a finite compler
measure, with the property that

(Nz,y) = /E)\dPLy(A) ; (2.6.1)

more generally for any bounded measurable function f : C — C, we have

(F(N)z,y) = L F(\) 4Py (V) ; (2.6.2)

(5) the spectral measure P is ‘supported’ on the spectrum of N in the sense
that P(U) # 0 for all open sets U that have non-empty intersection with
Y := o(N) - or equivalently ¥ is the smallest closed set with P(¥) = 1.
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Proof. FEzxistence: Use the measurable functional calculus to define P(E) =
In(E). As 1g = 1g = 1%, we see immediately that P(E) = P(E)* = P(E)?,
and hence (1) is proved. As for (2), note that the pairwise disjointness assump-
tion ensures that y;n_ g, = >, 1g,, while [T, Ex 1 [1, .y Er implies
P(I1,—, Ex) = SOT-lim,, .o, P(][5_; Ex), thus establishing (2).

Since {Qx,z) = ||Qzl|* > 0 for any projection @, item (3) follows imme-
diately from item (2). The polarisation identity and the definitions show that
Py, = %Z?:n i/ Prtiiy z44iy, thereby demonstrating that P, , is a complex
linear combination of four finite positive measures, and is hence a finite com-
plex measure. To complete the proof of item (4), it suffices to prove equation
(2.6.2) since equation (2.6.1) is a special case (with f(z) = 1s(2}z). Equation
(2.6.2) is, by definition, valid when f is of the form 1g, and hence by linearity,
also valid for any simple function. For a general bounded measurable function

f, and an € > 0, choose a simple function s such that ||s — f|| < e uniformly.
Then,

[{(F(N)z,y) — (s(N)z,y)| < eflz] ||yl

depm—/gdpx,y

(V)2 9) — [ FdPey| < ellel Iyl + 11 Poy

and

< €| Pr,y |

50

) -

As € was arbitrary, we find that equation (2.6.2) indeed holds for any bounded
measurable f.

As for (5), suppose P(U) = ( for some open U, and zy € U. Pick € > 0
such that D ={z € C : |z — 2| < ¢} CU. Then P(U) =0= P(D) =0=
|1p|reqwy = 0 = pu(D) = 0 = fﬂizﬂ € L>®(p) = zo ¢ o(N), so, indeed
P(U)=0,U open = UNX=0.

sar

Uniqueness: If, conversely P is another such spectral measure satisfying the
conditions (1)—(5) of the theorem, it follows from equation (2.6.2) that

/sz” dP, ,(2) = (NTN*"z,y) = /z”l,fi'l APy ,(2) Vm,n € Z, .

Since functions of the form 2z +— 2™z" span a dense subspace of C'(¥}, thanks
to the Stone-Weierstrass theorem, it now follows from the Riesz representation
theorem that P, , = P, ,. The validity of this equality for all z,y € H shows,

finally, that indeed P = P, as desired.

REMARK 2.6.3. Now that we have the uniqueness assertion of Theorem 2.6.2,
we can re-connect with a way to produce probability measures in the measure
class of the mysterious p appearing in the measurable functional calculus. If P
denotes the spectral measure of X, the following conditions on an E € By, are
equivalent:
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(1) 1e(X)(= P(E)) = 0.

(2) u(E)=0.
(3) P (F)=0 for all x in a total set § C H.

Hence, a possible choice for g is 3, .y27" P, ., where {e, : n € N} is an
orthonormal basis for .

Incidentally, a measure of the form P, , is sometimes called a scalar spec-
tral measure for N.

Reason: (1) & (2) This is because L(u) 3 f — f(X) € B(H) is isomet-
ric by Theorem 2.3.1 (2).

(1) & (3) This is because (i) for a projection P — in this case, P(E) —
(Pz,z) =0 ¢ Pz =0, and (i) 2 bounded operator is the zero operator if and
only if its kernel contains a total set.

REMARK 2.6.4. To tie a loose-end, we wish to observe that || P, || < l|z|] ||lvll-
This is because

|P: ol = inf{K >0: depx,y

< Kl|[fllem Vf € C(X)}

and
[ £aPe] = KENz
< AN ) ]
< |fllew) lizl lyll-

REMARK 2.6.5. This final remark is an advertising pitch for my formulation
of the spectral theorem in terms of functional calculi, in comparison with the
conventional version in terms of spectral measures: the difference is between
having some statement for all bounded measurable functions and only having
it for indicator functions and having to go through the exercise of integration
every time one wants to get to the former situation!

EXERCISE 2.6.6. Let m, : L®(u) = B(L?(u)) be the ‘multiplication represen-
tation’ as in Proposition 2.2.3. Can you identify the spectral measure Py where

N = 7n,(f)? (Hint: Consider the cases ¥ = {2z € C: |z| = 1} and f(z) = 2"
with n = 1,2,. .., in increasing order of difficulty as n varies.)

2.7 Several commuting normal operators

2.7.1 The Fuglede Theorem

THEOREM 2.7.1. [Fuglede/ If an operator T commutes with a normal operator
N, then it necessarily also commutes with N*.
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Proof. When H is finite-dimensional, the spectral theorem says that N ad-
mits the decomposition N = Z:;l APy where o(N) = {A1,..., Az} and
P; = 14,1 (IN); observe that P, = p;(N) for appropriate polynomials p1, ..., px,
and deduce that T' commutes with each P, and hence also with f(V) for any
function f : o{N) — C, and in particular with N* = f; where f3(z) = z.

We shall similarly prove that T' commutes with each spectral projection
1g(N),E € B¢ and hence also with f(N) for each (simple, and hence each)
bounded measurable function f, and in particular, for f(z) = 1,(n5)(2)Z. Note
that T commutes with a projection P if and only if T leaves both M and M+
invariant, where M = ran(P).

We shall write M(E) = ran 1g(N). Since M(E)* = M(E’) (where we
write ' = C\ £}, we see from the previous paragraph that Fuglede’s theorem
18 equivalent to the assertion that if 7" commutes with a normal N, then T

leaves each M(E) invariant — which is what we shall accomplish in a sequence
of simple steps:

Define J = {E € B¢ : T leaves M(F) invariant}, so we need to prove that
F = Be¢.

(1) Write D(29,r) = {2 € C: |z — 29| < r} and simply D = D(0,1), so the
closure D = {z € C : |z| < 1} . We shall need the following analogue
of Proposition 2.4.2 for normal operators: The following conditions on an
x € H are equivalent:

(1) z € M(D).

(2) IN"z|| < {]z|| ¥n € N.

(3) {liN"z|l : n € N} is a bounded set.
Reason: (a) = (b):

z215(2) < 1= N*N1g(N) < idse = |Nz||2 <1 Vz € M(D) .

(b) = (e) is obvious.

(¢) = (a) Let z,,, := 1{3:J2|21+L}(N):£ vm € N; then, for all n € N,
we have, by Proposition 2.4.2,

|N* x| = |(N*N)"z|

A%

141142 )2,00) (N # N)(N*H)ﬂfﬂ“

1 \ 2n
> (14 =) fzml ;
T

and now, the assumed boundedness condition (¢) implies that we must
have x,, = 0 Vm and hence that z = z — lim,,, ,, 2, € M{ID); and the
proot of the normal analogue of Proposition 2.4.2 is complete.

Since
IN"Tz| = |[TN"z|| < |T||N"z|,

condition (c) above implies that if z € M(D), then also Tz € M(D); so
De F.
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D(z,r) e FvzeC,r > 0.

Heason: This follows by applying item (1) above to (N =),

F 1s closed under countable monotone limits, and is hence a ‘monotone
class’.
Reason: It E, € F Vn and if E, T E (resp., E, | F), then

1g,(N) °3' 1p(N) so that M(E) = (UM(En)) (resp., M(E) —
(YM(E,)) whence also £ € F.

J contains all (open or closed) discs.

Reason: The assertion regarding closed discs is item (2) above, and
open discs are increasing unions of closed discs.

F contains all (open or closed) half-planes.

Heason: This 1s because (i) every open half-plane is an increasing
union of closed discs (for example, R, := {2 € C: Re 2 > a} = |J7° {2z €
C: |z —{a+n)| < n}); and (i7) every closed half-plane is a decreasing
intersection of open half-planes (eg: {Rez>a— 1} | {Rez > a}.)

However, we will only need this fact for the special half-planes
Ho, Lt = {z € C: Rex < b} U. ={2€ C :Imz > c},Dg = {2z €
C:Imz < d}.

F is closed under finite intersections and countable disjoint unions.

KHeason: 1ﬂ?_lE¢ — H?:l lEi — M(ﬂ?:l Ei) = m?:l M(El) so 1if
Ei,...E, € F,and z €¢ M((_, E;), then z € M(E;) ¥i and Tz <
M(NL1 E;), so N,y E; € F. Similarly M(][>2, E,) = U2, M(E,)] im-
plies that J is closed under countable disjoint unions.

F = Bg¢.

Reason: It follows from items {5) and (6) above that F contains
(a,b] x (¢,d] = Ra N LyNU.N Dy and the collection A of all finite disjoint
unions of such rectangles. Since A U {@,C} is an algebra of sets which
generates Be as a o-algebra, and since F is a monotone class containing

AU {B,C}, the desired conclusion is a consequence of the monetone class
theorem.

REMARK 2.7.2. Putnam proved - see [Put| — this extension to Fuglede's theo-

re1n.

if Nj,2 = 1,2 is a normal operator on H; and if T € B(H;,H,) satisfies

T'Ny = NaT', then, we also necessarily have TNy = NJT. (A cute 2 x 2 ma-
trix proot of this — see [Hal2] — applies Fuglede’s theorem to the operators on

H; @& Hs given by the operator matrices [ 00 ] and [ N 0 ])

T 0 0 N,
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2.7.2 Functional calculus for several commuting
normal operators

This section addresses the analogue of the statement that a family of com-
muting normal operators on a finite-dimensional Hilbert space can be simul-
taneously diagonalised, equivalently, that an arbitrary family {N; : 7 € I}
of pairwise commuting normal operators admits a joint functional calculus —
i.e., an appropriate continuous and measurable ‘joint functional calculus’ 1den-
tifying (algebraically and topologically} appropriate closures of the *-algebras
generated by the family {N;;j € I'}.

Suppose {X; : ¢ € I} is a (possibly infinite, maybe even uncountable)
family of self-adjoint operators on H. For each finite set £ C I, let X be
the joint spectrum of {X; : j € F}. Recall that Xp C [, r o(X;). Let prg
[I.c;o(Xi) = 1l,cp 0(X;) denote the natural projection.

We start with a mild generalisation of Lemma 2.5.2(2).

LEMMA 2.73. If F C E C I are finite sets, and if prg : Hz’EE o(X;) —
[, CF o(X;) is the natural projection, then X p = prE(E E).

Proof. This assertion is easily seen to follow by induction on |E \ F| from
the special case of the Lemma when |E \ F| = 1. (Reason: If the result is
known for F,, ¢ E,|E\ F,| = n and if |[E\ F| = n+ 1, we can find F,
such that F C F, C E, |E\ Fi| = k, and observe that #% = =" omE
and deduce the truth of the assertion for n 4+ 1 from that of n and 1, thus:
Sp = prfr (Sp, ) = prit(prE (Sp).)

So suppose £ = {1,2,...,k + 1} and F = {L1,2,...,k}. Suppose
(M,...,Ax) € ¥p. If € > 0, it is seen from Corollary 2.5.4 and Remark
2.3.3(2) that M(e) 1= T(Ly(s,,.. t0)espiti—ri|<e vieF}) 7 0 and is invariant un-
der each X;,1 < ¢ <k + 1. If Xgi1(e) = Xpqi|me and ey € 0(Xipa(e)),
it is seen that Jx(e) € S(M(e)) such that ||[(Xgi1 — Aet+1)z(€)| < €. Since
(X — Az]| < € Yz € S(M(e)), we see that {z(1)} is a sequence of unit
vectors such that |[(X; — A)z(2)] < = ¥n, and indeed (Ay,... Axy1) € B so
g C prE(E ). The reverse inclusion is obvious, and the proot is complete.

For each finite F' C I, let 3(F) = pry (X r) and let X = (N, B(F).
THEOREM 2.7.4. With the foregoing notation, we have:

(1) X is a non-empty compact set, which we shall refer to as the joint spectrum
{}f {Xj . _jF - I}

(2) There exists a unique tsomorphism 7w : C(¥) — C*({X; : j € I}) such
that m(pry;y) = X; Vi€ I

(8) There exists a probability measure p defined on By, unique up to mutual
absolute continuity, such that the continuous functional calculus m above
‘extends’ to an isometric *-algebra monomorphism T of L™ (X, Bg, 1) —
B(H) with the property that a norm-bounded sequence {f, : n € N} C
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L3, By, ) converges in (i) measure if and only if the image of this se-
quence under this ‘joint measurable functional calculus’ is SOT-convergent.

Proof. (1) It is clear that X is the closed subset of R! consisting of those
tuples ((A;))icr such that for any finite F' ¢ I, it is possible to find a
sequence of unit vectors ¥, n € N such that [[(X; —X)zf || > 0Vi € F so
that, in particular X is a closed subset of | |, ; o(X;) and hence compact.
[t is not hard to see (from Lemma 2.7.3 and Lemma 2.5.2) that {3{F) :
F' a finite subset of 7} is a family of non-empty compact sets with the
finite intersection property, and that hence, their intersection, l.e., X, is
also non-empty and compact.

(2) On the one hand, the family {prp : F' a finite subset of I} linearly spans
a self-adjoint subalgebra of functions which separates points of 3, which
is dense in C(33). It then follows from Proposition 2.5.3 (2) that there is
a unique isometric *-algebra isomorphism 7 : C(3) — C*({X; : ¢ € 1})
such that m(prg;,) = Xj.

(3) This follows immediately from Remark 2.3.3.

Suppose now that N; = A; +iB; (resp., A; = a; + ¢3;) is the Cartesian
decomposition of N; as in the last paragraph (resp., A; € ¢(N;)), and denote
their joint spectrum by the set ¥ = {A = ({();));er € C! — or alternatively
{({a,8:))ie1 € (R%)!} — of those tuples for which it is possible to find a
- sequence {z, : n € N} of unit vectors such that

Tim [[(N; = Ap)zal® = lim ([[(A; = aj)zall* + [[(B; = B)zal*) =0 Vj € I

In view of Fuglede’s theorem, we see that commutativity of the family
{N; : 7 € I'} of normal operators is equivalent to that of the family {A;, B; :
7 € I} of self-adjoint operators. It must be clear that {({a; + i3;)) € C! :
(((aj,8;))) € B({A;,B; : j € Il may be defined as the joint spectrum of the
family {N; : j € I'} of normal operators, and the exact counterpart of Theorem
2.7.4 (with mild modifications, usually involving changing R to C and self-
adjoint to normal) for a family of commuting normal operators is valid.

EXERCISE 2.7.5. (1) Formulate and prove the precise statement of the ‘nor-
mal version’ of Theorem 2.7.4.

(2) Also state and prove a formulation of the ‘joint spectral theorem’ for a
family of commuting normal operators in terms of projection-valued mea-
SUures.

2.8 Typical uses of the spectral theorem

We now list some simple consequences of the spectral theorem (i.e., the func-
tional calculi) for a normal operator.
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PROPOSITION 2.8.1. 1. Let T € B{H) be a normal operator. Then
(a) T is self-adjoint if and only if o(T) C R.
(b) T is a projection if and only if o(T) C {0, 1}.
(¢) T is unitary if and only if o(T) C {z € C: |z| = 1}.
2. The following conditions on an operator A € B(H) are eguivalent:

(a) There ezists some Hilbert space K and an operator T € B(H,X)
such that A =1T*T.

(b) (Az,x) > 0 Vzr € K.

(c) A is self-adjoint and o{A) C [0, 0).

(d) A is normal and o(A) C [0, 00).

(e} There exists a self-adjoint operator B € B(H) such that A = B?.

Such an operator A is said to be positive, and we write A > 0, and more

generally, we shall write A > C if and only if A, C are self-adjoint opera-
tors satisfying A — C' > 0.

3. If A > 0, there exists a unigue B > 0 such that A = B?, and we denote
this unique positive square root of A by A3,

4. Let U € B(H) be a unitary operator. Then there exists a self-adjoint oper-
ator A € B(H) such that U = €', where the right hand side is interpreted
as the result of the continuous functional caleulus for A; further, given any
a € R, we may choose A to satisfy o(A) C [a,a + 27].

5 IfT € B(H) is a normal operator, and if n € N, then there exists a normal
operator A € B(H) such that T = A™,

6. Any self-adjoint operator T' admits a unique decomposition T =T, —T_,
where Ty >0 and T.T_ =0=T_T,

7. Any self-adjoint contraction {i.e., an operator T satisfying T = T* and
1T < 1 is expressible as the average of at most two unitary operators,

and hence any operator is expressible as a linear combination of at most
four unitary operators. ‘

Proof. (1) A normal operator T is self-adjoint (resp., a projection, resp., unitary
precisely when it satisfies T = T*, or T = T* = T?, or T*T = 1 respectively.
while the function fy € C(X), for ¥ C C, defined by fo(2) = z satisfies fy = fo
(resp., fo = fo = f3, resp., fofo = 1) precisely when ¥ C R (resp., & C {0, 1},
resp., % C {z:|z| = 1}).

(2) The implications {e) = (a} = (b) and {¢) = (d) are obvious. As for
(d) = {e), note that (d) implies that A is self-adjoint by 1(a). If the function
defined on [0,00), by f(t) = tz, denotes the positive square-root, then the
condition {¢) implies that f € C{(c(A)), and we see that B = f(A) works.
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(Notice that B € C*(A) by construction). As for (b) = (¢), the self-adjointness
of A follows from Corollary 1.5.3 (2), and the positivity of elements of c(A)
follows then from Theorem 1.6.2(2).

(3) Suppose B, is another prospective positive square root of A. Since
B e C*(A) C C*(B1) = C(o(B1)), there must be a non-negative g € C({c(By))
such that B = g(B1). As B? = A = B? we must have g(¢)? = 2 V¢ ¢ (B},
and we must have g(¢) =t so B = Bj.

(4) Let ¢ : C\{0} - {z € C:Im 2 € [a,a + 27)} be any (measurable)

branch of the logarithm - for instance, we might set ¢(z) = log|z| + 8, if
2 = |z]e*, a < @ < a+ 27 Setting A = ¢(U), we find - since 4=} — » - that
U =e'd,

(5) This is proved like 4 above, by taking some measurable branch of the

logarithm defined everywhere in C\ {0} and choosing the z= as the exponential
of = times this choice of logarithm.

(6) Define Ty = fo(T) where fi are the obviously continuous functions
f+ iR — R defined by fi = (|fo] £ f3/2. Then indeed

fo=fir—f,/+>20 and f f (=f_f)=0

and hence
T[] = T_|._ - T_,T:t E 0 and T+T_ =0 = (T_|_T_)* — T_T+.

As for uniqueness, if T = A, — A_ with Ay > 0,4, A = 0, note first
that

A+A_ =0 = A_A_|_ = (A.+_A_)* ~ {)
and hence that "

(Ap +A_ ) =A2 + A2 = (A, —A ) =T%= T

where |T'| represents the image, under the functional calculus for T, of the

function f(¢) = [t|; and we may deduce from the uniqueness of the positive
square root of a positive operator that (A, + A ) = |T| and hence we must
have

A = LT+ T) =Ty

as desired.
(7) Consider v+ € C([-1,1]) defined by vy (t) = t + iv/1 - £2. Note that
t=3(vy () +v_(t)) and |ve(t)|=1fort ¢ (—1,1]. Define Uy = vy (T).

As Uy are unitary with average T, it follows, by scaling, that every self-
adjoint operator is a linear combination of at most? two unitary operators, anc
the Cartesian decomposition completes the proof of the proposition.

2The reason for the ‘at most’ is that T might have already been self-adjoint and unitary
(i.e., satisfying T? = 1)



