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Abstract. In this lecture, we will show that to every von Neumann algebra

M there corresponds unquely a covariant system
nfM, ⌧, R, ✓

o
on the real line

R in such a way that

M = fM✓, ⌧�✓s = e�s⌧, M0 \fM = C,

where C is the center of fM. In the case that M is a factor, we have the
following commutative square of groups which describes the relation of several
important groups such as the unitary group U(M) of M, the normalizer eU(M)

of M in fM and the cohomology group of the flow of weights: {C, R, ✓}:

1 1 1??y ??y ??y
1 �����! T �����! U(C)

@✓�����! B1
✓(R, U(C)) �����! 1??y ??y ??y

1 �����! U(M) �����! eU(M)
@✓�����! Z1

✓(R, U(C)) �����! 1

Ad

??y fAd

??y ??y
1 �����! Int(M) �����! Cntr(M)

@̇✓�����! H1
✓(R, U(C)) �����! 1??y ??y ??y

1 1 1
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Lecture 0. History of Structure Analyis
of von Neumann algebras of type III.

The foundation of the theory of von Neumann algebras was laid down by
John von Neumann together with a collaborator Francis Joseph Murray in
a series of the fundamental papers ”Rings of Operators” during the period
of 1936 through 1943, although the fundamental bicommutant theorem was
proven in 1929. The reason for this 7 year gap was that John von Neumann
believed the Wedderbun type theorem for von Neumann algebra: all von
Neumann algebras are of type I, unbelievable mistake by the genius. During
their active perod, there was no one followed their work, except possibly the
work of Gelfand and Neumark in 1943 who succeeded to have given postulates
of a C⇤-algebra in a set of simple axioms with an additional condition which
is now known to be unnecessary. The decade after the WW II, there was a
tidal wave on the theory of operator algebras notably in the US, the Chicago
school, and France lead by Jacque Dixmier. In this period, the knowledge
of the topologgical properties of an operator algebra was greatly increased,
which allowed the people handles the infinite dimensional non-commutative
objects successfully. It is safe to say that the misterious subject introduced
by the two pioneers is more or less digested by the specialists by then. The
fashion after the WWII was somewhat gone by 1955. However, there were
quite a few di�cult but important problems were left untouched. The spe-
cialists lead by R. Kadison continued to attack the field and obtained deep
results although the field remained unpopular, notaly Kadison’s transitivity
theorem, Glimm’s result on type I C⇤-algebras, Sakai’s characterization of
von Neumann algebra as a C⇤-algebra whichi is a dual Banach space. In
the 1960’s, there was a dramatic change occured: the invasion of theoretical
physicists lead by Rudolf Haag, Daniel Kastler, Nico M. Hugenholtz, Hans
Borchers, David Ruel, Huzihiro Araki, Derek Robinson and many others who
brought in a set of new ideas from the point of view of physics. It changed
the scope the field greatly. New ideas and techniques were brought in. A
great deal of progress started to follow. The number of specialists increased
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dramatically too. Then a big brow came when Araki proved in 1964, [Ark],
that the most of von Neumann algebras occuring in the theoretical physics
were of type III as there was no general method to treat the case of type
III. Generally speaking, during the 60’s the mathematical physicists lead
the field: for example in 1967, [RTPW], R.T. Powers proved the existence of
continuously many non-isomorphic factors of type III, which are often called
the Powers’ factors although they appeared in the work of J. von Neumann
in 1938 and 1940 and were studied by L. Pukanszky in 1956, [Pksky]. Af-
ter the work of Powers, Araki and Woods,[ArWd], worked on infinite tensor
product of factors of type I, abbreviated ITPFI, and classified them with
invariant called the asymptotic ratio set and denoted r1(M) for such a fac-
tor M toward the end of the 60’s. But a von Neumann algebra of type
III are still hiden deep in mistery. For instance the commutation theorem
(M⌦N)0 = M0⌦N0 was unkown, while the tensor product M⌦N was shown
to be of type III if either of the components is of type III, proven by S. Sakai
in 1957, [Sk]. So the theory for a von Neumann algebra of type III was badly
needed when Tomita proposed his theory at the Baton Rouge Meeting in
the spring of 1967. But his preprint was very poorly written and full of poor
mistakes: nobady bothers to check the paper. When I wrote to Dixmier in
the late spring of 1967 about the validity of Tomita’s work, he responded by
saying that he was unable to go beyond the third page and mentioned that
it was very improtant to decide the validity of Tomita’s work. At any rate,
Tomita’s work was largely ignored by the participants of the Baton Rouge
Conference.

For the promiss I made to Hugenholtz and Winnink, I started very seri-
ously in April, 1967, after returning from the US and was able to resque all
the major results: not lemmas and small propositions, many of which are
either wrong or nonsense. Then I spent the academic year of 1968 through
1969 at Univ. of Pennsylvania, where R.V. Kadison, S. Sakai, J.M. Fell,
E. E↵ros, R.T. Powers, E. Størmer and B. Vowdon were, but non of them
believed Tomita’s result. So I checked once more and wrote a very detailed
notes which was later published as Springer Lecture Notes No.128: simplifi-
cation was not an issue, but the validity of Tomita’s claim. Through writing
up the notes, I dicovered that Tomita’s work could go much further than
his claim: the modular condition, (called the KMS-condition by physicists),
and a lot more. I know that the crossed product of a von Neumann algebra
by the modular automorphism group is semi-finite which I didn’t include
in the lecture notes because I thought that the semi-finiteness alone was a
half cocked claim. When I mentioned firmly the validity of Tomita’s claim,
the people at the U. of Pennsylvania decided to run an inspection seminar
in which I was allowed to give only the first introductory talk, but not in
subsequent seminars, which run the winter of 1969 through the spring and
the validity was established at the end. The miracle match of Tomita’s work
and HHW work produced the theory of the modular automorphism group.
I lectured this at UCLA for the academic year of 1969 through 1970 and
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produced UCLA Lecture Notes which were widely distributed. Among the
audience of my lectures were H.A. Dye, R. Herman, M. Walter and Colin
Sutherland.

The campus disturbance in Japan prevented me from going home in
Sendai. I decided to stay in the US and UCLA o↵ered me a professor-
ship. In the academic year of 1970/71, Tulane University hosted a special
year project on Ring Theory and invited me to participate. I participated
only the Fall quarter, and lectured on the duality on locally compact groups
based on Hopf von Neumann algebra techniques, [Tk4], which were later
completed as the theory of Kac algebras, [EnSw], by Enock and Scwartz,
students of J. Dixmier. Through these lectures, I recognized the need of
unbounded functionals, i.e., the theory of weights, which motivated the joint
work with Gert K. Pedersen in the succeeding year, [PdTk].

In the spring of 1971, UCLA hosted a special quarter project on operator
algebras which invited three major figures: R. Haag, N.M. Hugenholtz and
R.V. Kadson along with Gert K. Pedersen who stayed there throughout the
spring quoter of 1971. Short term visitors were J. Glimm, J. Ringrose, B.
Johnson and many others. The summer of 1971 was a turning point for
the theroy of operator algebras as A. Connes participated in the summer
school at Battelle Institue Seattle on the mathematical aspect of statistical
mechanics, organized by D. Ruelle, O. Landford and J. Lebowitz.

It was this Battelle Institute Summer School which motivated Connes to
work on operator algebras. At the time of the summer school, he wasn’t sure
what he wanted to work on. But the Summer School gave him enough kick
to determine his mind to work on operator algeberas despite discouragement
from his supervisor J. Dixmier. At any rate, soon after the summer school,
Connes started to produce a series of excellent works on the structure analysis
of factors of type III introducing his famous invariant S(M) and T (M) and
devided factors of type III into those of type III� , 0  �  1. During this
period, I was in close contact with Connes. Maybe it is not an exaggeration
to say that the period of 1972 through 1977 recorded historically high speed
development in the theory of operator algebras. For my part, for the period
of 71 through the spring of 72, I was engaged in the advancement of the
theory of weights with Gert K. Pedersen as I recognized the need of the
theory of weights in the course of the duality theory in which I was also very
much interested. Then in the spring of 1972, W. Arveson came down to
UCLA from Berkeley to deliver his new discovery of the constructive proof
of a theorem of Borchers, [Brch], which asserts that the energy is a limit of
local observables: before him the result rest on the derivation theorem of
Sakai which is not constructive as it relies on the compactness of a relevant
object. Arveson’s theory was so beautiful that I couldn’t resist to try on the
structure analysis of a factor of type III. Also his theory equally inspiered
Connes to develop his theory of Connes spectrum �(↵) of an action ↵ of
a locally compact abelian group on a von Neumann algebra. The summer
of 1972 was quite dramatic for the structure analysis of a factor of type III



M. TAKESAKI 5

on the both sides of Atlantic Oceaan. On the west, Araki was staying at
Kingston with E.J. Woods as the host and working on the structure analysis
of factors of type III which overlapped heavily with mine and collided at a
meeting in Austin, Texas, where the both of us presented almost same results
on the structure of a factor of type III. It was E. J. Woods who recognized
immediately that the collaboration of myself and Araki would produce a
remarkable progress in the structure theory of factors of type III and invited
myself to Kingston for the summer of 72. The structure analysis of factors
of type III developped in a breath taking pase: on the eastern side Connes
was developping his own structure analysis of factor of type III� , 0  � < 1,
while Araki and myself are working on a factor of type III which admists a
special kind of states.

Observing the rapid progress in Connes’ work, J. Dixmier advised him
to postpone his Ph D for another year to complete a comprehensive and
complete Ph D thesis and Connes followed his advise: thus his historic thesis
which does not lose its glory today at all. The fall of 1972, I was able to
prove the duality theorm which takes care of all von Neumann algebras of
type III. Then I received a phone call from Daniel Kastler inviting me to
spend the academic year of 1973/ 74 in Maraseille along with Connes. At
that time Connes agreed to apply for the Hedricks Assistant Professorship at
UCLA, but Kastler’s o↵er is more attractive. He invited me along with my
students: Trond Digernes and Hiroshi Takai. So I accepted the invitation.
Guggenheim Foundation also supported my plan to spend a year in Marseille.
Then Connes visited me at UCLA in February of 1973, with which we started
to work on the flow of weights: of course we didn’t think about the title. We
both just knew that the duality theorem was not the end of the story, instead
it was a beginning of something much deeper theory. The collaboration went
very successfully: birth of the theory of flow of weights in which we have
proved a technically demanding result: the relative commutanat theorem.

The year 1973 - 74 has gone very quickly too. It took another year to
complete the flow of weights paper. After this year, Connes went to Kingston
to fulfil his military duty as a French citizen. There he proved his famous
results on injective factors and the classification of a single automorphism of
an AFD factor, leaving me far behind.

In the succeeding year, I worked on the further completion of the structure
theory of a factor of type III, which resulted the canonical construction of
the core of a factor of type III and the cocycle conjgacy analysis of amenable
discrete countable group actions on an AFD factor, following the work of
Vaughan F.R. Jones and Adrian Ocneanu.
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Lecture 1. Covariant System and Crossed Product.

§1.1. Topology on Aut(M)Aut(M)Aut(M). Let M be a von Neumann algebra. An auto-
morhism ↵ of M means a bijective linear map ↵ : x 2 M 7! ↵(x) 2 M such
that

↵(xy) = ↵(x)↵(y),

↵(x⇤) = ↵(x)⇤,
x, y 2M.

The set Aut(M) of all automorphisms of M forms a group under the com-
position of maps. If there exists a unitary u 2M such that

Ad(u)(x)def=uxu⇤, 1 x 2M,

then the automorphism Ad(u) is called inner. The set Int(M) of all inner
automorphims forms a normal subgroup of Aut(M). We denote by

Out(M) def= Aut(M)/Int(M)

the quotient group of Aut(M) by Int(M).
For each ↵ 2 Aut(M), we consider the following;

U(↵ : !1, · · · ,!n)def=

(
� 2 Aut(M) :

k!i�↵� !i��k < 1,��!i�↵
�1 � !i��

�1
�� < 1,

1  i  n

)
.

Then the family {U(↵ : !1, · · · ,!n) : !1, · · · ,!n 2M⇤} defines a topology
which makes Aut(M) a topological group.

Remark 1.1. The group Int(M) is not necessarily closed.

Under this neighborhood system, Aut(M) is a complete topological group.
In the case that M⇤ is separable2, Aut(M) is a Polish group.

§1.2. Locally Compact Group. Now let G be a locally compact group
with left invariant Haar measure.3 Let us fix basic notations concerning
locally compact group G. We take the left Haar measure ds and consider

1The notation
def
= defines the left by the right of the equality sign.

2We call M separable when the predual M⇤ is seprable. A separable von Neumann
algebra is not separable in norm. In fact, a seperable von Neumann algebra in norm is
finite dimensional.

3For those who are not familier with the general theory of locally compact group, one
may take the additive group R of real numbers.
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the following Banach spaces relative to the left Haar measure:
Z

G
f(st)dt =

Z
G

f(t)dt, f 2 Cc(G);
Z

G
f(st)ds = �G(t)

Z
G

f(s)ds, f 2 Cc(G);

L1(G) =
⇢

f : kfk1 =
Z

G
|f(s)|ds < +1

�
;

L2(G) =

(
f : kfk2 =

✓Z
G
|f(s)|2ds

◆ 1
2

< +1
)

;

L1(G) = {f : |{g 2 G : |f(s)| � r}| = 0 for some r 2 R+}4;
kfk1 = inf{r > 0 : |{s 2 G; |f(s)| > r}| = 0}.

The Banach space L1(G) admits an involutive Banach algebra structure:

(f ⇤ g)(t) =
Z

G
f(s)g

�
s�1t

�
ds;

f⇤(s) = �G(s)�1f(s�1),
f, g 2 L1(G).

We also introduce the notation:

f_(s) = f
�
s�1
�

On the Hilbert space L2(G) of square integrable functions on G relative to
the left Haar measure, we define unitary representations of G:

(�G(s)⇠)(t) = ⇠
�
s�1t

�
;

(⇢G(t)⇠)(s) = �G(t)�
1
2 ⇠(st),

⇠ 2 H = L2(G), s, t 2 G.

They are called the left and right regular representations of G respectively.
Integrating �G and ⇢G, we get the ⇤-representations of L1(G):

(�G(f)⇠)(t) =
Z

G
f(s)(�G(s)⇠)(t)ds

=
Z

G
f(s)⇠

�
s�1t

�
ds = (f ⇤ ⇠)(t);

(⇢G(f)⇠)(s) =
Z

G
f(t)(⇢G(t)⇠)(s)dt =

Z
G

f(t)�G(t)�
1
2 ⇠(st)dt

=
Z

G
f
�
s�1t

�
�G
�
s�1t

�� 1
2 ⇠(t)dt =

✓
⇠ ⇤
⇣
�
� 1

2
G f

⌘_◆
(s).

4The notation |E| for a Borel subset E ⇢ G means the measure of E relative to a fixed
Haar measure
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An action of G on a von Neumann algebra M is a continuous map:
g 2 G 7! ↵g 2 Aut(M) such that

↵gh = ↵g�↵h, g, h 2 G.

We call the system {M, G,↵} a covariant system on G. In the case that
G = R, the action ↵ is called a one parameter automorphism group.
Indeed, this is most relevant to us for the structure theory of von Neumann
algebra of type III.

§1.3. Perturbaton by Cocyles and Various Equivalence of Actions.
When two actions ↵ on M and � on N of a locally compact group G are

considered, we say that ↵ and � are conjugate and write ↵ ⇠= � if there
exists an isomorphism � : M 7! N such that

��↵g��
�1 = �g, g 2 G.

A continuous map: g 2 G 7! u(g) 2 U(M) which satisfies the following
cocycle condition:

u(gh) = u(g)↵g(u(uh)), g, h 2 G,

is called an ↵-cocycle, or more precisely an ↵-one cocycle. We denote
the set of all ↵-cocycles by Z↵(G,U(M)).

For each ↵-cocycle u 2 Z↵(G,U(M)), we define the perturbation u↵ of ↵
by the cocycle u as follows:

u↵g = Ad(u(g))�↵g, g 2 G,

which is a new action of G on M. The cocycle identity guarantees that the
perturbed u↵ is an action as seen via a simple computation. We say that u↵
the pertubed action of G by the cocycle u.

For each w 2 U(M), we set

(@wu)(g) = w⇤u(g)↵g(w).

It is easily seen that

(@wu)↵g = Ad(w)�1�u↵g�Ad(w), g 2 G,

so that u↵ ⇠= (@w(u))↵. More precisely, we write with v = @wu, b 2 Z↵(G,U(M)),

u↵ ⇠= v↵ mod Int(M).5

5The notation mod Int(M) indicates the conjugation is actually given by the group
Int(M) of inner automorphisms.
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The set of all cocycle peturbations of an action ↵ of G will be denoted
by [↵] and called the cocycle perturbation class of ↵. For each � 2 [↵], i.e.,
�g = u↵g, g 2 G, for some ↵-cocycle u, we consider the set Z�(G,U(M)) of
all �-cocycles, and

Z[↵](G,U(M)) =
[

{Z�(G,U(M)) : � = u↵ for some u 2 Z↵(G,U(M))}.

Each u 2 U(M) acts on Z[↵](G,U(M)) by the following:

@u(v)(g) = u⇤v(g)�g(u), g 2 G, v 2 Z�(G, U(M)), � 2 [↵].

We denote the set of all @U(M)-orbits by the following:

H[a](G,U(M)) = Z[↵](G,U(M))/@(U(M)).

Two actions ↵ and � of G on M are said to be cocycle conjugate if there
exists u 2 Z↵(G,U(M)) such that

� ⇠= u↵.

§1.4. Crossed Product of a von Neumann algebra M by an Action
of a Locally Compact Group G. Fix a covariant system {M, G,↵}. We
represent M on a Hilbert space H faithfully. We view the Hilbert space
K = H⌦L2(G) as the Hilbert space L2(H, G) of all H-valued square integrable
functions on G relative to the left Haar measure. Set

(⇡↵(x)⇠)(g) = ↵�1
g (x)⇠(g),

(uG(h)⇠)(g) = ⇠
�
h�1g

�
,

⇠ 2 K = L2(H, G), x 2M.

It then follows that ⇡↵ is a normal faithful representation of M and u is a
unitary representation of G on K which are linked in the following way:

u(g)⇡↵(x)u(g)⇤ = ⇡↵(↵g(x)), g 2 G,x 2M,

the relation called the covariance. The crossed product M o↵ G is by
definition the von Neumann algebra generated by ⇡↵(M) and u(G).

Theorem 1.2. The crossed product M o↵G does not depend on the Hilbert
space on which M acts.

Sketch of Proof. Suppose that M is represented on Hibert spaces H1 and H2

faithfully. Consider the direct sum Hilbert space H = H1�H2 and write the
actions of M on H1 by ⇡1 and on H2 by ⇡2 respectively. Then represent M
diagonally on H, i.e.

x 2M 7! ⇡(x) =
✓
⇡1(x) 0

0 ⇡2(x)

◆
2 L(H).
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Let e1 and e2 be the projections to the first and second components of H
respectively. Then we have

{⇡1(M),H1} ⇠= ⇡(M)e1 , {⇡2(M),H2} ⇠= ⇡(M)e2 .

Consider the Hilbert space K = L2(H, G) on which ⇡(M)o↵G is represented.
Then the Hilbert space K is the direct sum of K1 = L2(H1, G) and K2 =
L2(H2, G). Now the crossed product ⇡(M)o↵G is generated by two kinds of
operators:

⇡↵(x), x 2 ⇡(M), uG(s), s 2 G.

Let f1 and f2 be the projections of K to K1 and K2 respectively, i.e.,

f1 = e1 ⌦ 1L2(G), f2 = e2 ⌦ 1L2(G).

Now we observe that

e1, e2 2 ⇡(M)0;_
{ve1v

⇤ : v 2 U(⇡(M)0)} = 1 =
_

{we1w
⇤ : w 2 U(⇡(M)0)}.

As v ⌦ 1L2(G) 2 U
�
(⇡(M)o↵G)0

�
for every v 2 U(⇡(M)0). we have

_�
vfiv

⇤ : v 2 U
�
(⇡(M)o↵G)0

� 
= 1, i = 1, 2.

Hence the maps x 2 ⇡(M)o↵G 7! xfi 2 ⇡i(M)o↵G, i = 1, 2, are isomor-
phisms. Hence we have

⇡1(M)o↵G ⇠= ⇡(M)o↵G ⇠= ⇡2(M)o↵G.

~
Let g 2 G 7! U(g) 2 U(H) be a unitary reprresentation of G on the

Hilbert space on which M acts also. If we have

U(g)xU(g)⇤ = ↵g(x), x 2M, g 2 G,

then we say that the action M on H and the unitary representation U of
G are covariant and/or that the covariant system {M, G,↵} acts on H
covariantly.

Theorem 1.3. Suppose that an action of a covariant system {M, G,↵} on
a Hilbert space H is covariant via a unitary representation U of G on H, then
we have the following:

i) Let ⇡ be the representation of the commutant M0 on K = H⌦ L2(G)
given by the following:

(⇡(y)⇠)(g) = y⇠(g), y 2M0, g 2 G, ⇠ 2 K.
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Then define vG : g 2 G 7! vG(g) 2 U(K) by the following:

(vG(g)⇠)(h) = �G(g)�
1
2 U(g)⇠(hg), g, h 2 G, 6

where �G : g 2 G 7! �G(g) 2 R⇤+ be the modular function of G which
makes the above vG a unitary representation G on K. The represen-
tation ⇡ of the commutant M0 of M and unitary representation v of
G is covariant in the sense that

U(g)⇡(y)U(g)⇤ = ⇡
�
↵0g(y)

�
, y 2M0, g 2 G,

where ↵0 is the action of G on the commutant M0 given by the
following:

↵0g(y) = U(g)yU(g)⇤, y 2M0, g 2 G.

ii) The commutant of the crossed product M o↵ G represented on K is
given by

(M o↵ G)0 = {⇡(M0) [ vG(G)}
00
.

iii) The von Neumann algebra (M o↵ G)0 is naturally isomorphic to the
crossed product M0 o↵0 G.

iv) If u 2 Z↵(G,U(M)), then the unitary U defined by the following:

(U⇠)(g) = u
�
g�1
�
⇠(g), g 2 G, ⇠ 2 K,

gives a spatial isomorphism:

U(M o↵ G)U⇤ = M ou↵ G.

Thus the isomorphism class of the crossed product is stable under a
cocycle perturbation.

Corollary 1.4. Let ⇢G be the right regular representation of G on the Hilbert
space L2(G), i.e.,

(⇢G(g)⇠)(h) = �G(g)�
1
2 ⇠(hg), ⇠ 2 L2(G), g, h 2 G.

Then the unitary representation ⇢G gives rise to an action ⇢ of G on L
�
L2(G)

�
as follows:

⇢g(x) = ⇢G(g)x⇢G(g)⇤, x 2 L
�
L2(G)

�
, g 2 G,

6The unitary representation vG is the tensor product U ⌦ ⇢G of the unitary represen-
tation U and the right regular representation of G.
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which has the following properties:

M o↵ G ⇠=
�
M⌦L

�
L2(G)

��↵⌦⇢
where N� for a covariant system {N, G,�} means the fixed point subalgebra
of N under any action �.

Unless G is discrete, there is no way to represent a general element of the
crossed product M o↵ G. But fortunately, there are prenty many elements
of the crossed product M o↵ G which are written in the form:

x =
Z

G
⇡↵(x(g))u(g)dg,

where g 2 G 7! x(g) 2M is integrable in the sense that

kxk1 =
Z

G
kx(g)kdg < +1.

With this in mind, we define an involutive Banach algebra structure on
L1(M, G), the space obtained as the completion of the set Cc(M, G) of all
�-strongly⇤continuous M-valued functions on G under the L1-norm:

(x ⇤ y)(g) =
Z

G
x(h)↵h(y(h�1g))dh;

x⇤(g) = �G(g)�1↵g

�
x
�
g�1
��⇤;

kxk1 =
Z

G
kx(g)kdg,

x, y 2 L1(M, G).

For each x 2 L1(M, G), we set

⇡(x) =
Z

G
⇡↵(x(g))u(g)dg 2 L

�
L2(H, G)

�
.

Then ⇡ is a ⇤-representation of L1(M, G) and the image ⇡
�
L1(M, G)

�
is �-

weakly dense in M o↵ G. The space Cc(M, G) of L1(M, G) is a self-adjoint
subalgebra and dense. The square Cc(M, G) ⇤ Cc(M, G), i.e., the set of all
linear combinations of the products:

Cc(M, G) ⇤ Cc(M, G) =

(
nX

i=1

xi ⇤ yi : xi, yi 2 Cc(M, G), i = 1, · · · , n

)

lies in the domain of the operator valued weight:
E(x ⇤ y) = (x ⇤ y)(e) 2M, x, y 2 Cc(M, G),

where we identify Cc(M, G) with its image
⇡(Cc(M, G)) ⇢M o↵ G.

We denote the domain of E and the positive part of the domain by the
following:

D(M, G) = Cc(M, G) ⇤ Cc(M, G);

D(M, G)+ =

(
nX

i=1

x⇤i ⇤ xi : x1, · · · , xn 2 Cc(M, G)

)
.
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§1.5 Dual Weight. We fix a covariant system {M, G,↵}. We now inves-
tigate a semi-finite normal weight on M and the corresponding semi-finite
normal weight on M o↵ G.

Theorem 1.4. The map E : D(M, G)+ 7! M is extended to a semifinite
normal faithful operator valued weight from M o↵ G to the subalgebra M
where M is identified with its image ⇡↵(M) in the crossed product M o↵ G.

Definition 1.5. For a semi-finite normal weight ' on M, the semi-finite
normal weight b' on M o↵ G defined by the following:

b' = '�E

is called the dual weight of '.

Theorem 1.6. Under the above notations and the set up the dual weightb' on M o↵ G of a faithful semi-finite normal weight ' enjoys the following
properties:

i) The semi-finite normal weight b' is faithful.
ii) The modular automorphism group � b' acts on the generators of the

crossed product M o↵ G as follows:

� b'
t (⇡↵(x)) = ⇡↵(�'t (x)), x 2M;

� b'
t (u(g)) = �G(g)itu(g)⇡↵

�
(D'�↵g : D')t

�
, t 2 R.

iii) If  is another faithful semi-finite normal weight, then we have the
Connes cocycle derivative given the following:

⇣
D b : Db'⌘

t
= ⇡↵((D : D')t), t 2 R.

In the theorem, if we take the modular covariant system {M, R,�'}, then
the modular automophism group

n
� b'

t : t 2 R
o

is given by {Ad(uR(t)) : t 2 R},
which gives the following result at once.

Corollary 1.7. The crossed product eM = Mo�'R of the modular covariant
system {M, R,�'} is semi-finite and its algebraic type is independent of the
choice of a faithful semi-finite normal weight '. The faithful semi-finite
normal trace on the crossed product eM is given by the following formula:

⌧(x) = b'⇣h� 1
2 xh�

1
2

⌘
, x 2 eM+,

where the non-singular positive self-adjoint opertator h a�liated with eM is
the logarithmic generator of the one parameter unitary group {uR(t) : t 2 R},
i.e.,

uR(t) = hit, t 2 R.
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Lecture 2: Duality for the Crossed
Product by Abelian Groups.

§2.1. Fourier Transform and Plancherel Formula. We now consider
a locally compact abelian group G. We denote the group operation of G
additively. Let bG be the Kampen-Pontrjagin dual of G, i.e., the group of
all continous homomorphism from G to the torus T = {� 2 C : |�| = 1}. We
write the duality of

n
G, bGo in the following way:

(g, p) 2 G⇥ bG 7! hg, pi 2 T jointly continuous bicharacter;
hg + h, pi = hg, pihh, pi, hg, p + qi = hg, pihg, qi,

g, h 2 G, p, q 2 bG
We choose the Haar measures dg on G and dp on bG in such a way that the
Plancherel formula holds, i.e.,

(Ff)(p) =
Z

G
hg, pif(g)dg, f 2 L1(G),

⇣bF bf⌘(g) =
Z

bG
hg, pi bf(p)dp, bf 2 L1

⇣ bG⌘,
⇣
f
���bF bf ⌘

L2(G)
=
⇣
Ff
��� bf ⌘

L2( bG)
,

f 2 L2(G) \ L1(G), bf 2 L2
⇣ bG⌘ \ L2

⇣ bG⌘;
bF�Ff = f, if f 2 L1(G) and Ff 2 L1

⇣ bG⌘;
F�bF bf = bf, if bf 2 L1

⇣ bG⌘ and bF bf 2 L1(G);

kfk2 = kFfk2, f 2 L1(G) \ L2(G);���bF bf���
2

=
��� bf���

2
, bf 2 L1

⇣ bG⌘ \ L2
⇣ bG⌘.

If f 2 L2(G), then for each compact subset K b G there exists bfK 2 L2
⇣ bG⌘

such that bfK(p) =
Z

K
hg, pif(g)dg,

and the net
n bfK : K b G

o
converges to bf 2 L2

⇣ bG⌘ in L2-norm as K in-

creases to G. We call this bf the extended Fourier transform of f and
write bf = Ff . Hence the extended Fourier transform F is indeed an isometry
from L2(G) onto L2

⇣ bG⌘.
We use the following notations and name:

bF⇣L1
⇣ bG⌘⌘ = A(G) = L2(G) ⇤ L2(G) ⇢ C0(G);

F
�
L1(G)

�
= A

⇣ bG⌘ = L2
⇣ bG⌘ ⇤ L2

⇣ bG⌘ ⇢ C0

⇣ bG⌘.
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The algebras A(G) and A
⇣ bG⌘ are respectively called the Fourier algebra.

We now discuss the real additive group R. In this case, we have

bR = R;

(s, p) 2 R⇥ R 7! hs, pi = eisp 2 T;

(Ff)(p) =
1p
2⇡

Z
R
e�ispf(s)ds, f 2 L1(R);

⇣bF bf⌘(s) =
1p
2⇡

Z
R
eisp bf(p)dp, bf 2 L1(R).

Viewing the Fourier transform F as an operator on L2(R), we have

bF = F⇤, FF⇤ = 1, F⇤F = 1, unitary

F2f(s) = f(�s),
⇣bF2f

⌘
(p) = f(�p), F4 = 1, bF4 = 1.

Namely the Fourier transform on L2(R) is a unitary operator with period 4.
If f(s) = e�⇡s2

, then
(Ff)(p) = f(p), p 2 R.

Define the convolution and the involution by the following:

(f ⇤ g)(s) =
Z

R
f(t)g(s� t)dt, f, g 2 L1(R);

f⇤(s) = f(�s).

With this algebraic structure, L1(R) is an involutive Banach algebra. Fur-
thermore, the Fourier transform is indeed the Gelfand transform of the Ba-
nach algebra L1(R) as seen below:

Ff 2 C0(R), f 2 L1(R);

F(f ⇤ g) = (Ff)(Fg), f, g 2 L1(R);

(Ff⇤) = (Ff);

F(fg) = (Ff) ⇤ (Fg), f, g 2 C0(R) \ L1(R);

Ff = (Ff)⇤, f 2 L1(R).

§2.2. Uniqueness of the Heisenberg Commutation Relation.
Let G be an abelian locally compact group with Kampen - Pontrjagin dualbG. A pair U, V of unitary representations of G and bG on the same Hilbert

space H is called covariant if the following covariance condition holds:

U(s)V (p) = hs, piV (p)U(s), (s, p) 2 G⇥ bG.
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The map:

((s1, p1); (s2, p2)) 2
⇣
G⇥ bG⌘2

7! mG(g1, g2) = hs2, p1i 2 T

where
gi = (si, pi) 2 G⇥ bG, i = 1, 2,

is a 2-cocycle satisfying the cocycle identity:

mG(g1, g2)mG(g1g2, g3) = mG(g1, g2g3)mG(g2, g3), g1, g2, g3 2 G⇥ bG.

We fix the Haar measures7 on G and bG respectively so that the Plancherel
formula holds. Consider the Hilbert space H = L2(G) and define:

(⇢G(s)⇠)(t) = ⇠(t + s), s, t 2 G;
(�G(s)⇠)(t) = ⇠(t� s)

(µG(p)⇠)(t) = ht, pi⇠(t), p 2 bG, ⇠ 2 L2(G).

Then the following computation:

(�G(s)µG(p)⇠)(t) = (µG(p)⇠)(t� s) = ht� s, pi⇠(t� s);

(µG(p)�G(s)⇠)(t) = ht, pi(�G(s)⇠)(t) = ht, pi⇠(t� s);

�G(s)µG(p) = hs, piµG(p)�G(s)

shows that the pair {�G, µG} is covariant. We then consider the e↵ect of the
Fourier transform on them:

(F�G(s)F⇤⇠)(p) =
Z

G
ht, pi(�G(s)F⇤⇠)(t)dt =

Z
G
ht, pi(F⇤⇠)(t� s)dt

=
Z

G
ht + s, pi(F⇤⇠)(t)dt = hs, pi

Z
G
ht, pi(F⇤⇠)(t)dt

= hs, pi(FF⇤⇠)(p) = hs, pi⇠(p), ⇠ 2 L2
⇣ bG⌘ \ L1

⇣ bG⌘,
(FµG(p)F⇤⇠)(q) =

Z
G
ht, qi(µG(p)F⇤⇠)(t)dt =

Z
G
ht, qiht, pi(F⇤⇠)(t)dt

=
Z

G
ht, p + qi(F⇤⇠)(t)dt = (FF⇤⇠)(p + q)

=
�
⇢ bG(p)⇠

�
(q)

for su�ciently many ⇠’s to conclude

F�G(s)F⇤ = µ bG(s), s 2 G;
FµG(p)F⇤ = ⇢ bG(p) = � bG(p)⇤, p 2 G.

7For those of you who are not familier with the theory of locally compact abelian
groups, you can assume G = bG = R and

p
1/2⇡ times the Lebesgue measure as the Haar

measures on G and bG with which Plancherel formula holds.
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Theorem 2.1. i) The covariant representations {�G, µG} is irreducible in
the sense that there is no non-trivial closed subspace M ⇢ L2(G) jointly
invariant under ⇢G and µG. Equivalently, we have

⇣
�G(G) [ µG

⇣ bG⌘⌘00 = L
�
L2(G)

�
.

ii)The covariant pair {�G, µG} of unitary representations is a unique co-
variant representation in the sense that if {U, V } is another covariant pair of
unitary representations of G and bG on the same Hilbert space H, then there
exists a Hilbert space K such that

�
�G ⌦ 1K, µG ⌦ 1K, L2(G)⌦ K

 ⇠= {U, V,H} Unitarily Equivalent.

The algebra L1(G) of all essentially bounded functions on G relative to
the Haar measure acts on L2(G) by multiplication:

(⇡(f)⇠)(s) = f(s)⇠(s), f 2 L1(G), ⇠ 2 L2(G).

Then ⇡(L1(G)) ⇢ L
�
L2(G)

�
is a maximal abelian subalgebra of L

�
L2(G)

�
.

For each bf 2 L1
⇣ bG⌘, the multiplication operator by the Fourier transform

f = bF bf 2 C0(G) of bf is given by the following;

(⇡(f)⇠)(s) =
✓Z

bG
hs, pi bf(p)dp

◆
⇠(s) =

Z
bG
bf(p)hs, pi⇠(s)dp

=
✓✓Z

bG
bf(p)µG(p)dp

◆
⇠

◆
(s)

=
⇣
µG

⇣ bf⌘⇠⌘(s),
where

µG

⇣ bf⌘ =
Z

bG
bf(p)µG(p)dp 2 L

�
L2(G)

�
.

Consequently,

⇡(f) = µG

⇣ bf⌘, f = F⇤ bf, bf 2 L1
⇣ bG⌘.

Since A(G) = bF⇣L1
⇣ bG⌘⌘ is norm dense in C0(G), we have

µG

⇣ bG⌘00 = ⇡(L1(G)).
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For each f 2 L1
⇣
G⇥ bG⌘, set

⇡(f) =
ZZ
G⇥ bG

f(s, p)⇢G(s)µG(p)dsdp;

⇡(f)⇡(g) =

0
B@
ZZ
G⇥ bG

f(s, p)⇢G(s)µG(p)dsdp

1
CA
0
B@
ZZ
G⇥ bG

g(t, q)⇢G(t)µG(q)dtdq

1
CA

=
ZZZZ

(G⇥ bG)2

ht, pif(s, p)g(t, q)⇢G(s + t)µG(p + q)dsdpdtdq

=
ZZZZ

(G⇥ bG)2

ht, pif(s, p)g(t� s, q � p)⇢G(t)µG(q)dsdpdtdq

= ⇡(f ⇤ g)

where
(f ⇤ g)(t, q) =

ZZ
G⇥ bG
ht, pif(s, p)g(t� s, q � p)dsdp

Then we have

(⇡(f)⇠)(t) =
ZZ
G⇥ bG
ht, pif(s, p)⇠(s + t)dsdp

=
ZZ
G⇥ bG
ht, pif(s� t, p)⇠(s)dsdp.

Let {M, G,↵} be a covariant system on a locally compact abelian group G.
Assume that the von Neumann algebra M acts on a Hilbert space H. Then
the crossed product:

N = M o↵ G,

is generated by the two kind of operators:

⇡↵(x), x 2M, u(s), s 2 G,

and operates on the Hilber space

K = H⌦ L2(G) = L2(G,K).

Now the unitary representation v : p 2 bG 7! v(p) 2 U(K) defined by the
formula:

(v(p)⇠)(s) = hs, pi⇠(s), ⇠ 2 K, s 2 G, p 2 bG,
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behaves in the following way:

v(p)⇡↵(x)v(p)⇤ = ⇡↵(x), x 2M, p 2 bG;

v(p)u(s)v(p)⇤ = hs, piu(s), s 2 G.

Thus the unitary representation v of the dual group bG gives rise to an action
b↵ of bG:

b↵p(x) = v(p)xv(p)⇤, x 2M o↵ G, p 2 bG.

Defition 2.2. The action b↵ of bG is said to be dual to the original action ↵
or the dual action of ↵. The covariant system

n
M o↵ G, bG, b↵o is called the

dual covariant system or the covariant system dual to the original
system {M, G,↵}.

Now we are ready to state the duality theorem on the crossed product of
a covariant system on a locally compact abelian group.

Theorem 2.3. (Duality Theorem). Suppose that {M, G,↵} is a covari-
ant system on a locally compact abelian group G. Then the covariant systemn
M o↵ G, bG, b↵o dual to {M, G,↵} has the following properties:

i) The fixed point algebra (M o↵ G)b↵ under the dual action b↵ is pre-
cisely ⇡↵(M);

ii) A faithful semi-finite normal weight ! on the M o↵ G is dual to a
some faithful semi-finite normal weight ' on M, i.e., ! = b' if and
only if ! is invariant under the dual action b↵;

iii) Concerning the second crossed product, we have

(M o↵ G) ob↵ bG ⇠= M⌦L
�
L2(G)

�

under the isomorphism � determined uniquely by the following properties:

(�(⇡↵(x))⇠)(s) = ↵�1
s (x)⇠(s), x 2M, s 2 G;

(�(⇡b↵(u(s)))⇠)(t) = ⇠(t� s), s, t 2 G;�
�
�
u bG(p)

�
⇠
�
(t) = ht, pi⇠(t), p 2 bG;

⇠ 2 L2(H, G)

where u bG(·) means the unitary representation of the dual group bG
corresponding to the second crossed product;

iv) The isomorphism � conjugates the second dual action bb↵ to the ac-
tion ↵ ⌦ ⇢ where ⇢ means the inner automorphism action of G on
L
�
L2(G)

�
given by the right regular representation ⇢G defined by the

following:

(⇢G(s)⇠)(t) = ⇠(s + t), ⇠ 2 L2(G), s, t 2 G;
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v) For each faithful semi-finite normal weight ', the second dual semi-
finite normal weight ˆ̂' is related to the original weight ' in the fol-
lowing way:
⇣⇣

D
⇣

ˆ̂'���1
⌘

: D('⌦ Tr)
⌘

t
⇠
⌘
(s) = (D('�↵s) : D')t⇠(s)

for each ⇠ 2 L2(H, G), s 2 G and t 2 R.

Brief Sketch of the Proof of Theorem 2.3.(iii). The second crossed
product N = (Mo↵G)ob↵ bG acts on the Hilbert space H'⌦L2(G)⌦L2

⇣ bG⌘,
where H' is the semi-cyclic Hilbert space constructed by a faithful semi-
finite normal weight ' on M on which the original von Neumann algebra M

acts. Making use of the inverse Fourier transform 1 ⌦ 1 ⌦ bF, we represent
the second crossed product von Neumann algebra N on K = L2(H', G⇥G,)
which is then generated by the following three types of operators:

U(s) = 1⌦ �G(s)⌦ �G(s), s 2 G;

V (p) = 1⌦ 1⌦ µG(p), p 2 bG;
⇡b↵�⇡↵(x) = ⇡↵(x)⌦ 1, x 2M.

Consider the following unitary operator which is called the fundamental
unitary of G:

(W ⇠)(r, s) = ⇠(r + s, s), r, s 2 G, ⇠ 2 K.

Observe

W (1⌦ 1⌦ µG(p))W ⇤ = 1⌦ 1⌦ µG(p), p 2 bG;
W (1⌦ �G(s)⌦ �G(s))W ⇤ = 1⌦ 1⌦ �G(s), s 2 G;

W (⇡b↵�⇡↵(x))W ⇤ = ⇡(x), x 2M,

where
(⇡(x)⇠)(r, s) = ↵�1

(r+s)(x)⇠(r, s), x 2M, ⇠ 2 K.

We then prove

⇡(M) _ (C⌦ C⌦ L1(G)) = ⇡↵(M)⌦L1(G), (*)

which will implies the following:

WNW ⇤ = (C⌦ C⌦ L1(G)) _
⇣
C⌦ C⌦

⇣
�G(G)

00
⌘⌘
_ ⇡(M)

= (⇡↵(M)⌦L1(G)) _ (C⌦ C⌦ R(G))

= ⇡↵(M)⌦L
�
L2(G)

�
.
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This completes the proof.

Proof of (⇤) for a finite abelian group G. Observe

⇡(x) =
Z �

G
⇡↵(↵s(x))ds 2 ⇡↵(M)⌦L1(G),

so that
⇡(M) ⇢ ⇡↵(M)⌦L1(G).

Hence we have

W (⇡↵(M)⌦ C)W ⇤ = ⇡(M) ⇢ ⇡↵(M)⌦L1(G).

On the other hand, W commutes with C ⌦ C ⌦ L1(G), which yields the
following:

W (⇡↵(M)⌦L1(G))W ⇤ ⇢ ⇡↵(M)⌦L1(G).

Simlarly, we have

W ⇤(⇡↵(M)⌦L1(G))W ⇢ ⇡↵(M)⌦L1(G).

Hence, we conclude that

W (⇡↵(M)⌦L1(G))W ⇤ = ⇡↵(M)⌦L1(G).

This completes the proof of (⇤).
~
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Lecture 3: Second Cohomology of
Locally Compact Abelian Group.

§3.1. Two cocycles of a separable locally compact abelian group.
Fix a separable locally compact abelian group G, where we write the group

operation multiplicatively to shorten formulae.
A Borel function m : G ⇥ G 7! T is called a 2-cocycle if the following

cocycle identity holds:

m(g1, g2)m(g1g2, g3) = m(g1, g2g3)m(g2, g3), g1, g2, g3 2 G.

If there exists a Borel function b : G 7! T such that

m(g1, g2) = b(g1)b(g2)b(g1g2), g1, g2 2 G,

then m is called a coboundary and written

m = @b.

We also say that the function b cobounds m. The set of all cocycles is
written Z2(G, T) and becomes an abelian group under the pointwise multi-
plication, i.e.,

(mn)(s1, s2) = m(s1, s2)n(s1, s2), s1, s2 2 G, m,n 2 Z2(G, T).

The set B2(G, T) of all coboundaries is a subgroup of Z2(G, T). The quotient
group:

H2(G, T) = Z2(G, T)/B2(G, T)

is called the second cohomology group of G.
Fixing a cocycle m 2 Z2(G, T), we consider

Gm = T⇥G,

and define a map:

((�1, s1), (�2, s2)) 2 Gm ⇥Gm 7! (�1�2m(s1, s2), s1s2) 2 Gm.

Observe that Gm is a group. We consider the Borel structure in Gm generated
by product sets {E ⇥ F : E ⇢ T, F ⇢ G} of Borel subsets E ⇢ T and F ⇢ G
and consider the integration:

Z
Gm

f(�, s)d�ds, for Borel function f � 0,

where d� means the normalized Haar measure on the torus T. This integra-
tion gives an invariant standard measure on Gm, which makes the group Gm

a locally compact group. Hence each m 2 Z2(G, T) gives rise to an exact
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sequence of locally compact groups equipped with associated cross-section,
(i.e., a right inverse of the map ⇡m):

1 ����! T i����! Gm
⇡m����!
 �
um

G ����! 1

such that i(T) is contained in the center of Gm and

um(r)um(s) = i(m(r, s))um(rs), r, s 2 G.

If we have another cocycle n 2 Z2(G,T ), then we have another exact se-
quence:

1 ����! T i����! Gn
⇡n����!
 �
um

G ����! 1.

These exact sequences are in the following commutative diagram:

1 ����! T i����! Gm
⇡m����! G ����! 1��� ??y ���

1 ����! T i����! Gn
⇡n����! G ����! 1

if and only
[m] = [n] 2 H2(G, T).

In particular, the above exact sequence split in the sense that the quotient
map ⇡m admits a left inverse u if and only if m 2 B2(G, T).

For every closed subgroup H ⇢ G and the subgroup of the dual group bG:

H? =
n
p 2 bG : hs, pi = 1, s 2 H

o
,

the Kampen-Pontrjagin Duality Theorem for locally compact abelian groups
asserts that

bH ⇠= bG/H?, [G/H ⇠= H?,

under the natural correspondence. This means that the above exact sequence
splits in the sense that the quotiend map ⇡m admits a left inverse if and only
if Gm is commutative.

For each m 2 Z2(G, T) consider the following asymmetrization:

(ASm)(s1, s2)
def= m(s1, s2)m(s2, s1), s1, s2 2 G.
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Theorem 3.1. i) If m is a 2-cocycle on a locally compact abelian group
G, then the assymetrization ASm is a skew symmetric bicharacter in the
following sense:

(ASm)(s1s2, r) = (ASm)(s1, r)(ASm)(s2, r);

(ASm)(r, s) = (ASm)(s, r),
r, s1, s2, s 2 G,

Furthermore, the cocycle m is a coboundary if and only ASm = 1, in the
sense that ASm(r, s) = 1, r, s 2 G. Consequently, the second cohomology
group H2(G, T) is isomorlphic to the group X2(G, T) of all continuous T-
valued squew symmetric bicharacters on G.

ii) If G is closed under the squar root, i.e. if every element of G is square
of another element of G, then every 2-cocycle is cohomologous to a skew
symmetric bicharacter.

We are now returning to the additive notation on the group G. A skew
symmetric bicharacter � 2 X2(G, T) is said to be symplectic if for every
non-zero s 2 G there exists some t 2 G such that

�(s, t) 6= 1.

Example 3.2. i) Let E be an even dimensional real vector space. Let � be
a symplectic bilinear form on E, i.e.,

�(r, s) = ��(s, r);
�(r, s) = 0 for all s 2 E ) r = 0,

Then the bicharacter

�(r, s) = exp(i�(r, s)), r, s 2 E.

is a symplectic bicharacter of E.
ii) Let E = Rn ⇥Rn, n 2 N and write element r 2 E by

r = (x1, · · · , xn; p1, · · · , pn);
s = (y1, · · · , yn; q1, · · · , qn),

xi, yi, pj , qj 2 R, 1  i, j  n.

Then set

�(r, s) =
nX

i=1

(xiqi � piyi)

Then � is a symplectic bilinear form on E.
iii) Every symplectic bilinear form on an even dimensional real vector

space E is of the above form after choosing an appropriate coordinate system.
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Theorem 3.3. Suppose that E is an even dimensional real vector space
equipped with a symplectic bilinear form � and set

��(s, t) = exp(i(�(s, t))), s, t 2 E.

i) The Hilbert space L2(G) of square integrable functions on E relative
to the fixed Haar measure is a unimodular left Hilbert algebra under
the twisted convolution and the involution defined by the following:

(x ⇤ y)(s) =
Z

G
�(s, t)x(s)y(t� s)ds;

x⇤(s) = x(�s),
x, y 2 L2(G), s 2 G.

ii) Choose a basis {e1, · · · , en; f1, · · · , fn} of E so that for a pair of
vectors:

u =
nX

i=1

xiei +
nX

j=1

pjfj ;

v =
nX

i=1

yiei +
nX

j=1

qjfj ,

the symplectic form � takes the following form:

�(u, v) =
nX

i=1

(xiqi � yipi).

iii) Set F = he1, · · · , eni ⇢ E and consider the Hilbett space L2(F ) of
square integrable functions on F relative to the Lebesgue measure.
Then the twisted convolution:

f ⇤ ⇠(x) =
ZZ

E
exp(�ihp, yi)f(x, p)⇠(y � x)dxdp.

for every f 2 L2(E) and ⇠ 2 L2(F ) converges and gives a bounded
operator:

⇠ 2 L2(F ) 7! ⇡(f)⇠ = f ⇤ ⇠ 2 L2(F ).

The map ⇡ : L2(E) 7! ⇡(f) 2 L
�
L2(F )

�
gives rise to an isomorphism

between L2(E) and the algebra L2
�
L2(F )

�
of Hilbert-Schmidt class

operators on L2(F ) and

Tr(⇡(g)⇤⇡(f)) = (f | g), f, g 2 L2(F ).
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Lecture 4. Arveson Spectral of an Action of a Locally
Compact Abelian Group G on a von Neumann algebra M.

We discuss further the Arveson spctrum of actions of a separable locally
compact abelian group G on a von Neumann algebra M. [Arv]. Let G be
a locally compact abelian group and X the dual Banach space of another
Banach space X⇤ on which G acts in such a way that the map s 2 G 7!
h↵s(x),'i 2 C is continuous for every ' 2 X⇤. An action G on X means
that a homomorphism ↵ : s 2 G 7! GLw(X), where GLw(X) means the set
of all �(X,X⇤)-continous invertible operators on X, such that

lim
s!0
k'�↵s � 'k = 0, ' 2 X⇤

sup {k↵sk : s 2 G} < +1.

Let ↵ be an action of G on X which will be fixed for a while. Recall
that the Fourier algebra A

⇣ bG⌘ is the Fourier transform of the convolution
algebra L1(G), equivalently the set of all convolution of two square integrable
functions on bG relative to the Haar measue. For each f 2 L1(G), we write
and set bf(p) =

⇣bFf
⌘
(p) =

Z
G
hs, pif(s)ds, p 2 bG;

↵ bf (x) =
Z

G
f(s)↵s(x)ds, f 2 A

⇣ bG⌘, x 2 X.

Then ↵ bf 2 L(X) and map ↵ : bf 2 A
⇣ bG⌘ 7! ↵ bf 2 L(X) is a representation

of a Banach algebra A
⇣ bG⌘ on the Banach space X, i.e.,

↵ bfbg = ↵ bf �↵bg, bf, bg 2 A
⇣ bG⌘.

For a fixed element x 2 X, the set

I↵(x) =
n bf 2 A

⇣ bG⌘ : ↵ bf (x) = 0
o

is a closed8 ideal of A
⇣ bG⌘. Hence we get a closed subset

Sp↵(x) =
n
p 2 bG : bf(p) = 0, bf 2 I↵(x)

o
⇢ bG.

and call it the ↵-spectrum of x 2 X.
With

I(↵) =
n bf 2 A

⇣ bG⌘ : ↵ bf = 0
o

=
\

x2X

I↵(x),

8The norm topology in A
⇣ bG⌘

is inherited from L1(G).
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the zero point set of the ideal I(↵) of A
⇣ bG⌘ is called the Arveson spectrum

of ↵ and written Sp(↵).
The ↵↵↵-spectrum Sp↵(x)Sp↵(x)Sp↵(x) of x 2 X is the oscillation mode of the map:

s 2 G 7! ↵s(x) 2 X as seen below. Then the following properties of the
↵-spectrum of x 2M is easily shown:

Sp↵(↵ bf (x)) ⇢ supp( bf) \ Sp↵(x).

Definition 4.1. For a subset E ⇢ bG, we set

X↵(E) = {x 2 X : Sp↵(x) ⇢ E}.

Example 4.2. Suppose that a map x(·) is a X-valued continuous function
on bG such that

↵s(x(p)) = hs, pix(p), p 2 bG.

Set

x =
Z

bG
x(p)dp 2 X.

For each f 2 L1(G), let

bf(p) =
⇣bFf

⌘
(p) =

Z
G
hs, pif(s)ds,

and compute

↵ bf (x) =
Z

G
f(s)↵s

✓Z
bG
x(p)dp

◆
ds

=
ZZ
G⇥ bG

f(s)↵s(x(p))dsdp =
ZZ
G⇥ bG

f(s)hs, pi(x(p))dsdp

=
Z

bG
bf(p)x(p)dp.

Then conclude that

bf 2 I↵(x) , supp(f) \ supp(x(·)) = ;.

Thus we get in this case

Sp↵(x) = supp(x(·)).
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Theorem 4.3. (Arveson’s Theorem). Suppose that � be another action
of G on X such that �s 2 GLw(X) and

lim
s!0
k'��s � 'k = 0, ' 2 X⇤.

Then the following statements are equivalent:
i) ↵s = �s, s 2 G;
ii) X↵(E) ⇢ X�(E) for all compact subset E ⇢ bG;
iii) X�(E) ⇢ X↵(E) for all compact subset E ⇢ bG;
iv) X�(E) = X↵(E) for all compact subset E ⇢ bG.

The proof is quite technical. So we omite the proof.
The following result indicates the property of the Arveson spectrum.

Proposition 4.4. If {M, G,↵} is a covariant system on locally compact
abelian group G, then the Arveson spectrum of each x 2 M enjoys the fol-
lowing properties:

i) Sp↵(x⇤) = �Sp↵(x), x 2M, i0) M↵(E)⇤ = M↵(�E), E ⇢ bG,
ii) Sp↵(xy) ⇢ Sp↵(x) + Sp↵(y), ii0) M↵(E)M↵(F ) ⇢M↵

�
E + F

�
.

We continue to work on the covariant system {M, G,↵} with G a locally
compact abelian group, and set

p↵(E) = sup {s`(x) : x 2M↵(E)};
q↵(E) = sup {sr(x) : x 2M↵(E)},

for each closed subset E ⇢ bG. where s`(x) and sr(x), x 2 M mean respec-
tively the left and right support of x, i.e.,

s`(x) = �-strong⇤ lim
n!1

(xx⇤)
1
n , sr(x) = �-strong⇤ lim

n!1
(x⇤x)

1
n , x 2M.

Theorem 4.5. Under the above notation, both p↵(E) and q↵(E) for a closed
subset E ⇢ bG are projections in the center C↵ of the fixed point subalgebra
M↵.

Making use of the above discusion, the following refined theorem of Borchers
can be shown.

Theorem 4.6 (Borchers-Arveson). For a one parameter automorphism
group {M, R,↵} of a von Neumann algebra M, the following two conditions
are equivalent:

i) There exists a one parameter unitary group {u(t) : t 2 R} in the uni-
tary group U(M) such that

↵t(x) = u(t)xu(t)⇤, x 2M, t 2 R;
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and the one parameter unitary group {u(t) : t 2 R} has a positive
spectrum in the sense that the spectral integration:

u(t) =
Z 1

0
ei�tde(�)

gives the spectral decompostion of {u(t)} over the positive real line
[0,1);

ii)
inf{q↵([t,+1)) : t 2 R} = 0.

If the condition (ii) holds, then the spectral measure e(·) of {u(t)} is given
explicitly in the following form:

e([t,+1)) = inf{q↵([s,+1)) : s < t}.
Returning to the original setting {X,X⇤,↵} on locally compact abelian

group G, we have the following

Theorem 4.7. i) Let A be the Banach subalgebra of L(X) generated by
↵ bf , f 2 A

⇣ bG⌘. Then the spectrum Sp(A) of the commutative Banach algebra
A is naturally identified with the Arveson spectrum Sp(↵) of the action ↵.

ii) The following two conditions on {X,X⇤,↵} are equivalent:
a) The map: s 2 G 7! ↵s 2 L(X) is contiuous in norm;
b) The Arveson spectrum Sp(↵) is compact.

Definition 4.8. Let A be a C⇤-algebra and � : x 2 A 7! �(x) is called a
derivation if � is a linear map such that

�(xy) = �(x)y + x�(y), x, y 2 A.

When we have
�(x⇤) = �(x)⇤, x 2 A,

it is called a ⇤⇤⇤-derivation. Setting
�⇤(x) = �(x⇤)⇤, x 2 A,

we obtain another derivation �⇤ and we decompose the derivation into the
linear combination of ⇤-derivations:

� =
1
2
(� + �⇤) + i

1
2i

(� � �⇤).

Theoem 4.9. (Sakai’s Theorem). A derivation � on a C⇤-algebra A is
always bounded and generates a norm continuous one parameter automor-
phism group of A in the sense

↵t(x) =
X

n2Z+

tn

n!
�n(x), t 2 R.

Each automorphism ↵t is a ⇤-automorphism if and only if � is a ⇤-derivation.

Theorem 4.10. (Sakai - Kadison). A derivation on a von Neumann
algebra M is inner in the sense that there exists a 2M such that

�(x) = [a, x] = ax� xa, x 2M.
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Lecture 5: Connes Spectrum.

We return to the study of a covariant system {M, G,↵} over a locally
compact abelian group G. We denote the fixed point subalgera of M under
the action ↵ by M↵, i.e.,

M↵ = {x 2M : ↵s(x) = x, s 2 G},

or in the previous lecture’s notation M↵ = M↵(0).
Definition 5.1. In the above setting, if e 2 Proj(M↵), then the action

↵ leaves the reduced algebra Me globally invariant, so that the restriction
↵e

s, s 2 G, of ↵s to the reduced algebra Me = eMe makes sense. We call this
restriction {Me, G,↵e} a reduced covariant system and ↵e the reduced
action of ↵ by the projection e 2M↵. The intersection:

�(↵) =
\

{Sp(↵e) : e 2 Proj(M↵), e 6= 0}

is called the Connes spectrum of ↵. Let us state the main theorem concern-
ing the Connes spectrum of a covariant system {M, G,↵} with G a locally
compact abelian group.

Theorem 5.1 (Connes - Takesaki). Suppose that {M, G,↵} with G is a
covariant system over a locally compact abelian group G. Then the Connes
spectrum �(↵) has the following properties:

i) The Connes spectrum �(↵) is a closed subgroup of bG;
ii) �(↵) + Sp(↵) = Sp(↵);
iii) If � is another action of G on M which is cocycle conjugate to ↵,

then �(↵) = �(�);
iv) The Connes spectrum is precisely the kernel of the restrictionn

CN, bG, b↵o

of the dual system b↵ to the center CN of the crossed product N =
M o↵ G.

Corollary 5.2. If M is a factor of type III, then �(�') is a closed subgroup
of the real additive group R and independent of the choice of a faithful semi-
finite normal weight ' on M , hence it is an algebraic invariant of the factor
M.

Definition 5.3. A factors of type III is called of type III� with 0 < � < 1
if

�(�') = �(log �)Z for any faithful semi-finite normal weight ';

of type III1 if

�(�') = R for any faithful semi-finite normal weight ';

and of type III0 in the remaining case.
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Lecture 6: Examples.

We discuss examples. Fix 0 < � < 1 and let

Mn = M(2, C), n 2 N.

For each n 2 N, define a state !�n on Mn by the following:

!�n

✓
x11 x12

x21 x22

◆
=

�
1
2

�
1
2 + ��

1
2
x11 +

��
1
2

�
1
2 + ��

1
2
x22,

✓
x11 x12

x21 x22

◆
2Mn.

Consider the algebraic infinite tensor product:

M0 =
Y
n2N

⌦Mn,

which is the set of linear combinations of the elements of the from:

x1 ⌦ · · ·xn ⌦ 1⌦ 1⌦ · · · , xi 2Mi, i 2 N.

Then M0 is naturally an involutive algebra on C, which admits a unique
C⇤-norm such that

kx1 ⌦ · · ·xn ⌦ 1⌦ 1⌦ · · ·k =
nY

i=1

kxik.

The completion M of M0 under this norm is called the infinite C⇤-tensor
product. We will write this C⇤-algebra as follows:

M =
1Y

n=1

b⌦Mn.

On this C⇤-algebra M we define a state !� in the following way:

!�(x1 ⌦ · · ·xn ⌦ 1⌦ 1⌦ · · ·) =
1Y

i=1

!i(xi)

where xn+1 = 1, xn+2 = 1, · · · , which gives rise to a representation {⇡�,H�}
of M via the GNS construction and obtain the von Neumann algebra equipped
with a faithful normal state !�:

�
R�,!

�
 

=
1Y

n=1

⌦�Mn,!�n
 
.

To define an infinite tensor product of von Neumann algebras we need to
specify state on each component von Neumann algebra. It is easy to see that
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each !�n is a faithful state on Mn and its modular automorphism group ��n
is given by the following:

��t,n = Ad
✓
�

it
2 0

0 �
�it
2

◆
.

From the modular conditon, it is easy to see that the modular automorhism
group of !� is the tensor product automorphism group:

�!
�

t =
1Y

n=1

⌦��t,n, t 2 R.

We write ��t for this heavy notation �!
�

t instead.
With

T = � 2⇡
log�

> 0,

we have
��T,n = id, n 2 N,

so that each component modular automorphism group ��n has common period
T and consequently

��T = id.

Let S be the finite permutation group of N, i.e. each element � 2 S permute
only finitely many members of N, which then acts on M0 in the following
way:

�(x1 ⌦ · · ·xn ⌦ 1⌦ 1⌦ · · ·) = x�(1) ⌦ x�(2) ⌦ · · ·⌦ x�(n) ⌦ · · ·

if �(n + k) = n + k, k 2 N, which is then extended by linearity to M0 and
leaves the state !� invariant. Furthermore, the automorphism � acts only
on the first n-components and leaves the rest invariant and the first n-tensor
product is isomorphic to the matrix algebra M(2n, C) of order 2n. Hence it
is given by a unitary, say

U(�) 2
nY

k=1

⌦Mk.

As � leaves !� invariant, U(�) belongs to the centerlizer:
 

nY
k=1

⌦Mk

!!�
.

Now for each n 2 N, consider the permutation �n which permutes the first n
terms with the n terms starting from 2n + 1 and leaves the rest unchanged.
Then it is easy to see that

lim
n!1

!�(�n(x)y) = !�(x)!�(y), x, y 2M0,
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which is called the mixing property of !�. This property entails the follow-
ing �-weak convergence:

lim
n!1

�n(x) = !�(x) �-weakly for every x 2 R�.

Now each �n is given by Ad(U(�n)) and U(�n) 2 (R�)!� . Consequently

(R�)
0
!� \ R� = C.

In particular, the centralizer R�,!� of !� is a factor. Hence �
⇣
�!

�
⌘

=
�(log�)Z ⇢ R. Thus the factor R� is of type III�. We now come to the result
of Powers in 1967:

Theorem 6.1 (R.T. Powers). If 0 < � 6= µ < 1, then

R� 6⇠= Rµ.

Now we fix 0 < � 6= µ < 1 such that

log �
log µ

62 Q,

which guarantees the following:

�itµ�it 6= 1 except for t = 0.

To each n 2 N, we asign the 3⇥ 3 matrix algebra:

Mn = M(3, C),

and consider the state given by the following:

!n

0
@x11 x12 x13

x21 x22 x23

x31 x31 x33

1
A =

1
1 + �+ µ

x11 +
�

1 + �+ µ
x22 +

µ

1 + �+ µ
x33

The modular automorphism group {�n
t } of !n is give by the following one

parameter unitary group

un(t) =

0
@ 1 0 0

0 �it 0
0 0 µit

1
A , t 2 R.

The choice of � and µ entails that

un(t) 62 T for all non-zero t 2 R.
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Consequently, the modular automorphism group {�n
t } is not periodic. Let

M be the infinite C⇤-tensor product:

M =
1Y

n=1

b⌦Mn,

and set

{R,!} =
1Y

n=1

⌦{Mn,!n},

i.e.,

! =
1Y

n=1

⌦!n, R = ⇡!(M)
00
.

By the similar arguments as in the previous case, we can conclude that

R0! \ R = C.

Thus we get
�(�!) = R.

Thus the factor R is of type III1. This factor is not isomorphic to any of
R�, 0 < � < 1, and does not admit a faithful semi-finite normal weight with
periodic modular automorphism group.
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Lecture 7: Crossed Product Construction of a Factor.

§7.1. Transformation Groups of a Standard Measure Space. Let
{X,µ} be a standard measure space with �-finite measure µ which gives rise
to an abelian von Neumann algebra A = L1(X,µ) of all essentially bounded
complex valued measurable functions on X which acts on the Hilbert space
H0 = L2(X,µ) of square integrable functions. Let G be a separable locally
compact group. By an action G on {X,µ} we mean a Borel map T : (g, x) 2
G⇥X 7! Tgx 2 X such that

i) for each s 2 G the map: x 2 X 7! Tsx 2 X is a non-singular
transformation of X, i.e.,

µ(Ts(N)) = 0 , µ(N) = 0, N ⇢ X;

ii)
Ts�Tt = Tst, s, t 2 G;

iii)
Tex = x, x 2 X, for the identity e 2 G.

We naturally assume that the action is e↵ective in the sense described
below:

Tsx = x for almost every x 2 X ) s = e.

We call the system {G,X, µ, T} a GGG-measure space. This is equivalent to
an action ↵ of G on the abelian von Neumann algebra A = L1(X,µ) and
the relation between the action ↵ and the transformation T is described in
the following:

Let ↵ be an action of G on the abelian von Neumann algebra A which en-
tails a non-singular transformation group {Tg : g 2 G} of the measure space
{X,µ}:

↵s(a)(x) = a
�
T�1

s x
�
, a 2 A = L1(X,µ), s 2 G, x 2 X.

In this setting, we have the Radon-Nikodym derivative:

⇢(s, x) =
dµ�Ts

dµ
(x), s 2 G,x 2 X.

The ⇢-function satisfies the following cocycle identity:

⇢(st, x) = ⇢(s, Ttx)⇢(t, x), s, t 2 G,x 2 X,

and Z
X

f
�
T�1

s x
�
dµ(x) =

Z
X

f(x)⇢(s, x)dµ(x), f 2 L1(X,µ).
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This tells us that the transformation rules on Lp(X,µ) and Lq(X,µ), 1 
p 6= q < +1, are di↵erent:

↵s(f)(x) = ⇢
�
s�1, x

� 1
q f
�
T�1

s x
�
, f 2 Lp(X,µ), s 2 G;

↵s(f)(x) = ⇢
�
s�1, x

� 1
q f
�
T�1

s x
�
, f 2 Lq(X,µ), s 2 G;

k↵s(f)kp =
✓Z

X

⇣
⇢
�
s�1, x

� 1
p
��f�T�1

s x
���⌘p

dµ(x)
◆ 1

p

=
✓Z

X
⇢
�
s�1, x

���f�T�1
s x

���pdµ(x)
◆ 1

p

=
✓Z

X

��f�T�1
s

�Tsx
���pdµ(x)

◆ 1
p

=
✓Z

X
|f(x)|pdµ(x)

◆ 1
p

= kfkp.

For p = 2, we write U(s)⇠, ⇠ 2 L2(X,µ), and obtain a unitary representation
U(·) of G on L2(X,µ) which implements the action ↵ in the following sense:

↵s(a) = U(s)aU(s)⇤, s 2 G, a 2 A = L1(X,µ),

where we regards A as a von Neumann algebra acting on L2(X,µ) by mul-
tiplication. The measurability of the map:

s 2 G 7! !⇠,⌘(U(s)) = (U(s)⇠ | ⌘), ⇠, ⌘ 2 L2(X,µ)

entails the strong continunity of s 2 G 7! U(s) 2 L
�
L2(X,µ)

�
, and hence it is

a unitary representation of G and {A, G,↵} is a covariant system. Associated
with this is the crossed product von Neumann algebra

R(X,µ,G,↵) = A o↵ G.

The measure space theory always involves almost everywhere arguments,
which is quite sticky in the case that G is a continuous group as it is not
countable. For this reason, if we can replace {X,µ,G, T} by a topological
transformation group, it is much easier to handle. So we consider the C⇤-
covariant system.

§7.2. C⇤-Covariant System for a Commutative Covariant Sys-
tem. We begin by defenition:

Definition 7.1. Let A be a C⇤-algebra and G a locally compact group .
An action ↵ of G on A is a map ↵ : s 2 G 7! ↵s 2 Aut(A) is a homomorphism
such that

lim
s!t
k↵s(x)� ↵t(x)k = 0, x 2 A.
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Proposition 7.2. If {M, G,↵} is a covariant system, then the set

A↵
c =

n
x 2M : lim

s!e
k↵s(x)� xk = 0

o

is a unital �-weakly dense C⇤-subalgebra of M. If M⇤ is separable, then we
can choose a separable �-weakly dense unital C⇤-subalgebra A ⇢ Ac which
is globally invariant under ↵ and the restriction {A,G,↵} is a C⇤-covariant
system.

§7.3. Continuity as a Result of Measurability. As lim
s!e
k�s(f)� fk1 =

0, f 2 L1(G), we can consider the subset of M:
�
↵f (x) : x 2M, f 2 L1(G)

 
which is a subset of Ac and �-weakly dense in M, because

↵s(↵f (x)) = ↵�s(f)(x) and k↵f (x)k  kfk1kxk, x 2M, f 2 L1(G).

So if {X,µ,G, T} is an action of separable locally compact group G on a stan-
dard measure space, then we obtain a covariant system {A, G,↵} as before
and here we take a seprable C⇤-covairant system {A,↵} to obain a compact
space Y = Sp(A) on which G acts as a topological transformation group
leaving a probability Radon measure ⌫ on Y quasi-invariant corresponding
to the original measure µ on X after replacing µ by an equivalent proba-
bility measure. So we will consider only the case that {X,µ} is a compact
space and µ is a probability Radon measure and {X,G, T} is a toplogical
transformation group of X which leaves the measure µ quasi-invariant.

§7.4. Free and Ergodic Covariant System. With {X,G, µ, T} as above,
we then consider the crossed product

R(X,G, µ, T ) = A o↵ G, A = L1(X,µ).

We often omit the letter T and write R(X,G, µ).
Definition 7.3. If the fixed point reduces to the scalar, A↵ = C, then

we say that the system {X,G, µ, T} is ergodic. The action T is called free
if for any compact subset K ⇢ G such that e 62 K and for any Borel subset
E ⇢ X with µ(E) > 0 then there exists a Borel subset F ⇢ E such that

Ts(F ) \ F = ;, s 2 K, and µ(F ) > 0.

In terms of von Neumann algebra lungage, the freeness is phrased as in the
following: for any compact subset K ⇢ G such that e 62 K and any non-zero
projection e 2 Proj(A) there exists f 2 Proj(A) such that

f ? ↵s(f), s 2 K, and f 6= 0.
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Theorem 7.4. If {A, G,↵} is a covariant system with A abelian, then the
following two conditions on the covariant system are equivalent:

i) The action T of G on X is free;
ii) The original abelian von Neumann algebra A in the crossed product

Ao↵G is maximal abelian.

For the proof on a general locally compact group G, it involves the duality
theory of unitary representations of G. For an abelian group G, we can prove
as an application of the Arveson - Connes spectral theory for actions.

Corollary 7.5. Under the assumption that {A, G,↵} is free, the crossed
product Ao↵G is a factor if and only if the system is ergodic.

Theorem 7.6. Let {A, G,↵} is an ergodic and free covariant system with
A abelian, then we have the following properties on the crossed product R =
Ao↵G:

i) R is of type I if and only if the measue is concentrated on a single
orbit, equivalently the action is transitive.

ii) R is of type II1 if and only if G is discrete and there exists a finite
invariant measure ⌫ equivalent to the original measure µ.

iii) R is of type II1 if and only if
a) The action is not transitive;
b) There exists a Borel measure ⌫ equivalent to µ such that

�G(s)
d⌫�Ts

d⌫
(x) = 1 for every s 2 G and x 2 X.

where �G(·) is the modular function of G, and
c) if G is discrete, then the measure ⌫ is infinite.

iv) R is of type III if and only if there is no nontrivial Borel measure
equivalent to µ which satisfies the condition (iii-b).

In the sequel, we consider only ergodic case as the genral case is decom-
posed into ergodic systems.

S7.5. Concrete Example of Each Type. Now we are going to discuss
examples which realizes the above criteria. We continue to use the above
notations unless we say contrary.

Example 7.7. If we take {X,µ} to be the group G itself with left Haar
measure µ, then the left translation action of G on X is obviously transitive.

i) If G is infinite, then R is a factor of type I1 .
ii) If G is of oder n, then R is a factor of type In.

Example 5.8. Let X = T = {z 2 C : |z| = 1} be the one dimensional torus.
Fix an irrational number ✓ and set

Tx = exp(2⇡i✓)x, x 2 X.
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The Lebesgue measure µ is invariant under T . Viewing T as an action of
the additive integer group G = Z, then the action is free and ergodic with
finite invariant measure. As each orbit is countable, the action can not be
transitive. Hence the resulted factor R is of type II1.

Example 7.9. Take G = Q to be the additive group of rational numbers
and let it act on X = R by translation:

Tsx = x + s, x 2 X = R, s 2 Q.

Take the Lebesgue measure dx on X. Then the action is free and ergodic.
The measure is invariant under the translation action T of G = Q and
infinite. Hence the resulted factor R is a factor of type II1 .

Example 7.10. Let G be the ax + b group, i.e., it is given by the following:

G =
⇢

g = g(a, b) =
✓

a b
0 1

◆
: a 2 Q⇤+, b 2 Q

�
.

Let G act on X = R in the following way:

Tg(a,b)x = ax + b

The subgroup

H =
⇢✓

1 b
0 1

◆
: b 2 Q

�

acts on X = R ergodically by translation. So any other invariant measure on
X equivalent to the Lebesgue measure is propotional to the Lebesgue measure.
But each element g(a, 0), a 2 Q⇤+, a 6= 1, transforms the Lebesgue measure
µ to aµ. Hence it does not leave µ invariant. Consequently, there is no
invariant measure equivalent to the Lebesgue measure. So the resulted factor
is of type III.

Example 7.11. Let X = R and

G =
⇢✓

�n b
0 1

◆
: b 2 Z(�)

�

for a fixed 0 < � < 1, where Z(�) means the additive subgroup of R generated
by the powers �n, n 2 Z, of �:

Z(�) =

(
nX

k=�n

a�n

��n
+ · · · + a�1

�
+ a0 + a1� · · · + an�

n : ai 2 Z, n 2 N
)

,

then the resulted factor R is of type III�.
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Example 7.12. Fix an irrational positive number ✓. On L2(R) we define
two unitaries:

(U⇠)(x) = ⇠(x + 1) (V ⇠)(x) = exp(2⇡i✓x)⇠(x), ⇠ 2 L2(R).

The von Neumann algebra R generated by {U, V } is of type II1 and the relative
dimension dimR

�
L2(R)

�
of L2(R) over R is ✓.

§7.6 Flow of Weights for Ergodic Free Transformation Group. First
we begin by definition:

Definition 7.13 For a factor M, the restriction {C, R, ✓} of the trace
scaling covariant system {N, R, ⌧} with

M = N o✓ R

to the center C = CN of N is called the flow of weights on MMM.
We now dicuss the flow of weights on the factor R = R(X,µ,G) con-

structed from a free erogodic system {X,G, µ} in the case that G is discrete.
The continuous case can be handled similarly. So suppose that the covariant
system {A, G,↵} is free and ergodic with the ⇢-function ⇢(·, ·) on G ⇥ X.
Recall the cocycle identity:

⇢(g, s) =
dµ�g

dµ
(x), x 2 X, g 2 G;

⇢(gh, x) = ⇢(g, hx)⇢(h, x), g, h 2 G,x 2 X.

The cocycle identity allows us to make the product space eX = R⇤+ ⇥X an
R⇥G-space as follows:

eTs,g(�, x) =
�
e�s⇢(g, x)

�
�, gx), (s, g) 2 R⇥G, (�, x) 2 eX;Z

eX
f(�, x)dµ̃(�, x) =

ZZ
R⇤+⇥X

f(�, x)d�dµ(x), f � 0.

Since Z 1
0

f(a�)d� =
1
a

Z 1
0

f(�),d�, a > 0,

we have for a positive measurbale function f on eX,
ZZ

eX
f�eTs,g(�, x)dµ̃(�, x) =

Z
X

Z 1
0

f
�
e�s⇢(g, x)�, gx

�
d�dµ(x)

=
Z

X
es⇢(g, x)�1

✓Z 1
0

f(�, gx)d�
◆

dµ(x)

= es

ZZ
R⇤+⇥X

f(�, x)d�dµ(x) = es

ZZ
eX

f(�, x)dµ̃(�, x).
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Theorem 7.14 (Connes - Takesaki). The flow of weights for the factor
R = R(X,µ,G) associated with the ergodic free G-measure space {X,µ,G},
the core {N, R, ⌧, ✓} is given by the following:

i) The core von Neumann algebra N is the group measure space von
Neumann algebra N = R( eX, µ̃,G) of the system:

N = L1
⇣ eX, µ̃

⌘
oe↵ G;

(↵̃g(a))(�, x) = a
⇣eT�1

0,g (�, x)
⌘

= a
�
⇢(g�1, x)�, g�1x

�
, a 2 L1

⇣ eX, µ̃
⌘
;

ii) The one parameter automorphism group ✓ which scales down the trace
is the lifting of the flow:

eTs,e : (�, x) 2 eX 7! �
e�s�, x

�
2 eX

to the crossed product N = L1
⇣ eX, µ̃

⌘
oe↵ G.

The flow {C, R, ✓} of weights on R is then given by the flow on the fixed point
subalgebra:

C = L1
⇣ eX, µ̃

⌘G
.

The flow is the restriction of the flow {Ts,e : s 2 R} to the fixed point subal-

gebra C = L1
⇣ eX, µ̃

⌘G
.
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Lecture 8: Structure of a Factor of Type III.
Trace Scaling One Parameter Automorphism Group

§8.1. Trace Scaling One Parameter Automorphism Group. Suppose
that {N, R, ✓, ⌧} is a covariant system over the real line R which scales a
faithful semifinite norma trace ⌧ down, i.e.,

⌧ �✓s = e�s⌧, s 2 R.

Set M = N✓. Fix T > 0. Then for any non-zero projection e 2 M, there
exists a projection e0  e such that

e0 ? ✓T (e0).

Such a projection is called a wondering projection of ✓T✓T✓T . Set

sT (e0) =
X
n2Z

✓n
T (e0) 2 N✓T .

Choose a maximal family of wondering projections {ei : i 2 I} for ✓T such
that

✓T (ei) ? ei, i 2 I;
sT (ei) ? sT (ej) for i 6= j, i, j 2 I.

The maximality of the family {ei : i 2 I} implies that

✓T (e) ? e,
X
n2Z

✓n
T (e) = 1, with e =

X
i2I

ei.

Set
fn =

X
|k|n

✓k
T (e), n 2 N.

Then we have
fn % 1

I✓(fn) =
Z

R
✓s

0
@X

|k|n

✓k
T (e)

1
Ads =

X
|k|n

✓k
T

✓Z
R
✓s(e)ds

◆

=
X

|k|n

✓k
T

 X
m2Z

Z (m+1)T

mT
✓s(e)ds

!

=
X

|k|n

✓k
T

 X
m2Z

✓m
T

 Z T

0
✓s(e)ds

!!

=
Z T

0

0
@X

|k|n

✓k
T

 X
m2Z

✓m
T (e)

!1
Ads = (2n + 1)T < +1.

mI✓ � fnNfn, n 2 N.

Hence we conclude the following:
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Lemma 8.1. In the above setting, the action ✓ is integrable in the sense
that

mI✓
�-weak closure = N.

Now choose a faithful semi-finite normal weight ' 2W0(M) and set

b' = '�I✓ 2W0(N).

Then the faithful semi-finite normal weight b' is ✓-invariant and therefore we
get

✓s((Db' : D⌧)t) =
�
Db'�✓�1

s : D⌧ �✓�1
s

�
t
= (Db' : D(es⌧))t

= e�ist(Db' : D⌧)t

for every s, t 2 R. Hence we obtain a one parameter unitary group
�
hit
' : t 2 R

 
such that

✓s

�
hit
'

�
= e�isthit

'

such that
�'t = Ad

�
hit
'

�
|M, t 2 R;

N = M o�' R, ✓ = c�'.

Theorem 8.2.(Connes-Takesaki). If {N, R, ⌧, ✓} is a trace scaling covari-
ant system, then it is necessarily the dual system such that with M = N✓ the
covariant system is decribed in the following way:

�'t = Ad
�
hit
'

�
|M, t 2 R;

N = M o�' R, ✓ = c�'
for any faithful semi-finite normal weight ' 2W0(M).

Theorem 8.3. (Connes - Takesaki). If {N, R, ⌧, ✓} is a trace scaling
covariant system, then the relative commutant M0 \ N of the fixed point
M = N✓ is the center C of N.

Definition 8.4 The normalizer

eU(M) = {u 2 U(N) : uMu⇤ = M}

of M in N is called the extended unitary group of MMM.

Proposition 8.5. For u 2 U(N) to be a member of the extended unitary
group eU(M) it is necessary and su�cient that

(@✓u)t = u⇤✓t(u) 2 U(C), t 2 R.

The map c : t 2 R 7! c(t) = (@✓u)t is necessarily a cocycle and hence a
member of Z1

✓(R,U(C)). Recall that the one parameter automorphism group
✓ is stable in the sense that every ✓-cocycle is a coboundary. Hence the
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coboundary map @✓ : u 2 eU(M) 7! @✓(u) 2 Z1
✓(R,U(C)) is a surjection. So

we have the following exact sequence:

1 ����! U(M) ����! eU(M) @✓����! Z1
✓(R,U(C)) ����! 1

Restricting the above exact sequence to the U(C), we get the following exact
sequences:

1 1 1??y ??y ??y
1 ����! T ����! U(C) @✓����! B1

✓(R,U(C)) ����! 1??y ??y ??y
1 ����! U(M) ����! eU(M) @✓����! Z1

✓(R,U(C)) ����! 1

Adding the last low, we obtain the following characteristic square of Aut(M)⇥
R-equivariant exact sequences:

1 1 1??y ??y ??y
1 ����! T i����! U(C) @✓����! B1

✓(R,U(C)) ����! 1

i

??y i

??y i

??y
1 ����! U(M) i����! eU(M) @✓����! Z1

✓(R,U(C)) ����! 1

Ad

??y fAd

??y ??y
1 ����! Int(M) i����! Cntr(M) @̇✓����! H1

✓(R,U(C)) ����! 1??y ??y ??y
1 1 1

(⇤)

Summerizing, we get the following:

Theorem 8.6. (Katayama-Sutherland-Takesaki). Associated with a
factor M is the above Aut(M)⇥ R equivariant characteristic square (⇤).

§8.3. Characteristic Invariant. Looking at the middle vertical column
of the characteristic square, we recognize the following equivariant exact
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sequence:9

N = Cntr(M), H = eU(M), A = U(C), G = Aut(M)⇥ R;

E : 1 ����! A
i����! H

j����!
 �

s

N ����! 1

s(m)s(n)s(mn)�1 = µ(m,n) 2 A, m,n 2 N ;

↵g

�
s
�
g�1mg

��
s(m)�1 = �(m, g) 2 A.

If we change the cross-section s to another one s0 : m 2 N 7! s0(m) 2 H,
then the di↵erence is in A, i.e.,

s0(m)s(m)�1 = f(m) 2 A, m 2 N.

We then have

s0(m)s0(n) = f(m)s(m)f(n)s(n) = f(m)f(n)s(m)s(n)

= f(m)f(n)µ(m,n)s(mn)

= f(m)f(n)f(mn)�1µ(m,n)s0(m,n)

= µ0(m,n)s0(mn);

µ0(m,n) = f(m)f(n)f(mn)�1 = (@1f)(m,n)µ(m,n);
µ0 = (@1f)µ;

↵g

�
s0
�
g�1mg

��
= �0(m, g)s0(m) = ↵g

�
f
�
g�1mg

�
s
�
g�1mg

��
= ↵g

�
f
�
g�1mg

��
↵g

�
s
�
g�1mg

��
= �(m, g)↵g

�
f
�
g�1mg

��
s(m)

= �(m, g)↵g

�
f
�
g�1mg

��
f(m)�1s0(m);

�0(m, g) = �(m, g)↵g

�
f
�
g�1mg

��
f(m)�1

= �(m, g)(@2f)(m, g)

The group Z(G,N,A) of pairs {(�, µ)} 2 AN⇥G ⇥ Z2(N,A) satisfying the
natural cocycle identity is called the characteristic cocycle group and
each element of the group

B(G,N,A) =
�
@f = (@1f, @2f) : f 2 AN

 
is called a coboundary. Then the quotient group:

⇤(G,N,A) = Z(G,N,A)/B(G,N,A)

9The subgroup i(A) / H is a subgroup of the center of H and G acts on H through ↵,
but N does not act on A.
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is then called the characteristic cohomology group. If � = [�, µ] comes
from the above equivariant short exact sequence E, then it is called the
characteristic invariant of E and writtend �(E) = [�, µ] 2 ⇤(G,N,A).

Coming back to the Aut(M)⇥ R-equivariant exact sequence:

E : 1 ����! U(C) ����! eU(M) ����! Cntr(M) ����! 1,

we obtain the characteristic invariant:

�M = �(E) 2 ⇤mod⇥✓(Aut(M)⇥ R,Cntr(M),U(C)),

which is called the intrinsic invariant of MMM.
Now we state the major result on the cocycle conjugacy classification of

amenable group actions on an AFD factor due to A. Connes, V.F.R. Jones,
A. Ocneanu, C. Sutherland, Y. Kawahigashi, K. Katayama and M. Takesaki.

Theorem 8.7. i) If ↵ is an action of a locally compact group G on a factor
M, then the pull back of the intrinsic invariant:

�↵ = ↵⇤(�M) 2 ⇤↵⇥✓(G⇥ R, N,U(C))

is a cocycle conjugacy invariant where N = ↵�1(Cntr(M)) /G, need not be
a closed subgroup but a Borel subgroup.

ii) If M is AFD and G is an amenable countable discrete group, then the
combination:

�
mod, N = ↵�1(Cntr(M)),�↵

 
2 Hom(G,Aut✓(C))⇥N⇥ ⇤↵⇥✓(G⇥ R, N,U(C))

is a complete invariant of the cocycle conjugacy class of the action ↵, where N
is the set of all normal subgroups of G. Also every combination of invariants
with natural restriction occurs as the invariant of an action of G.

§8.3. Modular Fiber Space and Cross-Section Algebra. Let M be a
factor of type III. We have seen that the crossed product N = M o�' R is
semi-finite for each faithful semi-finite normal weight ' on M and that

M o�' R ⇠= M o� R

for any other faithful semi-finite normal weight  on M. Furthermore, if ✓
is the action on N dual to �', then we have

N o✓ R ⇠= M.

We want to find a construction of the semi-finite von Neumann algebra N
without fixing a faithful semi-finite normal weight ' on M. So let W0 =
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W0(M) be the set of all faithful semi-finite normal weights on M. Fix t 2 R
and consider a relation ⇠t on the set M⇥W0 by the following:

(x,')⇠t(y, ) , x(D' : D )t = y

The chain rule of the Connes derivatives yields that the relation ⇠t is an
equivalence relation on M ⇥W0. We denote the equivalence class [x,'] by
x'it and set

M(t) = (M⇥W0)/⇠t =
�
x'it : x 2M,' 2W0

 
.

It is easily seen that the map: x 2 M 7! x'it 2 M(t) is a bijection so that
we can define the vector space structure on M(t), transplanting that of M
and also set ��x'it

�� = kxk, x 2M,' 2W0.

Then the bijection x 2 M 7! x'it 2 M(t) gives the dual Banach space
structure on M(t). We then define a binary operation from M(s)⇥M(t) to
M(s + t) as follows:

x'ity'is = x�'t (y)'i(s+t), s, t 2 R, x, y 2M.

Then set
F =

[̇
{M(t) : t 2 R} : disjoint union.

We call this fibre space F the modular fibre space of M and write F(M)
when we need to indicate F coming from M. We then define the involution
on F: �

x'it
�⇤ = �'�t(x

⇤)'�it, x'it 2M(t).

Then we get

(�x + µy)⇤ = �̄x⇤ + µ̄y⇤;
(xy)⇤ = y⇤x⇤;

x⇤⇤ = x,

'it �it = (D' : D )t,

x, y 2 F, �, µ 2 C,

', 2W0, t 2 R,

whenever the sum and the product are possible.
Now for each ' 2W0 define a map �' : M⇥ R 7! F as follows:

�'(a, t) = a'it 2 F, (a, t) 2M⇥ R.
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Theorem 8.8. The maps {�' : ' 2W0} have the following properties:
i) On a bounded subset B ⇢M, the map ��1

 
��' is a homeomorphism

on B ⇥ R relative to any operator topology on B except the norm
topology and the usual topology on R;

ii) On the entire space M ⇥ R the map ��1
 

��' is a homeomorphism
relative to the Arens-Mackey topology ⌧(M,M⇤)-topology on M and
the usual topology on R;

iii) The Connes derivative takes the following form:

(D' : D )t = ��1
 

��'(1, t), t 2 R.

In fact, we have, for each x 2M and t 2 R,

��1
 

��'(x, t) = (x(D' : D )t, t) 2M⇥ R.

This theorem allows us to introduce a topology on the fiber space F by
transplanting the product topology of ⌧(M,M⇤)-topology on M and the usual
real line R through the map �' which does not depend on the choice of
faithful semi-finite normal weight '.

Remark 8.9. The norm topology on M cannot be tranplanted to F
independent of the choice of ' 2W0, because the Connes derivative

{(D' : D )t : t 2 R}
is not norm continuous.

Definition 8.10. The ⌧-topology on F means the topology introduced by
the last theorem based on the Arens-Mackey topology ⌧(M,M⇤)-topology on
M.

The above theorem also allows us to introduce a Borel structure on the
fiber space F from the topology introduced above which is indepent of the
choice of ' 2W0. Consequently, we can consider a measurable cross-section
as well as an integrable cross-sections of F, i.e., a Borel map s 2 R 7! x(s) 2
F such that

x(s) 2M(s), s 2 R;

kxk1 =
Z

R
kx(s)kds,

recalling that each M(s) is a Banach space. Let �1(F) denote the set of all
integrable cross-sections. It then follows that �1(F) is an involutive Banach
algebra under the following structure:

(�x + µy)(t) = �x(t) + µy(t);

(xy)(t) =
Z

R
x(s)y(t� s)ds;

x⇤(t) = x(�t)⇤;

kxk1 =
Z

R
kx(s)kds.
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We call �1(F) the modular cross-section algebra for M and write �1(F(M))
when it is neccessary to indicate where it is from.

To have a von Neumann algebra structure based on the bundle algebra,
we need to construct a HIlbert space on which the cross-section algebra acts
naturally. So we consider a von Neumann algebra M represented on a Hilbert
space H. Let N be the opposit algebra (M0)� of the commutant which makes
the Hilbert space H an M�N bimodule. We are going to construct a bundle
of Hilbert spaces on which F(M) acts from the left and F(N) acts from the
right, where F(M) is the fiber space constructed above based on M and F(N)
is the one based on N.
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Lecture 9: Hilbert Space Bundle.

§9.1. Spatial Derivative Recall, [Cnn8, Tk2, Chapter IX, §3]. Let
{M,H} be a von Neumann algebra M represented on a Hilbert space H. Con-
sider the opposit von Neumann algebra N = (M0)� of the commutant M0.
Let  0 be a faithful semi-finite normal weight on M0 and  be the correspond-
ing semi-finite normal weight  = ( 0)� on N. Let L2(N) be the standard
Hilbert space of N. We then consider the N-right module eHN = L2(N)�HN.
We then consider the von Neumann algebra R

def= L
⇣eHN

⌘
, i.e., the von Neu-

mann algebra of all bounded operators commuting with the right action of
N. Each elelment x of R has a 2⇥ 2 matrix representation:

x =
✓

x11 x12

x21 x22

◆

with components from the following spaces:

x11 2 N, x12 2 L
�
L2(N)N,HN

�
10,

x21 2 L
�
HN, L2(N)N

�
, x22 2 L(HN) = M.

On R we define the balanced faithful semi-finite normal weight ⇢ out of
' 2W0(M) of  2W0(N) which is given by the following:

⇢

✓
x11 x12

x21 x22

◆
=  (x11) + '(x22).

Set e
def= e11 and f

def= e22, i.e., the projection of eH to L2(N) and to H respec-
tively which are of course projections in R such that

eRe = N, eRf = L
�
L2(N)N,HN

�
, fRf = M.

We then set

n (H) = fn⇢e =
�
x 2 L

�
HN, L2(N)N

�
:  (x⇤x) < +1

 
;

D(H, ) def= =
n
⇠ 2 H : k⇠xk  C⇠ 

0(xx⇤)
1
2 , x⇤ 2 n for some C⇠ � 0

o
.

For each x 2 n (H), we have x⇤x 2 N and with polar decomposition x =
uh, h = (x⇤x)

1
2 2 N, we set

⌘ (x) = u⌘ (h) 2 H.

Similarly, for each ' 2W0(M), we set

n'(H) =
�
x 2 L

�
L2(N)N,HN

�
: '(x⇤x) < +1

 
.

10The notation L
�
L2(N)N, HN

�
means the set of all bounded operators from H to

L2(N) which commutes with the right action of N.
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Then set
S', ⌘ (x) = ⌘'(x⇤), x 2 n (H) \ n'(H)⇤;

�', =
�
S⇤', S', 

� 1
2 =

d'
d 0

,

which is a non-singular self-adjoint positive operator on H such that
✓

d'
d 0

◆it

x

✓
d'
d 0

◆�it

= �'t (x), x 2M;

✓
d'
d 0

◆�it

y

✓
d'
d 0

◆it

= � 
0

t (y), y 2M0,

where  0 2W0(M0). We call the operator d'
d 0 the spatial derivative of '

by  0. The spatial derivative enjoys the following properties:
✓

d'1

d 0

◆it

= (D'1 : D'2)t

✓
d'2

d 0

◆it

;
✓

d'
d 0

◆
=
✓

d 0

d'

◆�1

.

§9.2. Hilbert Space Bundle. We fix a von Neumann algebra {M,H} and
set N = (M0)�, the opposit von Neumann algebra of the commutant M0. Set

X = R⇥W0(M)⇥ H⇥W0(N).

For each t 2 R we set an equivalence relation ⇠t by the following relation:

(r1,'1, ⇠1, 1)⇠t(r2,'2, ⇠2, 2)

whenever ✓
d'1

d �
1

◆ir1

⇠1 =
✓

d'2

d �
2

◆ir2

⇠2(D 2 : D 1)t

This is an equivalence relation in X. We then set

H(t) def= X/⇠t

and denote the equivalence class [r,', ⇠, ]t 2 H(t) under this equivalence
relation by the following:

'ir⇠ i(t�r) def= [r,', ⇠, ]t 2 H(t).

Thus in H(t) we have

'it⇠ =
✓

d'
d �

◆it

⇠ it, ' 2W0(M), ⇠ 2 H, 2W0(N);

'it⇠ �it =
✓

d'
d �

◆it

⇠.
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Observe the equivalence relation ⇠t on X is generated by the subrelations:

'it
1'
�it
2 ⇠ (D'1 : D'2)t, '1,'2 2W0(M);

 it
1  
�it
2 ⇠ (D 1 : D 2)t,  1, 2 2W0(N);

'it⇠ �it ⇠
✓

d'
d �

◆it

⇠.

In the set H(t), we define the following vector space structure and inner
product:

�
⇣
'ir⇠ i(t�r)

⌘
+ µ

⇣
'ir⌘ i(t�r)

⌘
= 'ir(�⇠ + µ⌘) i(t�r);⇣

'ir⇠ i(t�r)
���'it⌘ i(t�r)

⌘
= (⇠ | ⌘),

which makes H(t) a Hilbert space and does not depend on the choice of
' 2 W0(M) and  2 W0(N) nor on r 2 R. Each pair ' 2 W0(M) and
 2W0(N) give rise to unitaries from H onto H(t):

U'(t)⇠ def= 'it⇠ 2 H(t), ⇠ 2 H;

V (t)⌘ def= ⌘ it 2 H(t), ⌘ 2 H.

Then we have

V (t)⇤U'(t) =
✓

d'
d �

◆it

.

We then define a multilinear map: M(r) ⇥ H(s) ⇥ N(t) 7! H(r + s + t) as
follows:

(x'ir,'is⇠, y it) 2M(r)⇥ H(s)⇥N(t) 7! x'ir'is⇠y it

x'ir'is⇠y it = 'i(r+s)�'�(r+s)(x)⇠y it

= x

✓
d'
d �

◆i(r+s)

⇠� r+s(y) i(r+s+t).

This trilinear map does not depend on the choice of faithful semi-finite nor-
mal weight ' 2 W0(M) and  2 W0(N) and is associative whenever the
consequtive product is possible.

Let G be the disjoint union of H(t):

G =
[̇

{H(t) : t 2 R}

Now with the above preparation, we will construct a Hilbert space on
which �1(F(M)) and �1(F(N)) act from the left and the right. Making use
of the maps {U'(t) : t 2 R} we can transplant the product topology of H⇥R
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to G. Let eH = �2(G) be the Hilbert space of square integrable cross-sections.
To make the Hilbert space eH a left and right bimodule over �1(F(M)) and
�1(F(N)). We need to discuss the opposit algebra of �1(F(N)). Recall N
is defined to be the opposit algebra (M0)�. We set the correspondence as
follows:

y 2 N  ! y
� 2M0;

 2W0(N)  !  
� 2W0(M0);

 
�(y�) =  (y), y 2 N;

� 
�

�t (y
�) = � t (y)�;

y
�� = y, y 2 N,  

�� =  .

The �-operation on F(N) and F(M0) is then given by the following:

�
y it

��
= ( �)�it

y
� = � 

�

�t (y)( �)�it
, y 2 N, 2W0(N).

So we set
y
�(t) = y(�t)�, y 2 �1(F(N)) [ �1(F(M0)),

and we get
�1(F(N))

�
= �1(F(M0)),

the �-operation is an anti-isomorphism of the modular cross-section algebra.
Now we let �1(F(M)) and �1(F(N)) act from the left and right as follows:

(x⇠)(t) =
Z

R
x(s)⇠(t� s)ds, x 2 �1(F(M));

(⇠y)(t) =
Z

R
⇠(s)y(t� s)ds, y 2 �1(F(N)).

Also �1(F(M0)) acts on eH from the left:

y⇠ = ⇠y
�
, y 2 �1(F(M0)),

which means that the action is given by the following:

(y⇠)(t) = (⇠y�)(t) =
Z

R
⇠(s)y�(t� s)ds

=
Z

R
⇠(s)(y(s� t))�ds =

Z
R
⇠(s + t)y(s)�ds
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Lecture 10: The Non-Commutative Flow
of Weights on a von Neumann algebra M.

Theorem 10.1. The von Neumann algebra
n eM, eHo generated by the left

action of �1(F(M)) on eH has the commutant eM0 generated by �1(F(M0)).

Definition 10.2. The von Neumann algebra eM on eH generated by
the left action of the modular cross-section algebra �1(F(M)) is called the
canonical core of M, or simply the core of M. On the Hilbert space
�2(F(M)), we define a one parameter unitary group:

(U(s)⇠)(t) = e�ist⇠(t), ⇠ 2 �2(F(M)), s, t 2 R.

Theorem 10.3. For a von Neumann algebra {M,H} the core represnted oneH through the above procedure has the following properties:
i) The one parameter unitary group {U(s) : s 2 R} defined above gives

rise to a one parameter automorphism {✓s : s 2 R} of eM such that the
original von Neumann algebra is precisely the fixed point subalgebraeM✓ of the one parameter automorphism group ✓.

ii) For each ' 2W0(M), there is a natural isomorphism ⇧' from eM to
the crossed-product M o�' R, which conjugate the dual action c�' on
M o�' R and ✓.

iii) The integral I✓ along the one parameter automorphism group ✓:

I✓(x) =
Z

R
✓s(x)ds, x 2 eM+,

is a faithful normal semi-finite M-valued operator valued weight and
the compostion: e' = '�I✓

corresponds to the dual weight b' on M o�' R and � e'
t = Ad

�
'it
�
, t 2

R.
iv) Viewing the logarithmic generator of

�
'it : t 2 R

 
, i.e.,

' = exp
✓

1
i

d
dt

�
'it
�����

t=0

◆
,

the weight ⌧ defined by the following:

⌧(x) = e'�'�1x
�

= lim
"&0

e'⇣('+ ")�
1
2 x('+ ")�

1
2

⌘
, x 2 eM+,

is a faithful semi-finite normal trace on eM.
v) The trace ⌧ does not depend on the choice of ' 2W0(M) and scaled

by ✓:
⌧ �✓s = e�s⌧, s 2 R.

vi) eM o✓ R ⇠= M⌦L
�
L2(R)

�
.
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Theorem 10.4. i) The correspondence: M �!
n eM, ⌧, R, ✓

o
is a functor

from the category of von Neumann algebra with isomorphisms as morphisms
to the category of semi-finite von Neumann algebras equipped with a trace
scaling one parameter automorphism group ✓ with conjugation as morphism
which transforms the trace one to another.

ii) The correspondence {M,H} �!
n eM, ⌧, R, ✓, eHo is a functor from the

category of spatial von Neumann algebras with spatial isomorphisms as mor-
phisms to the category of semi-finite von Neumann algebras equipped with
trace scaling one parameter automorphis group ✓ represented on a Hilbert
space with spatial isomorphisms intertwining ✓ and ⌧ .

Definition 10.5. i) The covariant system
n eM, R, ✓, ⌧

o
for M is called

the noncommutative flow of weights on M.
ii) The group eU(M) =

n
u 2 U( eM) : uMu⇤ = M

o
, the normalizer of M ,

is called the extended unitary group of M. For each u 2 eU(M), we write

fAd(u) = Ad(u)|M 2 Aut(M)

and set
Cntr(M) =

nfAd(u) : u 2 eU(M)
o
/Aut(M).

Theorem 10.6. (Connes - Takesaki Relative Commutant Theo-
rem). Let

n eM, R, ✓, ⌧
o

be the core of a von Neumann algebra M. Then the

relative commutant of M in eM is the center of the core eM:

M0 \ eM = C = The Center of eM.

Theorem 10.7 (The Stability of Non-Commutative Flow). Suppose
that

n eM, R, ✓, ⌧
o

is a semi-finite von Neumann algebra equipped with a trace
⌧ scaling one parameter automorphism group ✓. Then the core of the fixed
point M = eM✓ is conjugate to the original system. Every ✓-cocycle is a
coboundary.

Definition 10.8. Each ↵ 2 Aut(M) is extended to an automorphism
e↵ 2 Aut( eM) such that

e↵�✓s = ✓s�e↵, s 2 R, ⌧ �e↵ = ⌧.

The restriction of e↵ to the center C of the core eM is called the module of ↵
and denoted by mod (↵) 2 Aut(C) which commutes with the flow of weights
✓|C.
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Theorem 10.9. The automorphims group Aut(M) is identified with the fol-
lowing subgroup Aut⌧,✓(M) of Aut(M):

Aut(M) = Aut⌧,✓(M) =
n
� 2 Aut( eM) : ��✓s = ✓s��, ⌧ �� = ⌧

o
.

In other words, each e↵,↵ 2 Aut(M), belongs to Aut⌧,✓(M) and if an element
� 2 Aut⌧,✓(M) leaves each element of M invariant, then � = id.

Theorem 10.10 (Characteristic Square). To each factor M there cor-
responds a commutative square of equivariant exact sequences relative to the
action of Aut(M)⇥ R:

1 1 1??y ??y ??y
1 ����! T ����! U(C) @����! B1

✓(R,U(C) ����! 1??y ??y ??y
1 ����! U(M) ����! eU(M) @✓����! Z1

✓(R,U(C)) ����! 1??y fAd

??y ??y
1 ����! Int(M) ����! Cntr(M) @̇✓����! H1

✓(R,U(C)) ����! 1??y ??y ??y
1 1 1

where C is the center of the non-coummutative flow of weights
n eM, R, ✓, ⌧

o
of M and eU(M) is the extended unitary group of M.
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Extended Lecture I: The Non-Commutative Flow of
Weights on a von Neumann algebra .

Continued.

§E.1. Grading and Lp(M), 1 < p  +1Lp(M), 1 < p  +1Lp(M), 1 < p  +1 and Duality. First we need a
definition:

Definition E.1. Let {N, ⌧,H} be a semi-finite von Neumann algebra
equipped with a faithful semi-finite normal trace ⌧ represented on a Hilbert
space H. A densely defined closed operator T is said to be a�liaed to N if

uTu⇤ = T, u 2 U(N0).

It is said to be ⌧⌧⌧-tamed if

lim
�!+1

⌧
⇣
�[�,+1)

⇣
(T ⇤T )

1
2

⌘⌘
= 0,

where �[�,+1) means the characteristic function of the half line [�,+1) ⇢ R.
We will write

E�(|T |) = �[�,+1)(|T |),

Note that [
�>0

(1�E�(|T |)H ⇢ D(T ).

Lemma E.2. Suppose {en;n 2 N} and {fn : n 2 N} are decreasing sequences
of projections in N such that

lim
n!1

⌧(en) = lim
n!1

⌧(fn) = 0.

Then
lim

n!1
⌧(en _ fn) = 0.

Let M(N, ⌧) be the set of all ⌧ -tamed operators a�liated to N on H.
The following facts makes the significance of the ⌧ -tame property:

i) A ⌧ -tame operator T has no proper extension as a closed operator:
a property called hypermaximality.

ii) The sum S + T and the product ST are both preclosed and their
closures are also a�liated to N and ⌧ -tamed.

iii) The adjoint T ⇤ of a ⌧ -tamed operator is also ⌧ -tamed.
iv) Consequently the set M(N, ⌧) of ⌧ -tamed operators forms an involu-

tive algebra over C if we replace the sum and the product of ⌧ -tamed
operators by their closurs.

v) If the trace ⌧ is finite, then every densely defined closed operator
a�liated to N is ⌧ -tamed.
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Example E.3. Let N = L1(R) and ⌧ be the trace obtained by the integra-
tion relative to the Lebesgue measure on R. We then represent N on L2(R)
by multiplication. Each densely defined closed operator T a�liated to N is
easily identifiedd with the multiplication operator by a measurable function f
on R relative to the Lebesgue measure. Now T is ⌧ -tamed if and only if

ess. lim sup
�!�1

|f(�)| <1 and ess. lim sup
�!+1

|f(�)| <1,

So the mutiplication operator given by the identity function: � 2 R! � 2 R
is not ⌧ -tamed while the one by � 2 R ! 1

� 2 R,� 6= 0, is ⌧ -tamed, where
the singular point 0 of the function does not matter as it has measure zero.

Let
n eM, R, ✓, ⌧

o
be the canonical core of M = eM✓. Each faithful semi-

finite normal weight ' 2W0(M) gives rise to a one parameter unitary group�
'it : t 2 R

 
in eU(M) ⇢ U( eM) as seen already. Then we view ' as a densely

defined self-adjoint positive operator a�liated to eM. The trace ⌧ -scaling
automorphism group ✓ transforms 'it in the following way:

✓s

�
'it
�

= e�ist'it, s, t 2 R;

✓s(') = e�s'

We denote by A' by the von Neumman subalgera of eM generated by the one
parameter unitary group

�
'it : t 2 R

 
. The uniqueness of the Heisenberg

covariant system implies the existence of a unique isomorphism ⇡' from the
covariant system {L1(R), R, ⇢} to the covariant system {A', R, ✓} conjugat-
ing ⇢ and ✓, where

(⇢sf)(x) = f(x + s), f 2 L1(R);⇣
(⇡')�1(')

⌘
(x) = e�x,

E�(')(= ⇡'
�
�(�1,�log�]

�
,

s, x 2 R, � 2 R+.

Proposition E.4. The restriction of the trace ⌧ to A' either purely infinite
or semi-finite which corresponds to the integration on R shown below:

⌧(⇡'(f)) =
Z

R
f(x)exdx, f 2 L1(R).

Furthermore, ' is ⌧ -tamed if and only if ' is bounded, i.e., '(1) = k'k <
+1.

Remark E.5. So far we discussed only faithful semi-finite normal weights.
But we extend the above theory to non-faithful semi-finite normal weights
with a little bit of extra work by considering the reduced von Neumann algebra
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Ms('). So we then identify the set
�
'it : t 2 R

 
of one parameter set of

partial isometries such that

'is'it = 'i(s+t), s, t 2 R;

'is'�is = '�is'is = s('), s 2 R.

With this remark, we may discuss the ⌧ -tamed operator ' a�liated witheM which corresponds to a normal positive functional on M, i.e., an element
of M+

⇤ .
Defnition E.6. For each ↵ 2 C and a densely defined closed operator T

a�liated to eM, we say that the operator T has grade ↵↵↵ if

✓s(T ) = e�↵sT, s 2 R,

and write ↵ = grad(T )↵ = grad(T )↵ = grad(T ). We then set

M(↵) =
n
T ⌘ eM : grad(T ) = ↵ and T 2M( eM, ⌧)

o
.

The algebra M
⇣ eM, ⌧

⌘
is “graded”.

Now we can state the signicance of the canonical core:

Theorem E.7. The grading on M( eM, ⌧) has the following propeties:
i) If <↵ < 0, then M(↵) = {0} and M(0) = M.
ii) If p = <↵ > 0, then for every T 2 M(↵) the 1/p-th power |T |

1
p of

the absolute value of T is given by ' 2M+
⇤ .

iii) For any a 2 eM+ with I✓(a) = 1,

a
1
2 M(1)a

1
2 ⇢ L1

⇣ eM, ⌧
⌘
,

the value ⌧
⇣
a

1
2 Ta

1
2

⌘
is independent of the choice of such a. We will

write this value
R

T for T 2M(1).
iv) The positive part M(1)+ of M(1) is precisely the positive part M+

⇤ of
the predual M⇤ when M+

⇤ is embedded in M1
⇣ eM, ⌧

⌘
.

If ' 2M(1),' 2M+
⇤ , then

k'k = '(1) =
Z
'.

The duality between M and M⇤ is given by the integral:
Z

xT = hx, T i, x 2M, T 2M(1).
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Thus we conclude that
M⇤ = M(1).

Discussion of the Theorem. Suppose h 2 M(1)+ and e = s(h). Setting
hit(1� e) = 0, we consider, with ' 2W0(M) fixed,

u(t) = hit'�it 2M.

Then we have

u(s + t) = u(s)�'s (u(t)), s, t 2 R;
u(s)⇤u(s) = �'s (e) and u(s)u(s)⇤ = e.

So there exists ! 2W(M) such that

(D! : D')t = u(t) = hit'�it, t 2 R.

We then have

b!(x) = !(I✓(x)) = ⌧
⇣
h

1
2 xh

1
2

⌘
, x 2 eM+.

Consider the von Neumann subalgebra A of eMe generated by h. Then it is
identified with L1(R) with the action ✓s given by the following:

(✓s(f))(p) = f(p + s), f 2 A.

The ⌧ -tamed property of h and the trace scaling property of ✓ yield that ⌧
is semi-finite on A and ⌧ is given by the integral:

⌧(f) = C

Z
R
f(p)epdp, for some constant C > 0;

h(p) = e�p;

b!(f) = ⌧
⇣
h

1
2 fh

1
2

⌘
= C

Z
R
f(p)dp.

The semi-finiteness of ⌧ on A guarantees the existence of the conditional
expectation E from eMe to A. Futhermore, the scaling property of ⌧ under ✓
implies that E commutes with the flow ✓, i.e., for every f 2 A we have

⌧(E(✓s(x))f) = ⌧(✓s(x)f) = ⌧
�
✓s

�
x✓�1

s (f)
��

= e�s⌧
�
x✓�1

s (f)
�

= e�s⌧
�
E(s)✓�1

s f
�

= e�s⌧
�
✓�1

s (✓s(E(x))f)
�

= ⌧(✓s(E(x))f);

) E(✓s(x)) = ✓s(E(x)), x 2 eMe.
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Let e0 = �[0,1] 2 L1(R) = A. Then we have

I✓(e0)(p) =
Z

R
�[0,1](p + s)ds = 1;

b!(e0) = C

Z
R
e0(p)dp = C < +1;

b!(e0) = !(I✓(e0)) = !(e) = !(1) < +1.

Suppose a 2 eM+ and I✓(a) = 1. Then we have

1 = E(I✓(a)) = E

✓Z
R
✓s(a)ds

◆
=
Z

R
E(✓s(a))ds

=
Z

R
✓s(E(a))ds =

Z
R
(E(a))(p + s)ds.

Hence we have E(a) 2 L1(R). Now we evaluate the trace of a
1
2 ha

1
2 in the

following:

⌧
⇣
a

1
2 ha

1
2

⌘
= ⌧

⇣
h

1
2 ah

1
2

⌘
= b!(a) = !(I✓(a)) = !(1) < +1.

Thus we conclude that a
1
2 M(1)a 1

2 ⇢ L1
⇣ eM, ⌧

⌘
and the value ⌧

⇣
a

1
2 ha

1
2

⌘
is

independent of the choice of a 2 eM+ with I✓(a) = 1. ~
Theorem E.8. For ↵ 2 C with p = <↵ � 1, the quontity:

kTk =
✓Z

|T |
1
p

◆p

, T 2M(↵),

makes M(↵) a Banach space.

Unlike the usual integration, the intersection of di↵erent M(↵)’s is {0}.
So the norm kTk is defined only for one value of ↵ for a homogenous T 2M
relative to the grading given by ✓.

Theorem E.9. If {T1, · · · , Tn} ⇢M
⇣ eM, ⌧

⌘
and

grad(T1) + · · · + grad(Tn) = 1,

then T1 · · ·Tn 2M(1) and

kT1 · · ·Tnk  kT1k · · · kTnk;Z
T1 · · ·Tn =

Z
T2 · · ·Tn�1T1.

Theorem E.10. If ↵ 2 C satisfies the inequality 1  <↵  1, then Banach
spaces M(↵) and M(1� ↵) are in duality under the biliner form:

hS, T i =
Z

ST, S 2M(↵), T 2M(1� ↵).
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§E.2 Local Characteristic Square. For each non-zero semi-finite normal
weight ' 2W, let ⇡' be the equivariant isomorphism of {L1(R), R, ⇢} into
the non commutative flow of weights

n eM, R, ✓, ⌧
o

such that ' corresponds
to the function x 2 R 7! e�x 2 R+ and set

A' = ⇡'(L1(R)), D' = A' _ C.

Proposition E11. We have the following:

(A')0 \M = M';
D' \M ⇢ C' = The center of M';

{D', R, ✓} = {(M \D')⌦A', R, id⌦ ✓}.

C = L1(X,µ), (✓s(a))(x) = a
�
T�1

s x
�
, x 2 X, s 2 R.

c(s + t;x) = c(s;x)c
�
t;T�1

s x
�

A' = L1(R), '(p) = e�p

(✓s(f))(p) = f(p + s), f 2 L1(R);

(✓s('))(p) = e�(p+s) = e�s'(p).

Lemma EII.1. Suppose that A1 and A2 are two commutative von Neumann
algebras and that ⇡1 and ⇡2 are faithful normal representations of A1 and
A2 such that

⇡1(A1) ⇢ ⇡2(A2)
0.

Then there exists a measure µ on X = X1 ⇥X2 such that
i)

L1(X1 ⇥X2, µ) ⇠= ⇡1(A1) _ ⇡2(A2);

ii) The projections pr1 and pr2 from X to the respective cooridnates
carry the measure µ into µ1 and µ2 of X1 and X2 respectively.

For each c 2 Z1
✓(R,U(C)) and setting

(b'(c))(p, x) = c(p, Tpx), b 2 D',

we compute

(@✓b'(c))t(p, x) = b(p, x)b
�
p + t, T�1

t x
�

= c(p, Tpx)c
�
p + t, Tp+tT

�1
t x

�
= c(p, Tpx)c(p + t, Tpx)

= c(p, Tpx)c(p, Tpx)c
�
t, T�1

p Tpx
�

= c(t, x).
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Hence (@✓b)t 2 U(C), so that b'(c) 2 eU(M) and

c(t, ·) = (@✓b)t.

Observe that the map b' : c 2 Z1
✓(R,U(C)) 7! b'(c) 2 U(D') is a group

homomorphism.
We now observe the following cobounary operation:

@✓
�
'it
�
(s) = '�it✓s

�
'it
�

= e�ist, s, t 2 R

Setting
ct(s;x) = e�ist, x 2 X,

we have a cocycle ct 2 Z1
✓(R,U(C)). We then check b'(ct) in the following:

(b'(ct))(p, x) = ct(p, Tpx) = e�ipt = 'it(p),

so that (b'(ct)) = 'it 2 A'.

Theorem E.12. To each faithful semi-finite normal weight ' 2 W0(M)
there corresponds a right inverse: c 2 Z1

✓(R,U(C)) 7! b'(c) 2 D' \ eU(M) of
the coboundary map @ : u 2 D' \ eU(M) 7! @(u)s = u⇤✓s(u), s 2 R such that

i) @✓(b'(c)) = c, c 2 Z1
✓(R,U(C)).

ii) b' : c 2 Z1
✓(R,U(C)) 7! b'(c) 2 eU(M)) \D' is a continuous homo-

morphism.
iii)

b'(ct) = 'it.

iv) For every ↵ 2 Aut(M), we have the covariance:

b'�↵�1 = e↵�b'�e↵�1

v) If ' 2W0(M) is dominant, then

fAd(b'(c)) = �'c the extended modular automorphism.

vi) For a pair ', 2W0(M) of dominant weight, we have

b'(c)b (c)⇤ = (D' : D )c 2 U(M), c 2 Z1
✓(R,U(C)),

and for a general pair ', 2 W0(M), the left side of the above ex-
pression belongs to U(M) and therefore we write

(D' : D )c
def= b'(c)b (c)⇤, c 2 Z1

✓(R,U(C)).

vii) For a pair c1, c2 2 Z1
✓(R,U(C)), we have

(D' : D )c1c2
= (D' : D )c1

� c1

�
(D' : D )c2

�
.
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Definition E.13. For each ' 2 W0(M) and c 2 Z1
✓(R,U(C)), the auto-

morphism
�'c = fAd(b'(c)) 2 Aut(M)

is called the extended modular automorphism corresponding to a
cocycle

c 2 Z1
✓(R,U(C))c 2 Z1
✓(R,U(C))c 2 Z1
✓(R,U(C)).

Definition E.14. i) The group defined by the folloing:

Mod'(M) =
nfAd(u) : u 2 D' \ eU(M)

o

is called the extended modular group of ' 2W0(M).
ii) The abelian von Neumann subalgebra D' = D' \ M is called the

strong center of the centralizer M',' 2W0(M).
iii) We set Mod'0 (M) = {Ad(u) : u 2 U(D')}.
With these notations, we get the following local characteristic square:

Theorem E.15 (Falcone-Takesaki). To each faithful semi-finite normal
weight ' 2W0, there corresponds a commutative square of exact sequences:

1 1 1??y ??y ??y
1 ����! T ����! U(C) @����! B1

✓(R,U(C)) ����! 1??y ??y ??y
1 ����! U(D') ����! U(D') \ eU(M) @✓����! Z1

✓(R,U(C)) ����! 1??y ??y ??y
1 ����! Mod'0 (M) ����! Mod'(M) @̇✓����! H1

✓(R,U(C)) ����! 1??y ??y ??y
1 1 1

and

U(D') \ eU(M) ⇠= U(D')⇥ Z1
✓(R,U(C)) by the isomorphism b'.

Definition E.16. We call the last square the the local characteristic
square.

Theorem E.17 (Connes-Kawahigashi-Sutherland-Takesaki). If R is
an AFD factor, then the auotomorphism group Aut(R) has the following
normal subgroups:

i)
Ker(mod) = Int(R).
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ii) Let C be the set of all bounded sequences {xn} 2 `1(R, N) such that

lim
n!1

k!xn � xn!k = 0, ! 2M⇤.

Then group Cntr(R) is precisely the group of all automorphisms ↵ 2
Aut(M) such that

�-strong⇤ lim
n!1

(↵(xn)� xn) = 0 for every {xn} 2 C.

iii) The exact sequence:

1 ����! Ker(mod) i����! Aut(R) mod����! Aut✓(C) ����! 1

splits. Hence we have

Aut(R) ⇠= Ker(mod) o Aut✓(C).

Note The last assertion (iii) was proven by R. Wong in his thesis but
never published. So the proof was presented in [ST3].

§E.3. A Factor of Type III1 : The Mother of Factors of Other
Types.. Suppose that M is a separable factor of type III1. Then its coreeM is a factor of type II1 equipped with a trace scaling one parameter auto-
morphism group ✓.

Theorem E.18. In the above setting, to each closed subgroup TZ, T > 0, of
the addtivie group R a factor eM✓T of type III� with � = e�T corresponds. If
T1Z ⇢ T2Z, i.e., if T1/T2 2 Z, then we have

eM✓T1 � eM✓T2 � · · · �M = eM✓.

Let {A, R,↵} is an ergodic flow. We represent the covariant system
{C, R,↵} by an ergodic flow of non-singular transformations:

C = L1(X,µ), (↵s(f))(x) = f
�
T�1

s x
�
, s 2 R, x 2 X, f 2 C;

µ(N) = 0 , µ(Ts(N)) = 0, N ⇢ X;

⇢(s, x) =
dµ�Ts

dµ
(x), s 2 R, x 2 X.

Now consider the tensor product: N = C⌦ eM and view it as the von Neu-
mann algebra L1

⇣ eM,X, µ
⌘

of all essentially bounded eM-valued measurable
functions on X. We are going to build a one parameter automorphism groupn
✓̃s : s 2 R

o
which scales a semifinite normal trace on N down and the re-

striction of ✓̃ to C is exactly the given ergodic flow ↵. Set⇣
✓̃s(a)

⌘
(x) = ✓s�log⇢(s�1,x)

�
a
�
T�1

s x
��

, a 2 N = L1
⇣ eM,X, µ

⌘
.
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We then compute for a 2 N+:

(⌧ ⌦ µ)
⇣
✓̃s(a)

⌘
=
Z

X
⌧
�
✓s�log⇢(s�1,x)

�
a
�
T�1

s x
���

dµ(x)

=
Z

X
e�s⇢

�
s�1, x

�
⌧
�
a
�
T�1

s x
��

dµ(x)

= e�s

Z
X
⇢
�
s�1, x

�
⌧
�
a
�
T�1

s x
��

dµ(x)

= e�s

Z
X
⌧(a(x))dµ(x)

= e�s(⌧ ⌦ µ)(a).

Therefore, the one parameter automorphism group ✓̃ transforms the trace
⌧̃ = ⌧⌦µ exactly in the way we want. Hence the covariant system

n
N, R, ✓̃, ⌧̃

o
is the core of the factor M0 = N✓̃. The flow of weights on M0 is exactly the
one we started, i.e., {C, R,↵}. If the flow {C, R,↵} is properly ergodic, then
the factor M0 is of type III0.

Theorem E.19. Every erogic flow {C, R,↵} appears as the flow of weights
on a factor of type III0 . If the original factor eM is AFD, then the factor
M0 constructed above is also AFD. The flow of weights on an AFD factor
of type III0 is a complete algebraic invariant. Hence all AFD factors are
isomorphic to the ones obtained through the above construction.

Fix an ergodic flow {C, R, ✓}. Let Aut✓(C) be the group of automorphisms
of C commuting with ✓. Each ↵ 2 Aut✓(C) gives rise to a non-singular
transformation T↵ of the measure space {X,µ}:

(↵(a))(x) = a
�
T�1
↵ x

�
, a 2 C,↵ 2 Aut✓(C).

We have also the ⇢-function:

⇢(↵, x) =
dµ�T↵

dµ
(x), ↵ 2 Aut✓(C).

We then set
(e↵(a))(x) = ✓�log(⇢(↵�1

, x))
�
a
�
T�1
↵ x

��
.

Then the map: ↵ 2 Aut✓(C) 7! e↵ 2 Aut⌧,✓(N) is an injective homorphism
and gives rise to an automorphism ↵̄ 2 Aut(M0) such that mod(↵̄) = ↵.

Theorem E.20. The group Aut(M0) is splits as the semi-direct product:

Aut(M0) ⇠= Ker(mod) o Aut✓(C).
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Note on the Paper of R. Wong. For an AFD factor R of type III0, the
above result was proven by R. Wong in his thesis, although his method was
much more based on the ergodic theory. But his papaer was never published.
So the proof was given in [ST3]. The reason why his paper was never pub-
lished was that when his paper was ready to go printing, the Transaction
of American Mathematical Society needed his agreement on the copy right,
which was never sent back to the AMS o�ce: he had left the Univ. of New
South Wales before the copy right signature request was sent to him. His
supervioser was Prof. Colin E. Sutherland. Even he was unable to trace
whereabout of Dr. R. Wong. Probably he had left the UNSW in a despair on
the academic job market at that time.
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Concluding Remark

Now we come to the end of the lecture series. As seen through the lectures,
the theory of von Neumann algebras is very much like a number theory in
analysis. There are many mathematical problems which associate operators
on a Hilbert space. The theory of operator algebras looks at the enviroment
of the operators in quesion and give a guide how to attack the problem.
Namely, the theory of operator algebras will give us the framework for how
to attack the problem. For instance, the unitary operators on L2(R) of the
translation operator by one and the mutiplication operator by trigonometric
funcions discussed Example 7.12 is not exotic at all and has a close relation
to di↵erence equations. I believe that the theory of operator algebras has
been su�cently developped that one can now apply them in many areas
of mathematics and mathematical physics. One should try to rephrase the
existing mathematical problems in terms of operator algebras. The non-
commutative geometry of Alain Connes is exactly one of these attempts.
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