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Abstract

We investigate a construction which associates a finite von
Neumann algebra M (T', u) to a finite weighted graph (T, u).
Pleasantly, but not surprisingly, the von Neumann algebra as-
sociated to to a ‘flower with n petals’ is the group von Neu-
mann algebra of the free group on n generators. In general,
the algebra M (T, ) is a free product, with amalgamation over
a finite-dimensional abelian subalgebra corresponding to the
vertex set, of algebras associated to subgraphs ‘with one edge’
(or actually a pair of dual edges). This also yields ‘natural’
examples of (i) a Fock-type model of an operator with a free
Poisson distribution; and (ii) a C @& C-valued semi-circular el-
ement.

1 Preliminaries

There has been a serendipitous convergence of investigations being
carried out independently by us on the one hand, and by Guionnet,
Jones and Shlyakhtenko on the other - see [GJS1], [KS1], [KS2],
[GJS2]. As it has turned out, we have been providing independent
proofs, from slightly different viewpoints, of the same facts. Both
the papers [KS2] and [GJS2], establish that a certain von Neumann
algebra associated to a graph is a free product with amalgamation of
a family of von Neumann algebras corresponding to simpler graphs.
The amalgamated product involved subgraphs indexed by vertices
in [KS2], while the subgraphs are indexed by edges in [GJS2]. This
paper was motivated by trying to understand how the proof of our
result in [KS2] was also drastically simplfied by considering edges
rather than vertices. And, this third episode in our series seems to
have the following points in its favour:



e It does make certain cumulant computations and consequent
free independence assertions much more transparent.

e [t brings to light a quite simple ‘Fock-type model’ of free Pois-
son variables.

e By allowing non-bipartite graphs, we get the aesthetically pleas-
ing fact mentioned in the abstract regarding the ‘flower on n
petals’.

We investigate, in a little more detail, the construction in [KS2]
which associated a von Neumann probability space to a weighted
graph. We begin by recalling the set-up:

By a weighted graph we mean a tuple I' = (V| E, 1), where:

e V is a (finite) set of vertices;

e [ is a (finite) set of edges, equipped with ‘source’ and ‘range’
maps s,7 : E — V and ‘(orientation) reversal’ invoution map
E > e é € E with (s(e),r(e)) = (r(é), s(é)); and

e 1 :V — (0,00) is a ‘weight or spin function’ so normalised that
ZUEV /1,2 ('l)) =1

We let P,(I") denote the vector space with basis P, = P,(I') =
{[€] : € is a path of length n in I'}. We think of £ = £1&2 -+ &, as the
‘concatenation product’ where &; denotes the i-th edge of £&. We write
FT' = &p,>0P,(T") for the indicated direct sum, and equip it with
the following slightly complicated multiplication: if £ € P, (T'),n €
Pa(T), then [€#[n] = 10" [¢r], where ¢, € Pryn—ai is defined
by

p(v5,)

G = m[&& o Em kM 1hr2 ] i Gy = VI < <k

0 otherwise

Here, and elsewhere, we adopt the convention that if [{] € Py,
then & = &1&, - - - &, denotes concatenation product, with & € E and
we write s(&;) = vf_l (so also (&) = s(&i+1) = vf)

In particular, notice that Py(T") = {[v] : v € V'}, and that if v =
s(&),w = r(§) for some [{] € Py, and if u1,uz € V, then [u1][¢][uz] =
Ouy w0us,w(€]; and less trivially, if [£] € Py and [n] € Pp,,m > 1, then

0 if (&) # s(n)
[E]#m) = q  [Emnm] if 7(§) = s(n) but & #
(€1 ] + AR 12 -] i € = 770




We define ¢ : FI' — Py by requiring that if £ € P,,, then

o ={ by n

and finally define

T=p’og
where we simply write p? for the linear extension to Py(I') which
agrees with p? on the basis Py(T).

It was shown in [KS]! that (FT,7) is a tracial non-commutative
*_probability space, with e* = €, that the mapping y — zy extends to
a *-algebra representation FT' — L(L?*(FT),7) and that M (T, u) =
AMFT))" C L(L?*(FT),7) is in standard form. Before proceeding
further, it is worth noting that for [¢], [n] € U, P,(T), we have

T([E][M]") = denu(r(€))u(s(€)) ,

and hence, if we write {{} = (u(s(§))p(r(§)))” 2[ |, then {{&} : [¢] €
Un>0Pn(T)} is an orthonormal basis for H(I') = L2(FT, 7).

2 The building blocks

Our interest here is the examination of just how M (I, 1) depends on
(T, u). We begin by spelling out some simple examples, which will
turn out to be building blocks for the general case.

EXAMPLE 2.1. 1. Suppose |V| = |E| = 1, say V = {v} and
E = {e}. Then we must have e = é,s(e) = r(e) = v,u(v) =
1, P, = {[e"]} and {&, = (e?) : n > 0} (where (e°) = (v)) is
an orthonormal basis for H(I'); and the definitions show that
x = Me) satisfies x&, = &nr1+En—1. Thus x is a semi-circular
element and M (T') = {z}' = LZ.

2. Suppose |V| = 1,|E| = 2, say V = {v} and E = {e1,ea}
suppose ez = €1. Then we must have s(e;) = r(ej) = v, u(v) =
1. Further {[e1], [e2]} is an orthonormal basis for Ho = Py(T),
and Py, (T') is isomorphic to @ Ha. Thus H(I') may be identified
with the full Fock space F(Hz) and the definitions show that
x1 = A1) may be identifed as x1 = l1 + 15, where the l; denote
the standard creation operators. It follows that x1 is a circular
element and M(T') = {x1}’ = LF;.

! Actually, [KS] treated only the case of bipartite graphs, and sometimes re-
stricted attention to the case of the Perron-Frobenius weighting; but for the the
proof of statements made in this paragraph, none of those restrictions is necessary.



3. Suppose |V| = 2,|E| = 2, say V = {v,w} and E = {e,e}
and suppose s(e) = v,r(e) = w and p(w) < p(v). Write p =
BOL(> 1) If we let py = M[v]),pw = A([w]), it follows that
H, = ran py, (resp., Hy = ran py) has an orthonormal basis

given by {(ny) : n > 0} (resp., {(&,) : n > 0} where [n,] € Py

(resp., [&n] € Ppn) and (np)r = € or € (resp., (&) = € or e
according as k is odd or even).

Writing x = A(e), we see that with respect to the decomposition
H(T) = Hy ® Hy, the operator x has a matriz decomposition

of the form
|0t
100

where t € L(Hw, Hy) is seen to be given by

t[fn] = x[én]

e|#(éeée - - - (n terms)]

[
= (1] +p 1] 5

and hence,

t(6n) u(s(E)nl(r(€n)) 7]
( 1

(

= (w(w)pu(r(&n)) 2 ([nn+1]+/> Ynn—1])

(p~ 1u(v)u(7’(nnil)) 2 (1] + o~ [n—1])
)

(nn—I—l + (7771— 1)

(NI

=

It is a fact - see Proposition 2.2 - that t*t has has absolutely
continuous spectrum. This fact has two consequences:

(i) if t = ult| is the polar decomposition of t, then u maps Hy
isometrically onto the subspace M = ran t of H,, and if z is
the projection onto H, © M then 7(z) = pu?(v) — u?(w); and
(1) W*(|t]) = LZ

Since py, + pw = 1 and z < p,, the definitions are seen to

show that M (T, p) is isomorphic to C@ Ma(LZ) via the unique
isomorphism which maps py, pw, z,u and |t|, respectively, to

(30 (58 e (3

(1, < 8 2 )) for some positive a with absolutely continuous

spectrum which generates LZ as a von Neumann algebra.



PROPOSITION 2.2. Let ¢2(N) have its standard orthonormal basis
{6n : n € N}. (For us, N =1{0,1,2,---}.) Let €6, = dp4+1 denote
the creation operator (or unilateral shift), with £*6,, = d,—1 (where
0_1=0). Let p>1 andt= p%€+ pféé*. Then,

1. t*t leaves the subspace (?(2N) invariant;

2. 8g is a cyclic vector for the restriction to ¢*(2N) of t*t, call it
a,; and

3. the (scalar) spectral measure of a, associated to dg is absolutely
continuous with respect to Lebesgue measure.

Proof. A little algebra shows that

1 1 1 1
't = (p20 +p 2)(p2l + p2L7)
CH0%+ (p+p")—p'po

where pg is the rank one projection onto Cdy. It is seen that this
operator leaves both subspaces £?(2N) and ¢?(2N+ 1) invariant, with
its restrictions to these subspaces being unitarily equivalent to ¢ +
O+ (p+p~ 1) — p~lpg and £+ £* respectively. Since the spectral type
does not change under scalar translation, we may assume without
loss of generality that a, = £+ ¢* — p~1py and establish that ag has
absolutely continuous scalar spectral measure corresponding to dy.

Write ag = ¢+ £* so that a, = ag — p~po. Let the scalar spectral
measures of ap and a, be denoted by p and p, respectively, and
consider their Cauchy transforms given by

Fx(2) = ((ax — 2) 180, 00) = /IR dpx(z)

r—z

for A € {0,p} and 2 € Ct ={¢ € C: Im(¢) > 0}.
It follows from the resolvent equation that

Fp(z) = <(ap—z)_150,50>

((ao — 2) "0, 60) + ((ap — 2) " o "polax — )~ b0, do)
= Fo(z)+p 'Fy(2)Fo(2) ;

Hence

Fo(2) pFo(2)

Fp(z) = _(1 = (
1—p~tFo(z)  p— Fo(z)

It is seen from Lemma 2.21 of [NS] - after noting that the G of

that Lemma is the negative of the Fj here - that Fy(z) = === V222_4

(2.1)



where V22 — 4 is a branch of that square root such that v/z2 —4 =
vz + 2v/z — 2 where the two individual factors are respectively de-
fined by using the branch-cuts {F2 — it : t € (0,00). (This choice en-
sures that [im|,|_.oFo(2) = 0, which is clearly necessary.) It follows
that Fy, which is holomorphic in C*, actually extends to a continu-
ous function on CTUR, and that if we write fy(a) = limyjo Fo(a+1b),
then we have

V4 ift>2
2o(t) ={ —t+ivVi—t2 ifte[-2,2] (2.2)
—t— V24 ift< -2

It is easy to check that fy is strictly increasing in (—oo, —2), as
well as in in (2,00), has non-zero imaginary part in (—2,2), and
satisfies f(R\ (—2,2)) = [—1,0)U (0, 1]. Since p > 1, we may deduce
that Fy(z) # p Vz € CT UR, and hence that also F, extends to a
continuous function on C*UR with equation (2.1) continuing to hold
for all z € CT UR. Writing f)(t) = F)\(t +10) for A € {0, p}, we find

that o) )
_ _PJo _
W= 0@ R

and hence that

I
Tt~ 1P
Im(fo(t))

T fo()p 1P

e Im(fo(t))

Folt) — pP?
p2 /4 — 2
22O = o -

Im(fp(t))

Now, for ¢t € [—2,2], we see that

—t+ivi—12
S —
((t+2p)* +4—1t7)

= p2—|—pt+1.

[fot) = pf* = |

| =

It follows from Stieltje’s inversion formula that our a, has ab-
solutely continuous scalar spectral measure p,, with density given



1
g(t) = ~Imf,(0)
p2 4 — 12
2r(p? +pt+1)

= 1_g9(?)

Hence the operator t*t = a, + (p + p~')1 has has absolutely
continuous scalar spectral measure, with density given by

gt) = gt—(p+p ")

2
o e (® pPPVA—(t—(p+ph)
[(ptp=1)=2,(p+p~ 1) +2] 2mp2(p2 +p(t—p—p 1)+ 1)

2
L g (YAt )
[(p+p1)=2,(p+p~ 1) +2] 2mp 1t

If we write A = p? and o = p~ !, we see that a1 + \) and recognise

the fact that not only does t*t have absolutely continuous spectrum,
but - by comparing with equation (12.15) of [NS] -even that it actu-
ally has a free Poisson distribution, with rate p? and jump size p~!.
However, we actually discovered this fact a bout t*t having a free
Poisson distribution with the stated A and a was by a cute cumulant
computation which we present in the final section, both for giving
a combinatorial rather than analytic proof of this Proposition, and

because we came across that proof first. O

3 Some free cumulants

Before proceeding with the further study of a general (I', ), we will
need an alternative description of M (T, 7).

Let GrI' = @,>0P,(I") be equipped with a x-algebra structure
wherein [¢] o [n] = [¢n]) and [§]" = [¢] = [§n - - - &1 for § € Pn,n € P
It turns out - see [KS]? - that GrT' and FT are isomorphic as *-
algebras. While the multiplication is simpler in GrI', the trace 7 on
FT turns out, when transported by the above isomorphism, to be
given by a slightly more complicated formula. (It is what has been
called the Voiculescu trace by Jones et al.) We shall write ¢ for this
transported trace on Grl', and F for the ¢-prreserving conditional
expectation of M (T, u)(= A(GrI')"”) onto Py(I"). We shall use the

2The remark made in an earlier footnote, concerning assumptions regarding
bipartiteness of I', applies here as well.



same letter E to denote restrictions to subalgebras which contain
Py(T).

We wish to regard (GrT', E') as an operator-valued non-commutative
probability space over Py(T"), our first order of business being the de-
termination of the Py(I')-valued mixed cumulants in Gr(I).

PROPOSITION 3.1. The Py(T')-valued mized cumulants in GrT' are
given thus:

kn(e1,ea, -+ ,en) = 0 unless n = 2 and ea = €1; and if ea = €1
with s(e1) = v,r(e1) = w, then ka(e1,e1) = i((f)) [v].

Proof. The proof depends on the ‘moment-cumulant’ relations which
guarantee that in order to prove this proposition, it will suffice to
establish the following, which is what we shall do:

(a) Define Ky, : (GrT')" — Py(T") to be the unique multilinear map
which is defined when the arguments are tuples of paths as asserted in
the proposition; note that it is (i) ‘balanced’ over Py(I') in the sense

that Iin($1, e )xiflbv Lyt - a$n) - ’in(l‘la e, Ti—1, b.’Ei, o axn) for
all x; € GrI',b € Py(I') and 1 < i < n, and (ii) is Py(I')-bilinear
meaning k, (bx1, xe, -+, Tp_1,2pb") = bkp (1,22, , Tp_1,xy)b for

all z; € GrI', b,V € Py(I);

(b) define the ‘multiplicative extensions’ r, : (GrI')" — Py(I")
for m € NC(n) by requiring, inductively, that if [k,] is an interval
constituting a class of 7, and if we write o for the element of NC'(n—
[+ k —1) given by the restriction of = to {1,--- ,k—1,1+1,--- ,n},
so that ‘m = o \/ 13, then

Ke(Z1, -, &n) = Ko(T1,  , Tho1Ki—k+1(Th, -+, 1), Tig1, -, )

= Ko(T1, s Tho1, Ki—k1 (Thy - 5 ) T141, -+, Tn);

(c) and verify that for any ey, - , e, € Pi(I),

E(e;---e,) = Z kx(e1, e, - ,en). (3.3)

TeNC(n)

For this verification, we first assert that if e, es,--- ,e, € E and
m € NC(n), the quantity kr(ej,e2,- - ,e,) (yielded by the unique
‘multiplicative extension’ of the x,,’s as in (b) above) can be non-zero
only if

(i) erea- - e, is a meaningfully defined loop - meaning f(e;) =
s(eij+1) for 1 < i < n, with e,41 being interpreted as e; - based at
s(e1);

(ii) m € NCy(n) is a pair partition of n (and in particular n is
even), such that {i,j} € T = ¢; = €;;



and if that is the case, then,

Kn(e1, €2,y en) = “ r) | o)) (3.4)

,,«
{1, ]}67\'
1<j

We prove this assertion by induction on n. This is trivial for
n = 1 since k1 = 0. By the inductive definition of the multiplicative
extension, it is clear that if kr(e1,e2, - ,€,) is to be non-zero, 7
must contain an interval class of the form {k, k+ 1} such that e =
ek; if o denotes ({1 2,... k-1 k+2,.n} We must have

mr(€1, ce ,en) = ?((é:i)l))) (6 - ,ek,l[s(ek)], €kt2, " ’en)
B (((‘Ek+)1))) oler, et [s(ex)]enta, - en)

)

)

_nlr(er))
6 .. 76 _ 7” e 76 s o .. 76 ;
e )" o k—1[r(er+1)]; €2 n)
and for this to be non-zero, we must have r(ex—1) = s(eg) = r(ex4+1) =
s(ex+2), in which case we would have

r ek
,Uf( ( )))50(617"' y Ch—1yCk+4+2, " " 7671) 9

e ) = o)

and the requirement that k,(e1, -+ ,€x_1, €12, - ,€,) be non-zero,
along with the induction hypothesis, finally completes the proof of
the assertion.

Now, in order to verify equation 3.3, it suffices to check that for
any v € V, we have

o(ereg - Z <Z> Kr(e1, ez, - en)v]). (3.5)

TeNC(n

First observe that both sides of equation 3.5 vanish unlesse; - - - e,
is a meaningfully defined path with both source and range equal to
v (since ¢ is a trace and [v] is idempotent. In view of our description
above of the multiplicative extension k., we need, thus, to verify that
for such a loop, we have

see)= 3| T a9 | (e,

weNC2(n) \ {igter ,LL(T’(Gj)
1<)

9



but that is indeed the case (see equation (3) and the proof of Propo-
sition 5 in [KS1] ). O

In order to derive the true import of Proposition 3.1, we should
first introduce some notation:

For each dual pair e, € of edges - with, say, s(e) = v,r(e) = w - we
shall write T'. = (Vg, E¢, tte) where Vo = V,u. = p and E, = {e, é}
(with source, range and reversal in F, as before). If e = €, the above
definitions are to be suitably interpreted. Now for ‘the true import
of Proposition 3.1":

COROLLARY 3.2. With the foregoing notation, we have:

Gr(T,p) = *Po(F){GT(Fenue) :{e, e} C B}

and hence, also

M(T,pn) = *po(p){M(Fe,ue) :{e,e} C E}.

Proof. Proposition 3.3.3 of [S1] shows that if {B,A; : i € I} is a
family of subalgebras of a non-commutative probability space (A, ¢),

and if A 2 Bis thought of as a ‘non-commutative probability space
over B’, with the conditional expectation F satisfying ¢ o F = ¢,
then A is the free product with amalgamation over B of {A; :i € I}
if and only if whenever zy, cdots,---x, € U;G;, with G; being a
set of generators of the algebra A;, the mixed B-valued cumulants
Kn(x1,- -+ ,x,) vanish unless all the z; belong to the same Gy gor
some k. The desired assertion then follows from Proposition 3.1. [

The following assertion, advertised in the abstract, is an imme-
diate consequence of Corollary 3.2 and Examples 2.1 (1) and (2).

COROLLARY 3.3. IfI';, denotes the ‘flower with n petals’ (thus |V | =
1,|E| =n), then M(T') = LF,,, independent of the reversal map on
E.

REMARK 3.4. In the notation of Example 2.1 (3), we may deduce
from Proposition 3.1 that x is a Py(I')-valued circular element, in
the sense that if x1,-- - ,x, € {x,2*}, then the Py(T")-valued moments
E(xy---xp,) vanish unless n is even and xj11 = z; for each j; and
hence kp(z1,--- ,2n) # 0= n = 2,29 = 27; in fact, it follows from
equation 3.4 that

E(e€) = ra(e, €) = Z((Z)))pv =p "Dy,

10



and similarly E(ée) = ppy. If s = x + x*, it follows then that s is a
Py(T')-valued semi-circular element (since kp(sby, sba, - sby_1,8) =
0 unless n = 2 and k2 (sbs) = n(b) where n is the unique (completely)
positive self-map of Py(T')(= Cp, ® Cpy,) which satisfies

n(spys) = E((e + é)py(e + €)) = E(épye) = E(ée) = ppy

and similarly E(spys) = p~'py; in other words it is the (clearly
positive, hence completely positive, self-map of C ® C induced by the

matriz .
0 p
p 0

4 Narayana numbers

Recall the Narayana numbers N (n, k) defined for all n,k € N with
1<k<nby

N(n,k) = |{m € NC(n) : |r| = k}|.

Define the associated polynomials V,, by
Nu(T) =) N(n, k)T*.
k=1

Recall also that a random variable in a non-commutative proba-
bility space (A, 7) is said to be free Poisson with rate A and jump size
« if its free cumulants are given by k, = Aa™ for all n € N. An easy
application of the moment-cumulant relations shows that an equiv-
alent condition for a random variable to be free Poisson with rate A
and jump size « is that its moments are given by p, = o Ny, () for
all n € N.

We now illustrate an application of this characterisation of a free
Poisson variable in the situation of §2, Example 2.1 (3). There,
x = A(e) has a matrix decomposition involving ¢t € L(H,,, H,) where
t*t was shown to have absolutely continuous spectrum. We will
show below by a cumulant computation that t*t is free Poisson with
rate p? and jump size p~! in the non-commutative probability space
PuwM (L, ft)pu-

Begin by observing that x*x has a non-zero entry only in the
w-corner and that this entry is t*¢. Thus the trace of *z in M (T, )
and that of t*t in p, M (T, u)py, only differ by a multiplicative factor
of u%(w) = 7(pw), as do those of their powers. We will now compute

T((z2)") = 7((e"e)").

11



First apply the moment-cumulant relations and Proposition 3.1
to conclude that

E((e*e)") = Z kr(e e, -+, €% e).

TeNC(2n)

While this sum ranges over all # € NC(2n), Proposition 3.1 enables
us to conclude that unless 7 is a non-crossing pair partition, its
contribution vanishes. Thus we have:

E((e*e)") = Z kr(e¥ e -+ e e).

TENCo (2%)

Now we use the well-known bijection between non-crossing pair
partitions (or equivalently, Temperley-Lieb diagrams) on 2n points
and all non-crossing partitions on n points. We will denote this bijec-
tion as m € NCy(2n) < 7 € NC(n). This is illustrated in an exam-
ple in Figure 4 for 7 = {{1,8},{2,5},{3,4},{6,7},{9,12},{10,11}}
and may be summarised by saying that the black regions of the
Temperley-Lieb diagram for m € NC3(2n) correspond to the classes
of # € NC(n). Note that in Figure 4 the numbers above refer to the

-—_— {{ 113!4} 1{ 2} 1{ 516}}

Figure 1: m € NC5(12) <> 7 € NC(6)

vertices while those below refer to the black segments.
It follows from Proposition 3.1 that for any 7 € NC3(2n), the
term k.(e*,e,--- ,e* e) is a scalar multiple of p, where the scalar

is given by a product of n terms each of which is p = £ W) o

w(w)
p~t = % Classes of m for which the smaller element is odd give

p, while those for which the smaller element is even give p~!. Thus
k(e e, - e, e) evaluates to plTloda=Imleven)py - — pQRI7loaa=n)y, where,
of course, |7|ogq (resp. |7|even) denotes the number of classes of 7
whose smaller element is odd (resp. even).

Our main combinatorial observation is contained in the following
simple lemma.

LEMMA 4.1. For any m € NC2(2n), |7|oaa = |7

12



Proof. We induce on n with the basis case n = 1 having only one =
with |7|eqq = |7| = 1. For larger n, consider an innermost class of m,
say {i,7 + 1}, and remove it to get p € NC2(2n — 2). A moment’s
thought shows that if 7 is odd then |7|oqq = |ploda +1 = |p| +1 = |7],

while if 7 is even then |7|o3q = |ploaa = |p| = |7 O
Thus:
E((e*e)n) — Z p(2|ﬂ-|0ddin)pw
TENC2(2n)

n
= Z Z ka—npw

k=1 {#ENC (n):|7|=k}

— ZN(nv k_)ka—'erw
k=1

Hence 7((e*e)") = > p_; N(n, k)p?* "u%(w) and thus 7((t*t)") =
S i N(n,k)p**~". Now the characterisation of free Poisson ele-
ments in terms of their moments shows that t*t is free Poisson with
rate p? and jump size p~!.

Acknowledgement: We would like to thank M. Krishna for pa-
tiently leading us through the computation of Cauchy transforms of
rank-one perturbations as we struggled with an apparent contradic-
tion, which was finally resolved when we realised a problematic minus
sign stemming from a small mistake in choice of square roots. (We
claim no originality for this problem, for the same incorrect sign also
surfaces on page 33 of [NS] - cf. our formula (2.2) and the formula
there for g , when —oco <t < —2.)
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