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Abstract. For each complex number δ 6= 0, we consider a planar

algebra whose space NCn(δ) of ‘k-boxes’ has a basis consisting of
non-crossing partitions of a set of 2k points, (usually thought of as
being arrayed on two parallel lines, with k points on each line), and

with multiplication and other planar algebra structure being defined
almost exactly as in the case of the Temperley-Lieb planar algebra
TL(δ). We show that this planar algebra NC(δ) is a C∗-planar alge-
bra when δ > 4. We do this by showing that NC(δ2) is isomorphic

to the so-called 2-cabling of TL(δ).

1. Introduction

We begin with the basic definitions on planar algebras in §2. (It must be
mentioned that, unless explicitly stated otherwise, our planar algebras need
not have a C∗-structure.) We describe the example of the Temperley-Lieb
planar algebra, and introduce the ‘non-crossing partition’ planar algebra.

§3 is devoted to proving a combinatorial identity relating various features
of a planar configuration consisting of a straight line and a system of closed
curves each of whose components intersects the line. As can be expected,
this seemingly strange identity is a consequence of the Euler characteristic
formula; but we need this identity in this form at a couple of instances
during the course of proving our main result.

§4 commences with a ‘linearisation lemma’ of possibly independent com-
binatorial interest, then proceeds to the statement (and proof) of the main
result identifying the planar algebra NC(δ2) with the ‘2-cabling’ of TL(δ),
and concludes with some final remarks on values of δ for which NC(δ) is a
C∗-planar algebra.

2. The Temperley-Lieb and Non-crossing Partition planar

algebras

We begin with a very brief summary of planar algebras. For details,
the reader is referred to the source [J2] or to [KS]. By Col, we denote the
set {0+, 0−, 1, 2, · · · }, whose elements will be referred to as colours. Recall
that a planar tangle is an equivalence class, under planar isotopy preserving
all relevant data, of subsets of the plane which comprise the following: an
external box, denoted D0, and a finite (possibly null) ordered collection of
internal boxes denoted D1, D2, · · · . Further, each box has an even number
(again, possibly 0) of points marked on its boundary - a box with 2k points
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on its boundary being called a k-box or said to be of colour k. If a box
has at least one point marked on its boundary, one of them is distinguished
and marked with a ‘∗’. There is also given a collection of disjoint curves
each of which is either closed, or joins a marked point on one of the boxes
to another such. The whole picture is to be planar and each marked point
on a box must be the end-point of one of the curves. Finally, there is given
a black-and-white (checkerboard) shading of the regions such that moving
away from (resp. towards) the ∗ on one of the internal boxes (resp. the
external box) along the curve of which it is the end-point, a black region
is to the right. A 0-box is said to be 0+ box if the region touching its
boundary is white and a 0− box otherwise. A tangle is said to be a k-
tangle if its external box is of colour k. In fact,we will sometimes find it
convenient to use the symbol T k0

k1,··· ,kb
to denote a k0-tangle with b internal

boxes of colours k1, · · · , kb. Several examples of tangles are shown in the
figure below.
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The basic operation that one can perform on tangles is substitution of
one into a box of another: if T is a tangle that has some internal boxes, say,
Di1 , · · · ,Dij

of colours ki1 , · · · , kij
and if X1, · · · ,Xj are arbitrary tangles

of colours ki1 , · · · , kij
, then we may substitute Xt into the box Dit

of T for
each t - such that the ‘∗’s match’ - to get a new tangle that will be denoted
T ◦(Di1

,··· ,Dij
) (X1, · · · ,Xj).

A planar algebra P (over C) is a collection {Pk : k ∈ Col} of complex
vector spaces and maps ZT : Pk1

⊗Pk2
⊗· · ·⊗Pkb

→ Pk0
for each k0-tangle

T with internal boxes of colours k1, k2, · · · , kb. The collection of maps is
to be ‘compatible with substitution of tangles and renumbering of internal
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boxes’ in an obvious manner. Further, planar algebras are required to be
non-degenerate in the sense that for each k ∈ Col, the map ZIk

k
is the

identity map of Pk. A pleasant verification then shows that each Pk has
the structure of an associative, unital algebra where the multiplication is
given by ZMk

k,k
and the unit by Z1k(1) - which we will denote by 1k. The

tangles Ik
k ,Mk

k,k and 1k are the straightforward generalisations to k-tangles

of the tangles I2
2 , M2

2,2 and 12 illustrated earlier.
In a sense, the simplest planar algebras are the Temperley-Lieb planar

algebras which we shall now describe. Fix a non-zero complex number δ.
The planar algebra P = TL(δ) has P0±

= C and for k ≥ 1, Pk = complex
vector space with basis consisting of the set Kk of all Kauffman k-diagrams.
Recall that such a diagram consists of an isotopy class of a planar (i.e., non-
crossing) arrangement of k curves in a box with their ends tied to 2k marked
points on the boundary; an example, with k = 4 is illustrated below:

1 2 3 4

6 58 7

It will be convenient to regard Kauffman diagrams as being endowed with
a black and white shading with the leftmost region being white. We will
denote Pk by TLk(δ).

Next, the action of a tangle T on this collection of vector spaces is
defined as follows. Suppose that T has internal boxes D1, · · · ,Db of colours
k1, · · · , kb and that Kauffman diagrams S1, ..., Sb are given with Si ∈ Kki

.
Insert these into the appropriate boxes of T so that the point numbered 1
is aligned with the *-point of that box, and then delete the boundaries of
the internal boxes, to get a picture with, say, l loops. Delete these loops
and consider the Kauffman diagram, say, S ∈ Kk0

that is obtained. Define
ZT (S1 ⊗ · · · ⊗ Sb) = δlS and extend by linearity. It is intutively obvious
that this prescription indeed defines a planar algebra.

We will now define by analogy a planar algebra associated to non-crossing
partitions. Recall that a non-crossing partition on 2k points, is a partition
of a set of 2k marked points on a circle with the property that the convex
hulls of any two distinct equivalence classes of the partition are disjoint; the
collection of such partitions will be denoted by NCk. The planar algebra
P̃ = NC(δ), defined for fixed non-zero δ ∈ C, has P̃0±

= C and for k ≥ 1,

P̃k = complex vector space with basis NCk. For the sake of convenience,
however, we shall think of the 2k points as being arrayed with k points on
each of two parallel lines. The tangle action on P̃ is defined almost exactly
as in P except that the count of loops is replaced with that of internal
equivalence classes. Again, it should be clear that this does prescribe a
planar algebra, and as before, we denote P̃k by NCk(δ).
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3. A topological diversion

We shall need the following result in the proof of our main theorem.

Proposition 3.1. Consider a configuration consisting of:

• a system of C disjoint closed curves in the plane
• a checkerboard shading of the resulting regions
• a line intersecting each of the curves (with the number P of points

of intersection being 2m).

Then,

(3.1) C − 2B = m − B+ − B− ,

where B+ (resp., B−) denotes the number of black regions above (resp.,
below) the line.

Proof: We now wish to ‘symmetrise’ (between black and white) the
desired identity. We shall henceforth view our configuration as being em-
bedded on the surface of a sphere, ‘line’ will be taken to mean ‘great circle’,
and of the two components of the complement of this great circle in the
sphere, one will be arbitrarily declared as ‘top’ and the other ‘bottom’. On
interchanging the roles of black and white, we find that the statement (3.1)
would imply (and be equivalent to):

(3.2) C − 2W =
1

2
P − W+ − W−

with the symbols W,W± having their natural meanings.
In order to prove these two identities, it suffices (and is necessary) to

prove their ‘symmetric’ (=sum) and ‘antisymmetric’ (=difference) versions,
namely:

2C − 2R = P − R+ − R−(3.3)

2(W − B) = (W+ − B+) + (W− − B−)(3.4)

where we have used the symbols R,W and B to denote, respectively, the
# of regions, the # of white regions and the # of black regions. We shall
also write R± to have their obvious meanings.

For equation (3.3), consider the ‘polygonation’ of the sphere obtained by
taking (i) the vertices to be the 2m points of intersection, (so V = 2m) (ii)
the edges to be the parts of the closed curves bounded by vertices as well
as the parts of the line between two successive vertices, (so E = 2m + 2m)
and (iii) the faces to be the resulting regions (so F = R+ + R−), and we
find - since C − R = −1 - that

(2C − 2R) − P + R+ + R− = −2 − 2m + F

= −2 + (V − E) + F

= 0

since the Euler characteristic of S2 is 2, thereby establishing (3.3).
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To complete the proof, we shall establish equation (3.4) by induction on
m. To set the ball rolling, notice that when m = 0, there are no curves,
and both sides of the desired equation are seen to be ±2, according as the
sphere is shaded white or black.

Suppose then that the result holds for m − 1, and that we have a con-
figuration with 2m points. It is easy to see that there must exist at least
one ‘special’ pair of adjacent points on the line which are connected by one
of the curves. We may assume, without loss of generality, that the region
bounded by the line and that curve is shaded white and lies below the line.
We consider two cases now:

Case 1: The curve meets the line in only these two special points.

In this case, consider the configuration - call it C′ - obtained by simply
removing this pargticular curve. Then C′ has 2m− 2 points of intersection,
so we know, by induction, that

2(W ′ − B′) = (W ′

+ − B′

+) + (W ′

− − B′

−) ,

where the primed symbols have the natural interpretation. The assump-
tions of this case imply that

W ′ = W − 1,W ′

+ = W+,W ′

− = W− − 1

while

B′ = B − 1, B′

+ = B+ − 1, B′

− = B−

and we may deduce that

2(W − B) = 2(W ′ − B′)

= (W ′

+ − B′

+) + (W ′

− − B′

−)

= (W+ − B+ + 1) + (W− − 1 − B−)

= (W+ − B+) + (W− − B−)

as desired.

Case 2: The curve meets the line in more than these two special points.

In this case, consider the configuration - call it C′ as before - obtained
by moving the curve up so that these two special points of intersection are
eliminated. The assumptions of this case ensure that C′ is an admissibe
configuration - i.e., satisfies the hypotheses - and has only 2m− 2 points of
intersection, so that, by induction hypothesis,

2(W ′ − B′) = (W ′

+ − B′

+) + (W ′

− − B′

−) .

The assumptions are easily seen to imply that

W ′ = W − 1,W ′

+ = W+,W ′

− = W− − 1

while

B′ = B − 1, B′

+ = B+ − 1, B′

− = B−
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and we may deduce that

2(W − B) = 2(W ′ − B′)

= (W ′

+ − B′

+) + (W ′

− − B′

−)

= (W+ − B+ + 1) + (W− − 1 − B−)

= (W+ − B+) + (W− − B−)

as desired; and the proof of equation (3.4) and hence also of Proposition
3.1, is complete. �

4. Relation between the planar algebras

For S ∈ K2n, define its near relatives - which we shall denote by ∗ ∪ S

and ∩∗ respectively - by ‘combing S’ so that all end-points of strings are
‘at the top (resp., bottom)’, with the *-point at the extreme left ( resp.,
extreme right). We shall also have occasion to use ∗ ∩ S and ∪∗ for the
result of horizontally reflecting ∗ ∪S and ∩∗ respectively. We illustrate the
general case with an example:

S  =

S  =

S  =

*

*

S  =

*

* S  =*

Some notation will help before setting up the crucial linearisation lemma
below. To start with, we shall regard elements of Km as partitions of
the set [2m] = {1, 2, · · · , 2m} into doubleton sets. Given partitions P,Q

of the set [2m], we shall write |P | for the number of parts of P , and
P
∨

Q for the coarsest partition which is finer than both P and Q. Fi-

nally, given a partition P of [2m], we shall write P̃ = P
∨

P0, where
P0 = {{1, 2}, · · · , {2m − 1, 2m}}.

Lemma 4.1. (Linearisation Lemma)

|S1

∨
S2| − 2|S̃1

∨
S̃2| = m − |S̃1| − |S̃2| ∀S1, S2 ∈ Km.

Proof: We begin by re-stating the problem thus: first consider the config-
uration obtained by ‘glueing ∗∩S1 and ∗∪S2 along the 2m common points.
Thus, if S1 and S2 are the elements of K4 shown in the figure displayed in
the discussion following equation (4.10), what we have is:
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In terms of this configuration, the terms in the statement of the lemma
are reinterpreted thus:

• |S1

∨
S2| is the number C of closed curves

• |S̃1

∨
S̃2| is the number B of regions shaded black

• m is half the number P of points of intersection of the curves and
the line

• |S̃1| is the number B+ of black regions above the line

• |S̃2| is the number B− of black regions below the line

Thus, in the context of our reformulation, the lemma is a consequence
of Proposition 3.1. �

In order to motivate our main result, we begin by recalling that both K2k

and NCk have the same cardinality given by the Catalan number 1
2k+1

(
4k
2k

)
.

In fact, there is a natural pictorial bijection

K2k ∋ S ↔ S̃ ∈ NCk ;

this bijection is partially illustrated in Figure 1 for the case k = 2 (partial
because the sets in question have 14 elements each).

Figure 1. Bijection between K4 and NC2
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The 2k points of the element S̃ of NCk which corresponds to an element
S̃ ∈ K2k may be chosen as points on the boundary which are midway
between an odd point and the next even point, and the equivalence relation
is defined as ‘belonging to the same black region of S’. (It should be

observed that if P ∈ Km, then the two different notions of P̃ - the one given
here and the one given before the linearisation lemma - are c onsistent when
suitably interpreted.)

To state the main result, we recall the notion of a c-cabling of a planar
algebra P for c ∈ N which is denoted by (c)P and defined as follows. The
spaces (c)Pk and the tangle actions are defined by

(c)Pk =





Pck if k ∈ N
P0+

if k = 0+

P0+
if k = 0− and c is odd

P0−
if k = 0− and c is even

and

Z
(c)P
T = ZP

T (c)

where T (c) denotes the c-cabling of T which is, by definition, the tangle
obtained by replacing each of its strings by a parallel cable of c strings.

Recall also that an isomorphism of planar algebras from P to Q is a
collection of vector space isomorphisms {φk : Pk → Qk : k ∈ Col} which
are equivariant with respect to the tangle actions.

Given the bijection between K2k and NCk, the following result seems
intuitively reasonable/plausible, but neither the asserted isomorphism nor
the proof of the theorem is so intuitively obvious!

Theorem 4.2. For any non-zero δ ∈ C, the planar algebras P = (2)TL(δ)

and P̃ = NC(δ2) are isomorphic.

Proof: Note that both P and P̃ are connected planar algebras (i.e., their
0± spaces are 1-dimensional); hence, for any k ∈ Col\{0−}, the trace tangle

tr
0+

k may be regarded as taking values in C and thereby specifying a trace

denoted by τ = τk on Pk and τ̃ = τ̃k on P̃k. Note that these are not
normalised traces; in fact, τ(1k) = δ2k = τ̃(1k).

We shall show that the desired isomorphism is implemented by the maps
φk : Pk → P̃k defined as the linear extensions of the maps defined on the
bases K2k of Pk by:

S 7→
τ(S)

τ̃(S̃)
S̃,

for k ≥ 1 and idC for k = 0±.
Before proceeding with the proof, we wish to observe the following im-

portant consequence of the definitions of the tangle actions on P and P̃ .
Suppose that T is a k0-tangle with internal boxes of colours k1, · · · , kb and
Si ∈ K2ki

(where, of course, 2.0± = 0+ - see the definition of cabling). We
have, by definition,

ZP
T (S1 ⊗ · · · ⊗ Sb) = Z

TL(δ)

T (2) (S1 ⊗ · · · ⊗ Sb) = δl.S,
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for some S ∈ K2k0
and some l ∈ N ∪ {0}. What must be noticed is that

then,

ZP̃
T (S̃1 ⊗ · · · ⊗ S̃b) = δ2c.S̃,

for some c ∈ N ∪ {0}. The numbers l and c are the number of loops
and internal equivalence classes respectively when Si’s are inserted into the
boxes of T (2); when necessary, we will indicate their dependence on the
tangle T and the Kauffman diagrams S1, · · · , Sb by writing l(T ;S1, · · · , Sb)

or c(T ;S1, · · · , Sb). The point of this observation is that S 7→ S̃, is almost a
planar algebra map except for the tangle dependent multiplicative factors
determined by l and c, and the content of Theorem 4.2 is that with the
correct normalisations, all these factors are 1.

So we see that if T k0

k1,··· ,kb
is a k0-tangle with b internal boxes of colours

k0, · · · , kb, and if Si ∈ K2ki
, 0 ≤ i ≤ b, then

(4.5) ZP
T (⊗b

i=1Si) = δl(T ;S1,··· ,Sb)S0 ⇒ ZP̃
T (⊗b

i=1S̃i) = δ2c(T ;S1,··· ,Sb)S̃0.

We need to verify that for every tangle T as above, we have

φk0
(ZP

T (⊗b
i=1Si)) = ZP̃

T (⊗b
i=1φki

(Si)) ∀ Si ∈ K2ki
, 1 ≤ i ≤ b .

On the one hand,

φk0
(ZP

T (⊗b
i=1Si)) = δl(T ;S1,··· ,Sb)φk0

(S0)

= δl(T ;S1,··· ,Sb)
τ(S0)

τ̃(S̃0)
S̃0 ,

while on the other, we have

ZP̃
T (⊗b

i=1φki
(Si)) =

(
b∏

i=1

τ(Si)

τ̃(S̃i)

)
ZP̃

T (⊗b
i=1S̃i)

=

(
b∏

i=1

τ(Si)

τ̃(S̃i)

)
δ2c(T ;S1,··· ,Sb)S̃0 .

Thus, we need to verify that

δl(T ;S1,··· ,Sb)
τ(S0)

τ̃(S̃0)
=

(
b∏

i=1

τ(Si)

τ̃(S̃i)

)
δ2c(T ;S1,··· ,Sb)

or equivalently that

δl(T ;S1,··· ,Sb)τ(S0)∏b
i=1 τ(Si)

=
δ2c(T ;S1,··· ,Sb)τ̃(S̃0)∏b

i=1 τ̃(S̃i)

i.e., that

(4.6)
τ(ZP

T (⊗b
i=1Si))∏b

i=1 τ(Si)
=

τ̃(ZP̃
T (⊗b

i=1S̃i))∏b
i=1 τ̃(S̃i)

Our proof will be based on the fact - see [KS], Theorem 3.5 - that the
collection of all planar tangles is generated (with respect to composition)
by the following set of tangles:
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(4.7) T = {10+ , 10−} ∪ {Rk
k : k ≥ 2} ∪ {Ek

k+1,M
k
k,k, Ik+1

k : k ∈ Col}

This result implies that in order to complete the proof of our theorem,
we only need to establish equation (4.6) for each T ∈ T .

The verification of equivariance for the actions of the tangles 10± is a
combination of vacuousness and tautology.

The case of T = Rk
k: We need to verify that for any S ∈ K2k, we have

τ(ZP
Rk

k

(S))

τ(S)
=

τ̃(ZP̃
Rk

k

(S̃)

τ̃(S̃)
,

or equivalently, that

(4.8)
τ(S)

τ̃(S̃)
=

τ(ZP
Rk

k

(S))

τ̃(ZP̃
Rk

k

(S̃))
.

Consider the configuration obtained by glueing ∩I2k and ∪S along their
(4k) maked points, along with the line through these points - where we write
I2k for the element of K2k which is the multiplicative identity of TL2k. This
is a system of closed curves satisfying the hypotheses of Proposition 3.1,
where

• the number C of closed curves satisfies δC = τ(S),

• the number B of black regions satisfies δ2B = τ̃(S̃),
• the number P of points of intersection satisfies P = 4k, and
• the numbers B± of black regions above satisfy B+ = k and B− =

bl(S) is the number of black regions in S ;

and hence, by Proposition 3.1, we have

τ(S)

τ̃(S̃)
= δC−2B

= δ2k−k−B−

= δk−bl(S) .

On the other hand, a moments’ thought reveals that Z̃P
Rk

k

(S) = ZP̃
Rk

k

(S̃)

and that bl(S) = bl(ZP
Rk

k

(S)), so we find, as desired, that

τ(ZP
Rk

k

(S))

τ̃(ZP̃
Rk

k

(S̃))
=

τ(ZP
Rk

k

(S))

τ̃(Z̃P
Rk

k

(S))

= δ
k−bl(ZP

Rk
k

(S)))

= δk−bl(S) .
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The case of T = Ek
k+1: We need to verify that for any S ∈ K2(k+1), we

have

(4.9)
τ(ZP

Ek
k+1

(S))

τ(S)
=

τ̃(ZP̃
Ek

k+1

(S̃)

τ̃(S̃)
.

It should be observed that we have a ‘tangle equation’

tr
0+

k ◦ Ek
k+1 = tr

0+

k+1

which implies that both sides of equation (4.9) are equal to one.

The case of T = Mn
n,n: Equation (4.6) translates, in this case, to

τ(S1S2)

τ(S1)τ(S2)
=

τ̃(S̃1S̃2)

τ̃(S̃1)τ̃(S̃2)
∀ S1, S2 ∈ K2n.

We shall prove that

(4.10)
τ(S1)

τ̃(S̃1)

τ(S2)

τ̃(S̃2)
=

τ(S1S2)

τ̃(S̃1S̃2)
∀ S1, S2 ∈ K2n.

Suppose S1, S2 ∈ K2n. Consider the element X ∈ K4n (resp., Y ∈ K4n)
defined by requiring that (i) X (resp., Y ) has no through string, (ii) the
‘top half’ of X (resp., Y ) is ∗∪S2 (resp., ∗∪ I2n) and (iii) the ‘bottom half’
of X (resp., Y ) is ∩∗S1 (resp., ∩∗I2n). (See example below.)

X =

Y =

S  =

S  =

1

2

Notice that both X and Y have no through strings - this phrase having
an obvious meaning. (In the above example, the element S ∈ K4 has two
through strings.)

It is easy to see that

τ(XY ) = τ(S1)τ(S2)

τ(X) = τ(S1S2)

τ(Y ) = δ2n

and similarly that

τ̃(X̃Ỹ ) = τ̃(S̃1)τ̃(S̃2)

τ̃(X̃) = τ̃(S̃1S̃2)

τ̃(Ỹ ) = δ2n
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It follows that it is sufficient to prove equation (4.10) in the special case
when neither S1 nor S2 has any through strings.

Suppose then that S1, S2 ∈ K2n have no through strings, and that their
‘top’ and ‘bottom’ halves are ∗∪S1+, ∗∩S1− and ∗∪S2+, ∗∩S2− respectively,
with S1±, S2± ∈ Kn. Deduce from the linearisation lemma (4.1) that

logδ

τ(S1)

τ̃(S̃1)
= |S1+

∨
S1−| − 2|S̃1+

∨
S̃1−|

= n − |S̃1+| − |S̃1−|

and similarly

logδ

τ(S2)

τ̃(S̃2)
= n − |S̃2+| − |S̃2−|

while

logδ

τ(S1S2)

τ̃(S̃1S̃2)
= |S1+

∨
S2−| + |S1−

∨
S2+| − 2|S̃1+

∨
S̃2−| − 2|S̃1−

∨
S̃2+|

= n − |S̃1+| − |S̃2−| + n − |S̃1−| − |S̃2+|

= logδ

τ(S1)

τ̃(S̃1)
+ logδ

τ(S2)

τ̃(S̃2)

as desired.

The case of T = Ik+1
k : It is easy to see from the definitions that

τ(ZP

I
k+1
k

(S))

τ(S)
= δ2

=
τ̃(ZP̃

I
k+1
k

(S̃))

τ̃(S̃)

for every S ∈ K2k, and the proof of Theorem 4.2 is finally complete. �

Note that for any non-zero δ ∈ C, the planar algebra TL(δ) has a nat-
ural ∗-planar algebra structure where the (conjugate-linear) involution ∗ is
defined on the basis elements of TLk(δ) by flipping the Kauffman diagrams
about the horizontal axis. Further it is known - see [J1] and [GHJ] - that
if δ ≥ 2, then TL(δ) is a C∗-planar algebra and that if δ = 2 cos(π

n
) for

n ≥ 3, n ∈ N then TL(δ) has a quotient that is a C∗-planar algebra. Each
of these C∗-planar algebras is the standard invariant of the corresponding
Jones subfactor of index δ2.

Similarly, there is a natural ∗-planar algebra structure on NC(δ) defined
on the basis elements of NCk(δ) by ‘horizontal flip’. Note that with this
definition, each φk is a ∗-isomorphism from (2)TLk(δ) to NCk(δ2) and it
follows that for δ ≥ 2, NC(δ2) is a C∗-planar algebra while if δ = 2 cos(π

n
)

for n ≥ 3, n ∈ N, then NC(δ2) admits a quotient that is a C∗-planar
algebra. Each of these planar algebras is the standard invariant of the
one-step basic construction subfactor N ⊆ M1 for the corresponding Jones
subfactor N ⊆ M of index δ2.



TEMPERLEY-LIEB AND NON-CROSSING PARTITION PLANAR ALGEBRAS 13

References

[GHJ] F. Goodman, P. de la Harpe and V.F.R. Jones, Coxeter graphs and towers

of algebras, MSRI Publ., 14, Springer, New York, 1989.
[J1] V.F.R. Jones, Index for subfactors, Invent. Math.,71,(1983), 1-25.

[J2] V. F. R. Jones, Planar algebras I, New Zealand J. of Math., to appear.
e-print arXiv: math.QA/9909027

[KS] Vijay Kodiyalam and V. S. Sunder, On Jones’ planar algebras, J. Knot

theory and its ramifications, 13, (2004) 219-247.

The Institute of Mathematical Sciences, Chennai, India

E-mail address: vijay@imsc.res.in

The Institute of Mathematical Sciences, Chennai, India

E-mail address: sunder@imsc.res.in


