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Preface

These notes were initially prepared for a summer school in the MTTS programme more

than a decade ago. They are intended to introduce an undergraduate student to the basic

notions of linear algebra, and to advocate a geometric rather than a coordinate-dependent

purely algebraic approach. Thus, the goal is to make the reader see the advantage of thinking

of abstract vectors rather than n-tuples of numbers, vector addition as the parallelogram law

in action rather than as coordinate-wise algebraic manipulations, abstract inner products

rather than the more familiar dot products and most importantly, linear ransformations

rather than rectangular arrays of numbers, and compositions of linear tranformations rather

than seemingly artificially defined rules of matrix multiplication. For instance, some care is

taken to introduce the determinant of a transformation as the signed volume of the image

of the unit cube before making contact with (and thus motivating) the usual method of

expansion along rows with appropriate signs thrown in. After a fairly easy paced discussion,

the notes culminate in the celebrated spectral theorem (in the real as well as complex cases).

These notes may be viewed as a ‘baby version’ of the ultimate book in this genre, viz., Finite-

dimensional vector spaces, by Halmos. They are quite appropriate for a one semester course

to undergraduate students in their first year, which will prepare them for the method of

abstraction in modern mathematics.

1



Contents

1 Vector Spaces 3

1.1 The Euclidean space IR 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Finite-dimensional (real) vector spaces . . . . . . . . . . . . . . . . . . . . . 6

1.3 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Linear Transformations and Matrices 17

2.1 Linear transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 (Real) Inner Product Spaces 27

3.1 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Orthogonal Complements and Projections . . . . . . . . . . . . . . . . . . . 40

3.4 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 The Spectral Theorem 52

4.1 The real case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Complex scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 The spectral theorem for normal operators . . . . . . . . . . . . . . . . . . . 63

2



Chapter 1

Vector Spaces

1.1 The Euclidean space IR
3

We begin with a quick review of elementary ‘co-ordinate geometry in three dimensions’. The

starting point is the observation that - having fixed a system of three mutually orthogonal

(oriented) co-ordinate axes - a mathematical model of the three-dimensional space that we

inhabit is given by the set

IR 3 = {x = (x1, x2, x3) : x1, x2, x3 ∈ IR }.

We refer to the element x = (x1, x2, x3) of IR 3 as the point whose i-th co-ordinate (with

respect to the initially chosen ‘frame of reference’) is the real number xi ; we shall also

refer to elements of IR 3 as vectors (as well as refer to real numbers as ‘scalars’). Clearly,

the point 0 = (0, 0, 0) denotes the ‘origin’, i.e., the point of intersection of the three

co-ordinate axes.

The set IR 3 comes naturally equipped with two algebraic operations, both of which

have a nice geometric interpretation; they are:

(i) Scalar multiplication: if x = (x1, x2, x3) ∈ IR 3 and α ∈ IR , define

αx = (αx1, αx2, αx3) ; geometrically, the point αx denotes the point which lies on the

line joining x to 0 , whose distance from 0 is |α| times the distance from x to 0 , and

is such that x and αx lie on the same or the opposite side of 0 according as the scalar

α is positive or negative.
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(ii) Vector addition: if x = (x1, x2, x3), y = (y1, y2, y3) ∈ IR 3 , define x + y =

(x1 + y1, x2 + y2, x3 + y3) ; geometrically, the points 0 , x , x + y and y are successive

vertices of a parellelogram in the plane determined by the three points 0 , x and y. (As is

well-known, this gives a way to determine the resultant of two forces.)

The above algebraic operations allow us to write equations to describe geometric objects:

thus, for instance, if x and y are vectors in IR 3, then {(1 − t)x + ty : 0 ≤ t ≤ 1} is the

‘parametric form’ of the line segment joining x to y in the sense that as the parameter

t increases from 0 to 1, the point (1 − t)x + ty moves from the point x to the point

y monotonically ( at a ‘uniform speed’) along the line segment joining the two points; in

fact, as the parameter t ranges from −∞ to +∞, the point (1 − t)x + ty sweeps out the

entire line determined by the points x and y , always proceeding in the direction of the

vector y − x.

In addition to the above ‘linear structure’, there is also a notion of orthogonality in

our Euclidean space IR 3. More precisely, if x and y are as above, their dot-product is

defined by x · y = x1y1 + x2y2 + x3y3, and this ‘dot-product’ has the following properties :

(i) if we define ||x|| 2 = x · x, then ||x|| is just the Euclidean distance from the origin

0 to the point x, and we refer to ||x|| as the norm of the vector x;

(ii) x · y = ||x|| ||y|| cos θ, where θ denotes the ‘oriented angle’ subtended at the origin

by the line segment joining x and y; and in particular, the vectors x and y are ‘orthogonal’

or perpendicular - meaning that the angle θ occurring above is an odd multiple of π/2 -

precisely when x · y = 0.

Clearly, we can use the notion of the dot-product to describe a much greater variety of

geometric objects via equations; for instance :

(a) {x ∈ IR 3 : ||x − y|| = r } is the sphere with centre at y and radius r; and

(b) If u = (u1, u2, u3) ∈ IR 3, then {x = (x1, x2, x3) ∈ IR 3 : u1x1+u2x2+u3x3 = 0 }
is precisely the plane through the origin consisting of all vectors which are orthogonal to

the vector u.

One often abbreviates the preceding two sentences into such statements as

(a ′) ||x − y|| = r is the equation of a sphere; and

(b ′) ax + by + cz = 0 is the equation of the plane perpendicular to (a, b, c).

Thus, for instance, if aij , 1 ≤ i, j ≤ 3 are known real numbers, the algebraic problem of
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determining whether the system of (simultaneous) linear equations

a11x1 + a12x2 + a13x3 = 0

a21x1 + a22x2 + a23x3 = 0 (1.1.1)

a31x1 + a32x2 + a33x3 = 0

admits a non-trivial solution x1, x2, x3 - i.e., the xj ’s are real numbers not all of which are

equal to zero - translates into the geometric problem of determining whether three specified

planes through the origin share a common point other than the origin.

Exercise 1.1.1 Argue on geometric grounds that the foregoing problem admits a non-trivial

solution if and only if the three points ui = (ai1, ai2, ai3), 1 ≤ i ≤ 3 are co-planar (i.e., lie

in a plane).

One of the many successes of the subject called ‘linear algebra’ is the ability to tackle

mathematical problems such as the foregoing one, by bringing to bear the intuition arising

from geometric considerations. We shall have more to say later about solving systems of

simultaneous linear equations.

Probably the central object in linear algebra is the notion of a linear transformation.

In a sense which can be made precise, a linear transformation on IR 3 is essentially just

a mapping T : IR 3 → IR 3 which ‘preserves collinearity’ in the sense that whenever

x ,y and z are three points in IR 3 with the property of lying on a straight line, the images

Tx , Ty , Tz of these points under the mapping T also have the same property. Examples

of such mappings are given below.

(i) T1(x1, x2, x3) = (2x1, 2x2, 2x3), the operation of ‘dilation by a factor of two’;

(ii) T2 = the operation of (performing a) rotation by 90o in the counter-clockwise direc-

tion about the z-axis;

(iii) T3 = the reflection in the xy-plane;

(iv) T4 = the perpendicular projection onto the xy-plane; and

(v) T5 = the ‘antipodal map’ which maps a point to its ‘reflection about the origin’.

Exercise 1.1.2 Write an explicit formula of the form Tix = · · · for 2 ≤ i ≤ 4. (For

instance, T5(x1, x2, x3) = (−x1,−x2,−x3).)
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More often than not, one is interested in the converse problem - i.e., when a linear trans-

formation is given by an explicit formula, one would like to have a geometric interpretation

of the mapping.

Exercise 1.1.3 Give a geometric interpretation of the linear transformation on IR 3 de-

fined by the equation

T (x1, x2, x3) = (
2x1 − x2 − x3

3
,
−x1 + 2x2 − x3

3
,
−x1 − x2 + 2x3

3
).

The subject of linear algebra enables one to deal with such problems and, most im-

portantly, equips one with a geometric intuition that is invaluable in tackling any ‘linear’

problem. In fact, even for a ‘non-linear’ problem, one usually begins by using linear alge-

braic methods to attack the best ‘linear approximation’ to the problem - which is what the

calculus makes possible.

Rather than restricting oneself to IR 3, it will be profitable to consider a more general

picture. An obvious first level of generalisation - which is a most important one - is to replace

3 by a more general positive integer and to study IRn. The even more useful generalisation

- or abstraction - is the one that rids us of having to make an artificial initial choice of

co-ordinate axes and to adopt a ‘co-ordinate free’ perspective towards n-dimensional space,

which is what the notion of a vector space is all about.

1.2 Finite-dimensional (real) vector spaces

We begin directly with the definition of an abstract (real) vector space; in order to under-

stand the definition better, the reader will do well to keep the example of IR 3 in mind.

(The reason for our calling these objects ‘real’ vector spaces will become clear later - in

§4.2.)

Definition 1.2.1 A (real) vector space is a set V equipped with two algebraic operations

called scalar multiplication and vector addition which satisfy the following conditions:

Vector addition : To every pair of elements u, v in V , there is uniquely associated

a third element of V denoted by u + v such that the following conditions are satisfied

by all u, v, w in V :

(A1) (commutativity) u+v = v+u ;
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(A2) (associativity) (u+v)+w = u+(v+w);

(A3) (zero) there exists an element in V , denoted simply by 0 , with the property that

u+0 = u;

(A4) (negative) to each u in V , there is associated another element in V denoted by

− u with the property that u + (−u) = 0.

Scalar multiplication : There exists a mapping from IR × V to V , the image under

this mapping of the pair (α, v) being denoted by αv , such that the following conditions

are satisfied for all choices of ‘vectors’ u, v, w and all scalars α, β, γ - where we refer to

elements of V as vectors and elements of IR as scalars :

(S1) α(u + v) = αu + αv;

(S2) (α + β)u = αu + βu;

(S3) α(βu) = (αβ)u;

(S4) 1u = u.

The purpose of the following exercise is to show, through a sample set of illustrations,

that the above axioms guarantee that everything that should happen, does.

Exercise 1.2.1 If V is a real vector space as above, then prove the validity of the following

statements :

(i) if u, v, w ∈ V and if u + v = w, then u = w + (−v);

(ii) deduce from (i) above that the zero vector and the negative of a vector, which are

guaranteed to exist by the axioms of a vector space, are uniquely determined by their defining

properties; hence deduce that −(−u) = u;

(iii) if u, v ∈ V , then we shall henceforth write u − v instead of the more elaborate

(but correct) expression u + (−v); show that, for any u, v in V , we have : −(u + v) =

−u − v = −v − u,−(u − v) = v − u.

(iv) extend the associative and commutative laws to show that if v1, · · · , vn are any finite

number of vectors, then there is only one meaningful way of making sense of the expression

v1 + · · · + vn; we shall also denote this ‘sum’ by the usual notation
∑n

i=1 vi;

(v) if u ∈ V and n is any positive integer, and if we set v1 = · · · = vn = u , then
∑n

i=1 vi = nu, where the term on the left is defined by vector addition and the term on

the right is defined by scalar multiplication; state and prove a similar assertion concerning

nu when n is a negative integer. What if n = 0?
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Before proceeding any further, we pause to list a number of examples of real vector

spaces.

Example 1.2.2 (1) Fix a positive integer n and define n-dimensional Euclidean

space IRn by

IRn = {x = (x1, . . . , xn) : x1, . . . xn ∈ IR }

and define vector addition and scalar multiplication ‘component-wise’ - exactly as in the

case n = 3.

(2) For fixed positive integers m , n , recall that a real m×n -matrix is, by definition,

a rectangular array of numbers of the form














a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn















.

The set Mm×n(IR) of all real m × n-matrices constitutes a real vector space with respect

to entry-wise scalar multiplication and addition of matrices. (This vector space is clearly

a (somewhat poorly disguised) version of the vector space IRmn.) For future reference, we

record here that we shall adopt the short-hand of writing Mn(IR) rather than Mn×n(IR). We

shall call a matrix in Mm×n(IR) square or rectangular according as m = n or m 6= n.

(3) Define IR∞ to be the set of all infinite sequences of real numbers, and define vector

addition and scalar multiplication component-wise.

(4) Consider the subset ℓ∞ of IR∞ consisting of those sequences which are uniformly

bounded; this is also a real vector space with respect to component-wise definitions of vector

addition and scalar multiplication.

(5) If X is any set, the set FunIR(X) of real-valued functions defined on the set

X has a natural structure of a real vector space with respect to the operations defined by

(f + g)(x) = f(x) + g(x) and (αf)(x) = αf(x). (In fact, the first three of the foregoing

examples can be thought of as special cases of this example, for judicious choices of the

underlying set X.)

(6) The set C[0, 1] , consisting of continuous functions defined on the closed unit interval

[0,1], is also a vector space with respect to vector addition and scalar multiplication defined

exactly as in the last example.
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(7) The set C∞(0, 1), consisting of functions defined on the open unit interval (0,1)

which are ‘infinitely differentiable’, is a real vector space with respect to vector addition and

scalar multiplication defined exactly as in the past two examples.

(8) Consider the subset D of the set C∞(0, 1) consisting of those functions f which

satisfy the differential equation

f ′′(x) − 2f ′(x) + f(x) = 0, ∀ x ∈ (0, 1).

Then D is a vector space with respect to the same definitions of the vector operations as in

the past three examples.

The preceding examples indicate one easy way to manufacture new examples of vector

spaces from old, in the manner suggested by the next definition.

Definition 1.2.3 A subset W of a vector space V is said to be a subspace of the vector

space V if it contains 0 and if it is ‘closed under the vector space operations of V ’ in the

sense that whenever u, v ∈ W and α ∈ IR, then also u+v ∈ W and αu ∈ W . (The

reason for the requirement that W contains 0 is only to rule out the vacuous possibility

W is the empty set.)

It must be clear that a subspace of a vector space is a vector space in its own right

with respect to the definitions of scalar multiplication and vector addition in the ambient

space restricted to the vectors from the subspace. In the foregoing examples, for instance,

the vector spaces ℓ∞, C[0, 1] and D are, respectively, subspaces of the vector spaces

IR∞, FunIR([0, 1]) and C∞(0, 1).

We pause for a couple of exercises whose solution will help clarify this notion.

Exercise 1.2.2 (i) Show that the set of points in IR 3 whose co-ordinates add up to 0 is a

subspace.

(ii) Can you describe all the subspaces of IR 3 ?

Exercise 1.2.3 Show that a subset W of a vector space V is a subspace if and only if it

satisfies the following condition: whenever u, v ∈ W and α, β ∈ IR, it is also the case

that (αu + βv) ∈ W .
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The preceding exercise used a notion that we shall see sufficiently often in the sequel

to justify introducing a bit of terminology : if v, v1, . . . , vn are vectors in a vector space,

we shall say that the vector v is a linear combination of the vectors v1, . . . , vn if there

exists scalars (i.e., real numbers) α1, . . . , αn such that v = α1v1 + · · · + αnvn. In

this terminology, we can say that a subset of a vector space is a subspace precisely when

it is closed under the formation of linear combinations. (Note: This last statement says

something slightly more than the last exercise; convince yourself that it does and that the

‘slightly more’ that it does say is true.)

In the ‘opposite direction’, we have the following elementary fact which we single out as

a proposition, since it will facilitate easy reference to this fact and since it introduces a bit

of very convenient notation and terminology:

Proposition 1.2.4 If S = {v1, . . . vn } is a finite set of vectors in a vector space V ,

define
∨

S = {
n
∑

i=1

αivi : α1, . . . , αn ∈ IR }.

Then,
∨

S is the smallest subspace containing the set S in the sense that:

(i) it is a vector subspace of V which contains S , and

(ii) if W is any subspace of V which contains S , then W necessarily contains
∨

S.

The proof of this proposition and the following generalisation of it are easy and left as

exercises to the reader.

Exercise 1.2.4 If S is an arbitrary (not necessarily finite) subset of a vector space V ,

and if
∨

S is defined to be the set of vectors expressible as linear combinations of vectors

from S , then show that
∨

S is the smallest subspace of V which contains the set S .

If S and W are related as in the above exercise, we say that W is the subspace spanned

(or generated) by the set S.

In view of Exercise 1.2.4, we will have an explicit understanding of a subspace if we can

find an explicit set of vectors which spans it. For instance, while the vector space D of

Example 1.2.2 (8) might look esoteric at first glance, it looks completely harmless after one

has succeeded in establishing that D =
∨

S where S is the set consisting of the two
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functions f(x) = ex and g(x) = xex. (This is something you might have seen in the

study of what are called ‘linear differential equations with constant coefficients’.)

Obviously the first sentence of the last paragraph is not unconditionally true since one

always has the trivial identity W =
∨

W for any subspace W . Hence, in order for the

above point of view to be most effectively employed, we should start with a spanning set

for a subspace which is ‘as small as possible’.

The next proposition is fundamental in our quest for efficient spanning sets.

Proposition 1.2.5 Let W be a subspace of a vector space V . Suppose W =
∨

S .

Then the following conditions on the spanning set S are equivalent :

(i) The set S is a minimal spanning set in the sense that if S0 is any proper subset of S,

then S0 does not span W ;

(ii) The set S is linearly independent, meaning that there is no non-trivial linear relation

among the elements of S; more precisely, if v1, . . . , vn are distinct elements in S, if α1, . . . , αn ∈ IR

and if α1v1 + · · · + αnvn = 0, then necessarily α1 = · · · = αn = 0.

Proof : (i) ⇒ (ii) : Suppose α1v1 + · · · + αnvn = 0, where v1, . . . , vn are distinct

elements in S and α1, . . . , αn are scalars, not all of which zero; by re-labelling, if necessary,

we may assume without loss of generality that αn 6= 0. Then vn = β1v1 + · · ·+βn−1vn−1,

where βj = − αj

αn
for 1 ≤ j < n, whence we see that vn is a linear combination of elements

of S \ {vn} = S0 (say); it follows easily that
∨

S0 =
∨

S, which contradicts the assumed

minimality property of the set S.

(ii) ⇒ (i) : Suppose S does not have the asserted minimality property, and that

W =
∨

S0 for some proper subset S0 of S. Pick v from S \S0; since v ∈ W , this implies

the existence of elements v1, . . . vn−1 in S0 with the property that v = α1v1 + · · ·αn−1vn−1

for some scalars αi, 1 ≤ i < n. Writing αn = −1 6= 0, vn = v, we find that we have arrived

at a contradiction to the assumed linear independence of the set S. 2

We pause to remark that a set of vectors is said to be linearly dependent if it is not

linearly independent. The following exercises should give the reader some feeling for the

notion of linear independence.

Exercise 1.2.5 Determine which of the following sets S of vectors in the vector space V

constitute linearly independent sets :
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(i) S = {(1, 0, 0), (1, 1, 0), (0, 0, 0)}, V = IR 3;

(ii) S = {0}, V arbitrary;

(iii) S = {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (0, 0, 0, 1)}, V = IR4;

(iv) S = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}, V = IR 3;

(v) S = { xn : n = 0, 1, 2, . . .}, V = C[0, 1].

The following exercise contains an assertion which is ‘dual’ to the above proposition.

Exercise 1.2.6 Let S be a linearly independent subset of a subspace W . The following

conditions on the set S are equivalent :

(i)
∨

S = W ;

(ii) the set S is a maximal linearly independent set in W - meaning that there exists no

linearly independent subset of W which contains S as a proper subset.

The contents of Proposition 1.2.5 and Exercise 1.2.6 may be paraphrased as follows.

Corollary 1.2.6 The following conditions on a subset B of a subspace W of a vector space

are equivalent :

(i) B is a maximal linearly independent subset of W ;

(ii) B is a minimal spanning subset of W ;

(iii) B is linearly independent and spans W .

If a set B and a subspace W are related as above, then B is said to be a basis for the

subspace W .

Before proceeding further, we make a definition which imposes a simplifying (and quite

severely constrictive) condition on a vector space; we shall be concerned only with such

vector spaces for the rest of these notes.

Definition 1.2.7 A vector space is said to be finite-dimensional if it admits a finite

spanning set.

The reader should go through the list of examples furnished by Example 1.2.2 and decide

precisely which of those examples is finite- dimensional.
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Before proceeding any further, we iterate that henceforth all vector spaces consid-

ered in these notes will be finite-dimensional and unless we explicitly say that a

vector-space is not finite-dimensional, we shall always tacitly assume that when we say

‘vector space’ we shall mean a finite- dimensional one.

Proposition 1.2.8 Every vector space has a basis.

Proof : If V is a vector space, then - by our standing convention - there exists a finite

set S such that V =
∨

S. If S is a minimal spanning set for V , then it is a basis and

we are done. Otherwise, there exists a proper subset S1 which also spans V . By repeating

this process as many times as is necessary, we see - in view of the assumed finiteness of S -

that we will eventually arrive at a subset of S which is a minimal spanning set for V , i.e.,

a basis for V . 2

(Perhaps it should be mentioned here that the theorem is valid even for vector spaces

which are not finite-dimensional. The proof of that fact relies upon the axiom of choice (or

Zorn’s lemma or one of its equivalent forms). The reader to whom the previous sentence

sentence did not make any sense need not worry as we shall never need that fact here,

and also because the more general fact is never used as effectively as its finite-dimensional

version.)

Exercise 1.2.7 (i) If B is a basis for a vector space V , show that every element of V can

be expressed in a unique way as a linear combination of elements of B.

(ii) Exhibit at lease one basis for (a) each of the finite-dimensional vector spaces in the list

of examples given in Example 1.2.2, as well as for (b) the subspace of IR 3 described in

Exercise 1.2.2(i).

1.3 Dimension

The astute reader might have noticed that while we have talked of a vector space being

finite-dimensional, we have not yet said anything about what we mean by the dimension of

such a space. We now proceed towards correcting that lacuna.
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Lemma 1.3.1 If L = {u1, . . . , um } is a linearly independent subset of a vector space V

and if S is a subset of V such that
∨

S = V , then there exists a subset S0 of S such

that S \ S0 has exactly m elements and
∨

(L
⋃

S0) = V . In particular, any spanning set

of V has at least as many elements as any linearly independent set.

Proof : The proof is by induction on m. If m = 1 , then since u1 ∈ V , it is possible

to express u1 as a linear combination of elements of S - say, u1 =
∑n

i=1 αivi, for some

elements v1, . . . , vn of S. Since u1 6= 0 (why?), clearly some αi must be non-zero ; suppose

the numbering is so that α1 6= 0. It is then easy to see that v1 is expressible as a linear

combination of u1, v2, . . . , vn, and to consequently deduce that S0 = S \ {v1} does the job.

Suppose the lemma is true when L has (m − 1) elements. Then we can, by induc-

tion hypothesis applied to L \ {um} and S, find a subset S1 of S such that S \ S1 has

(m − 1) elements and
∨

(S1
⋃{u1, . . . , um−1}) = V . In particular, since um ∈ V ,

we can find scalars α1, . . . , αm−1, β1, . . . , βn and vectors v1, . . . , vn in S1 such that

um =
∑m−1

i=1 αiui +
∑n

j=1 βjvj . The linear independence of the ui’s, and the fact that

um 6= 0 implies that βj0 6= 0 for some j0. We may deduce from this that vj0 ∈ ∨

(L
⋃

S0)

where S0 = S1 \ {vj0} and that consequently this S0 does the job. 2

Theorem 1.3.2 (i) Any two bases of a vector space have the same number of elements.

This common cardinality of all bases of a vector space V is called its dimension and is

denoted by dim V.

(ii) If V is a vector space with dim V = n, then any linearly independent set in V

contains at most n elements.

(iii) Any linearly independent set can be ‘extended’ to a basis - meaning that if it is not

already a basis, it is possible to add some more elements to the set so that the extended set

is a basis.

Proof : (i) If B1 and B2 are two bases for V , then apply the foregoing lemma twice,

first with L = B1, S = B2, and then with L = B2, S = B1.

(ii) If L is a linearly dependent set in V and if S is a basis for V , this assertion follows

at once from the lemma.

(iii) This also follows from the lemma, for if L, S are as in the proof of (ii) above, then,

in the notation of the lemma, the set obtained by adding the set S0 to L is indeed a basis
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for V . (Why ?) 2

Exercise 1.3.1 (i) Can you find subspaces W0 ⊂ W1 ⊂ W2 ⊂ W3 ⊂ IR 2 such that

no two of the subspaces Wi are equal ?

(ii) Determine the dimension of each of the finite-dimensional vector spaces in the list given

in Example 1.2.2.

(iii) Define W = {A = ((aij)) ∈ Mn(IR) : aij = 0 if j < i}. (Elements of W are

called ‘upper-triangular’ matrices.) Verify that W is a subspace of Mn(IR) and compute its

dimension.

We conclude this section with some elementary facts concerning subspaces and their

dimensions.

Proposition 1.3.3 Let W1 and W2 be subspaces of a vector space V . Then,

(i) W1
⋂

W2 is also a subspace of V ;

(ii) if we define W1 + W2 = {v1 + v2 : v1 ∈ W1, v2 ∈ W2}, then W1 + W2 is a

subspace of V ;

(iii) W1 + W2 =
∨

(W1
⋃

W2) and we have :

dim W1 + dim W2 = dim (W1 + W2) + dim (W1

⋂

W2).

Proof : The assertions (i) and (ii), as well as the first assertion in (iii) are easily seen

to be true. As for the final assertion in (iii), begin by choosing a basis {w1, . . . , wn} for

the subspace W1
⋂

W2. Apply Theorem 1.3.2 (iii) twice to find vectors u1, . . . , ul, (resp.,

v1, . . . , vm) such that {w1, . . . , wn, u1, . . . , ul} (resp., {w1, . . . , wn, v1, . . . , vm} ) is a basis for

W1 (resp., W2). It clearly suffices to prove that the set {w1, . . . , wn, u1, . . . , ul, v1, . . . , vm}
is a basis for W1 + W2. It follows easily from the description of W1 + W2 that the above

set does indeed span W1 + W2. We now verify that the set is indeed linearly independent.

Suppose
∑l

i=1 αiui +
∑m

j=1 βjvj +
∑n

k=1 γkwk = 0 for some scalars αi, βj , γk. Set

x =
∑l

i=1 αiui, y =
∑m

j=1 βjvj and z =
∑n

k=1 γkwk, so that our assumption is that

x + y + z = 0. Then, by construction, we see that x ∈ W1, y ∈ W2 and z ∈ (W1
⋂

W2).

Our assumption that x + y + z = 0 is seen to now imply that also x = − (y + z) ∈ W2 ,

whence x ∈ (W1
⋂

W2). By the definition of the wk’s, this means that x is expressible as

15



a linear combination of the wk’s. Since the set {u1, . . . , ul, w1, . . . , wn} is a basis for W1,

it follows from Exercise 1.2.7 (i) that we must have x = 0 and αi = 0 for 1 ≤ i ≤ l. Hence

also y +z = 0 and the assumed linear independence of the set {w1, . . . , wn, v1, . . . , vm} now

completes the proof. 2

Exercise 1.3.2 (i) Show that any two subspaces of a finite-dimensional vector space have

non-zero intersection provided their dimensions add up to more than the dimension of the

ambient vector space.

(ii) What can you say if the sum of the dimensions is equal to the dimension of the ambient

space ?
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Chapter 2

Linear Transformations and

Matrices

2.1 Linear transformations

If a vector space V has dimension n, and if {v1, . . . , vn} is a basis for V , then it follows from

Exercise 1.2.7 that every vector in V is uniquely expressible in the form v =
∑n

i=1 αivi;

in other words, the mapping T : V → IRn defined by Tv = (α1, · · · , αn) is a

bijective correspondence which is seen to ‘respect the linear operations’ on the two spaces.

This mapping T deserves to be called an isomorphism, and we proceed to formalise this

nomenclature.

Definition 2.1.1 (i) If V and W are vector spaces, a mapping T : V → W is called

a linear transformation if it ‘preserves linear combinations’ in the sense that T (α1v1 +

α2v2) = α1Tv1 + α2Tv2 for all v1, v2 in V and all scalars α1, α2.

(ii) The set of all linear transformations from V to W will be denoted by L(V, W ). When

V = W , we abbreviate L(V, V ) to L(V ).

(iii) A linear transformation T : V → W is said to be an isomorphism if there exists

a linear transformation T−1 in L(W, V ) such that T ◦ T−1 = idW and T−1 ◦ T = idV . If

there exists such an isomorphism, the vector spaces V and W are said to be isomorphic.
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Exercise 2.1.1 Show that two vector spaces are isomorphic if and only if they have the

same dimension, and, in particular, that IRn and IRm are isomorphic if and only if m = n.

We list some elementary properties of linear transformations in the following proposition,

whose elementary verification is left as an exercise to the reader.

Proposition 2.1.2 Let V, W, V1, V2, V3 denote vector spaces.

(i) L(V, W ) is itself a vector space if the vector operations are defined pointwise in the

following sense : (S + T )(v) = Sv + Tv, (αT )(v) = α(Tv);

(ii) If T ∈ L(V1, V2), S ∈ L(V2, V3) and if we define ST to be the composite map S ◦ T ,

then ST ∈ L(V1, V3).

We conclude this section by introducing a very important pair of subspaces associated

to a linear transformation and establishing a fundamental relation between them.

Definition 2.1.3 Suppose T ∈ L(V, W ).

(i) The set ker T = {v ∈ V : Tv = 0 } is called the kernel or the null space of the

transformation T , and the dimension of this subspace of V is defined to be the nullity of

T , and will henceforth be denoted by ν(T ).

(ii) The set ran T = T (V ) = {Tv : v ∈ V } is called the range of the transformation

T , and the dimension of this subspace of W is defined to be the rank of T , and will

henceforth be denoted by ρ(T ).

It should be clear to the reader that the range and kernel of a linear transformation

T : V → W are indeed subspaces of W and V respectively. What may may not be so

immediately clear is the following fundamental relation between the rank and nullity of T .

Theorem 2.1.4 (Rank-Nullity Theorem) Let T ∈ L(V, W ). Then

ν(T ) + ρ(T ) = dim V.

Proof : Suppose {w1, . . . , wρ} is a basis for ran T . Then, by definition of the range of T ,

there exists vi, 1 ≤ i ≤ ρ such that Tvi = wi for 1 ≤ i ≤ ρ. Also, let {vj : ρ < j ≤ ρ+ ν}
denote a basis for ker T . (Note that our notation is such that ρ = ρ(T ), ν = ν(T ).) The

proof will be complete once we show that {vj : 1 ≤ j ≤ ρ + ν} is a basis for V .
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We first prove the linear independence of {vi : 1 ≤ i ≤ ρ + ν}. If
∑ρ+ν

i=1 αivi = 0, apply

T to this equation, note that Tvi = 0 for ρ < i ≤ ρ + ν, and find that 0 =
∑ρ

i=1 αiwi;

the assumed linear independence of the wi’s now ensures that each αi = 0.) Hence we

have
∑ρ+ν

i=ρ+1 αivi = 0 and the assumed linear independence of the set {vi : ρ < i ≤ ρ + ν}
implies that also αi = 0 for ρ < i ≤ ρ + ν.

We finally show that {vi : 1 ≤ i ≤ ρ + ν} spans V . To see this, suppose v ∈ V . Then

since Tv ∈ ran T , the definition of the wi’s ensures the existence of scalars αi, 1 ≤ i ≤ ρ

such that Tv =
∑ρ

i=1 αiwi. Put u =
∑ρ

i=1 αivi and note that T (v−u) = Tv−Tu = 0

whence v − u ∈ ker T ; hence there exists suitable scalars αi, ρ < i ≤ ρ + ν such that

v − u =
∑ρ+ν

i=ρ+1 αivi and in particular, we find that v ∈ ∨{vi : 1 ≤ i ≤ ρ + ν}, and the

proof of the theorem is complete. 2

Corollary 2.1.5 Let T ∈ L(V ). Then the following conditions on T are equivalent:

(i) T is one-to-one - i.e., Tx = Ty ⇒ x = y.

(ii) ker T = {0}.
(iii) T maps V onto V .

(iv) ran T = V.

(v) T is an isomorphism. (We shall also call such an operator invertible.)

Proof : Exercise.

Exercise 2.1.2 Compute the rank and nullity of each of the transformations labelled Ti, 1 ≤
i ≤ 5 and considered in Exercise 1.1.2. Also compute the rank and nullity of the transfor-

mation considered in Exercise 1.1.3.

2.2 Matrices

Suppose V and W are finite-dimensional vector spaces of dimension n and m respectively.

To be specific, let us fix a basis BV = {v1, . . . , vn} for V and a basis BW = {w1, . . . , wm}
for W .

Suppose T : V → W is a linear transformation. To start with, the linearity of T shows

that the mapping T is completely determined by its restriction to BV . (Reason : if v ∈ V ,
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then we can write v =
∑n

j=1 αjvj for a uniquely determined set of scalars αj , 1 ≤ j ≤ n,

and it follows that Tv =
∑n

j=1 αjTvj . )

Next, any vector u in W is uniquely expressible as a linear combination of the wi’s.

Thus, with the notation of the last paragraph, there exist uniquely determined scalars

tij , 1 ≤ j ≤ n, 1 ≤ i ≤ m such that

Tvj =
m
∑

i=1

tijwi for 1 ≤ j ≤ n. (2.2.1)

Thus when one has fixed ‘ordered’ bases BV , BW in the two vector spaces (meaning

bases whose elements are written in some fixed order), the linear transformation T gives

rise to an m×n matrix ((tij)), which we shall denote by [T ]BW

BV
(when we want to explicitly

mention the bases under consideration), according to the prescription given by equation

2.2.1.

Explicitly, if the linear transformation is given, then the matrix is defined by the above

equation; note that the conclusion of the earlier paragraphs is that the mapping T is com-

pletely determined by the matrix ((tij)) thus :

T (
n
∑

j=1

αjvj) =
m
∑

i=1

(
n
∑

j=1

tijαj) wi. (2.2.2)

Conversely, it is easy to verify that if ((tij)) is an arbitrary matrix of scalars, then

equation 2.2.2 uniquely defines a linear transformation T ∈ L(V, W ) such that [T ]BW

BV
=

((tij)).

The reader should ensure that (s)he understood the foregoing by going through the

details of the solution of the following exercise (which summarises the conclusions of the

foregoing considerations).

Exercise 2.2.1 (i) With the preceding notation, verify that the passage T 7→ [T ]BW

BV
defines

an isomorphism between the vector spaces L(V, W ) and Mm×n(IR).

(ii) Define the ‘standard basis for Mm×n(IR)’ to be the set {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
where Eij is the matrix whose (i, j)-th entry is 1 and all other entries are 0. Show that this

is indeed a basis for Mm×n(IR).

(iii) Describe the linear transformation Tij ∈ L(V, W ) for which [T ]BW

BV
= Eij and

determine the rank and nullity of Tij.
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In the rest of this section, we shall be concerned with L(V ), the main reason for this

being that - in view of Proposition 2.1.2 (ii) - the set L(V ) is more than just a vector space:

it also has a product (given by composition of mappings) defined on it; thus the set L(V )

is an example of what is referred to as a unital algebra in the sense that the vector space

operations and the product L(V ) are related as in the following Exercise.

Exercise 2.2.2 Let V be a vector space. If S, T, T1, T2 ∈ L(V ) and α ∈ IR, then the

following relations hold:

(i) (TT1)T2 = T (T1T2);

(ii) T (T1 + T2) = TT1 + TT2;

(iii) (T1 + T2)T = T1T + T2T ;

(iv) S(αT ) = (αS)T = α(ST );

(v) there exists a unique linear transformation IV ∈ L(V ) such that IV T = TIV = T

for all T ∈ L(V );

(vi) show that multiplication is not necessarily commutative, by considering the pair of linear

transformations denoted by T2 and T3 in Exercise 1.1.2.

Rather than using the long expression ‘T is a linear transformation from V to V ’, we

shall, in the sequel, use the following shorter expression ‘T is an operator on V ’ (to mean

exactly the same thing).

When we deal with L(V ), especially because we want to keep track of multiplication of

linear transformations, we shall, when representing an operator on V by a matrix as in

Exercise 2.2.1, we shall fix only one basis B for V and consider the matrix [T ]B which we

denoted by [T ]BB in the said exercise. To be explicit, if B = {v1, . . . , vn} is a basis for V ,

we write

[T ]B = ((tij)) ⇔ Tvj =
n
∑

i=1

tijvi ∀j. (2.2.3)

Thus, the j-th column of the matrix [T ]B is just the column of coefficients needed

to express Tvj as a linear combination of the vi’s.

Now if S, T are two operators on V , we see that

(ST )(vj) = S(
n
∑

k=1

tkjvk) =
n
∑

i,k=1

siktkjvi
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where [S]B = ((sij)), [T ]B = ((tij)). Thus, if we write U = ST and [U ]B = ((uij)), we find

that

uij =
n
∑

k=1

sik tkj for 1 ≤ i, j ≤ n. (2.2.4)

We combine Exercise 2.2.1 and Exercise 2.2.2 and state the resulting conclusion in the

next exercise.

Exercise 2.2.3 Fix a positive integer n. Define a multiplication in Mn(IR) by requiring

that if S = ((sij)), T = ((tij)) are arbitrary n × n matrices, then ST = ((uij)) where the

uij’s are defined by equation 2.2.4. With respect to this multiplication, the vector space

Mn(IR) acquires the structure of a unital algebra, meaning that if S, T, T1, T2 ∈ Mn(IR)

and α ∈ IR are arbitrary, then:

(i) (TT1)T2 = T (T1T2);

(ii) T (T1 + T2) = TT1 + TT2;

(iii) (T1 + T2)T = T1T + T2T ;

(iv) S(αT ) = (αS)T = α(ST );

(v) there exists a unique matrix In ∈ Mn(IR) such that InT = TIn = T for all

T ∈ Mn(IR); explicitly describe this so-called ‘identity’ matrix;

(vi) if {Eij : 1 ≤ i, j ≤ n} is the standard basis for Mn(IR) -see Exercise 2.2.1- then show

that EijEkl = δjk Eil, for 1 ≤ i, j, k, l ≤ n, where the symbol δij denotes -here and

elsewhere in the sequel- the so-called Kronecker delta defined by

δij =

{

1 if i 6= j

0 otherwise.
(2.2.5)

Deduce from the above that Mn(IR) (resp., L(V )) is a non- commutative algebra unless

n = 1 (resp., dim V = 1).

(vii) Call a square matrix T ∈ Mn(IR) invertible if there exists a matrix T−1 ∈ Mn(IR)

such that TT−1 = T−1T = In. Prove that the set Gln(IR) of invertible matrices of order n

constitute a group with respect to multiplication, meaning :

(a) Gl(n, IR) has a product operation defined on it, which is associative;

(b) there exists an (identity) element In ∈ GL(n, IR) such that InT = TIn =

T for all T in Gl(n, IR) ;
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(c) to each element T in Gl(n, IR) , there exists an element T−1 in Gl(n, IR) such that

TT−1 = T−1T = In; and

(viii) prove that the inverse (of (vii)(c) above) is unique.

We continue with another set of exercises which lead to what may be called ‘two-space

versions’ of many of the foregoing statements - in the sense that while the foregoing state-

ments were about linear transformations from a vector space to itself, the ‘two-space version’

concerns linear transformations between two different spaces. The proofs of these statements

should pose no problem to the reader who has understood the proofs of the corresponding

one-space versions.

Exercise 2.2.4 (i) Suppose V1, V2, V3 are finite-dimensional vector spaces and suppose

Bi = {v(i)
1 , . . . , v

(i)
ni } is a basis for Vi, for 1 ≤ i ≤ 3. Suppose T ∈ L(V1, V2), S ∈ L(V2, V3)

and U = ST . If [S]B3

B2
= ((sij)), [T ]B2

B1
= ((tij)) and [U ]B3

B1
= ((uij)), then show that

uij =
n2
∑

k=1

sik tkj for 1 ≤ i ≤ n3, 1 ≤ j ≤ n1. (2.2.6)

(ii) Taking a cue from equation 2.2.6, define the product of two rectangular matrices ‘with

compatible sizes’ as follows : if m, n, p are positive integers, if S is an m×n matrix and if T

is an n×p matrix, the product ST is the m×p matrix defined by uij =
∑n

k=1 sik tkj for 1 ≤
i ≤ m, 1 ≤ j ≤ p. Thus, the conclusion of the first part of this exercise may be written thus:

[ST ]B3

B1
= [S]B3

B2
[T ]B2

B1
. (2.2.7)

(iii) State and prove ‘rectangular’ versions of the statements (i)-(vi) of Exercise 2.2.3 when-

ever possible.

The reader who had diligently worked out part (iii) of Exercise 2.2.4 would have noticed

that if V and W are vector spaces of dimensions n and m respectively, then the space

L(V, W ) has dimension mn . This is, in particular, true when W = IR1 = IR (and

m = 1).

Definition 2.2.1 (i) If V is a vector space, the vector space L(V, IR) is called the dual

space of V and is denoted by V ∗.

(ii) An element of the dual space V ∗ is called a linear functional on V .
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The reader should have little trouble in settling the following exercises.

Exercise 2.2.5 Let B = {v1, . . . , vn} be a basis for a vector space V .

(i) Prove that the mapping

φ 7→ (φ(v1), φ(v2), · · · , φ(vn))

establishes an isomorphism T : V ∗ → IRn. (Notice that an alternate way of describing the

mapping T is thus: Tφ = [φ]B1

B , where B1 = {1} is the canonical one-element-basis

of IR .)

(ii) Deduce from (i) that there exists a unique basis B ′ = {φ1, . . . , φn} for V ∗ such that

φi(vj) = δij =

{

1 if i = j

0 otherwise

for 1 ≤ i, j ≤ n . This basis B ′ is called the dual basis of B ; equivalently B and B ′

are referred to as a pair of dual bases.

We end this section by addressing ourselves to the following related questions:

(i) what is the relation between two operators which are represented by the same matrix

with respect to different bases; explicitly, if S, T ∈ L(V ) and if B, B ′ are a pair of ordered

bases for V such that [T ]B = [S]B ′ , how are the operators S and T related ?

(ii) dually, what is the relation between different matrices which represent the same operator

with respect to different bases; explicitly, if B, B ′ are a pair of ordered bases for V and if

T ∈ L(V ), how are the matrices [T ]B and [T ]B ′ related ?

In order to facilitate the statement of the answer to these questions, we introduce some

terminology.

Definition 2.2.2 (i) Two matrices T1, T2 ∈ Mn(IR) are said to be similar if there exists

an invertible matrix S ∈ GLn(IR) such that T2 = ST1S
−1.

(ii) Two operators T1 and T2 on a vector space V are said to be similar if there exists an

invertible operator S ∈ L(V ) such that T2 = ST1S
−1.

Before proceeding further, note that it is an easy consequence of Exercise 2.2.3 (vii) that

similarity is an equivalence relation on L(V ) as well as Mn(IR).
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Lemma 2.2.3 Let V be a vector space, and let T ∈ L(V ). Let B = {v1, . . . , vn} and

B ′ = {v ′
1 , . . . , v ′

n} denote a pair of bases for V . Then,

(i) there exists a unique invertible operator S on V such that Svj = v ′
j for 1 ≤ j ≤ n; and

(ii) if S is as in (i) above, then

[T ]B ′ = [S−1TS]B.

Proof The first assertion is clearly true. (The invertibility of S follows from the fact that

ran S is a subspace of V which contains the basis B ′, which implies that S maps V onto

itself.) As for the second, suppose we write [T ]B = ((tij)), [T ]B ′ = ((t ′
ij)), [S]B = ((sij)).

Then we have, for 1 ≤ j ≤ n,

Tv ′
j = T (Svj)

= T (
n
∑

i=1

sij vi )

=
n
∑

i=1

sij(
n
∑

k=1

tki vk );

on the other hand, we also have

Tv ′
j =

n
∑

i=1

t ′
ij v ′

i

=
n
∑

i=1

t ′
ij Svi

=
n
∑

i=1

t ′
ij(

n
∑

k=1

ski vk ).

Deduce from the linear independence of the vk’s that

n
∑

i=1

tkisij =
n
∑

i=1

skit
′
ij for 1 ≤ i, j ≤ n

and thus

[T ]B [S]B = [S]B [T ]B ′ .

Since the mapping U 7→ [U ]B is a unital algebra-isomorphism of L(V ) onto Mn(IR), it is

clear that the invertibility of the operator S implies that the matrix [S]B is invertible and
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that [S−1]B = [S]−1
B . Hence the last equation implies that

[T ]B ′ = [S]−1
B [T ]B[S]B

= [S−1TS]B

where we have again used the fact that the mapping U 7→ [U ]B preserves products; the

proof of the lemma is complete. 2

In view of the above lemma, the reader should have no trouble in supplying the proof

of the following important result.

Theorem 2.2.4 (i) Two operators T1, T2 on a vector space V are similar if and only if

there exist bases B1, B2 for V such that [T1]B1
= [T2]B2

.

(ii) Two n × n matrices T1, T2 are similar if and only if there exists an operator T on an

n-dimensional vector space V and a pair of bases B1, B2 of V such that [T ]Bi
= Ti, i = 1, 2.
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Chapter 3

(Real) Inner Product Spaces

3.1 Inner Products

Now we shall start to also abstract, to the context of a general vector space, the notion of

orthogonality in R 3 and related concepts that can be read off from the dot-product. We

begin with the relevant definition.

Definition 3.1.1 (a) An inner product on a (real) vector space V is a mapping from

V × V to IR , denoted by (u, v) 7→ < u, v >, which satisfies the following conditions, for

all u, v, w ∈ V and α ∈ IR:

(i) < u + v, w > = < u, w > + < v, w >;

(ii) < αu, v > = α < u, v >:

(iii) < u, v > = < v, u >;

(iv) < u, u > ≥ 0 , and < u, u > = 0 ⇔ u = 0.

(b) We shall write ||v|| =< v, v >
1

2 for any v in V and refer to this quantity as the

norm of the vector v.

(c) A vector space equipped with an inner product is called an inner product space.

(d) Two vectors u, v ∈ V are said to be orthogonal if < u, v >= 0.

A few elementary consequences of the definition are stated in the next exercise.

Exercise 3.1.1 Let V be an inner product space. Then the following conditions are satis-

fied by all u, v, w ∈ V , α ∈ IR:
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(i) < u, αv > = α < u, v >;

(ii) < u, 0 > = 0.

Before proceeding any further, we pause to describe a couple of examples of inner product

spaces.

Example 3.1.2 (i) The fundamental example of an inner product space is provided by n-

dimensional Euclidean space IRn. The inner product there is usually called the ‘dot-product’

and one customarily writes x·y rather than < x,y >; to be specific, the dot-product x·y of

two vectors x = (x1, · · · , xn), y = (y1, · · · , yn) in IRn is defined by x ·y =
∑n

i=1 xiyi,

and it is trivially verified that this does indeed satisfy the properties of an inner product.

(ii) This is an infinite-dimensional example, but finite-dimensional subspaces of this

vector space will naturally yield finite-dimensional inner product spaces.The vector space

C[0, 1] of continuous functions on the closed unit interval [0, 1] has a natural inner

product defined as follows :

< f, g > =

∫ 1

0
f(x)g(x) dx.

(The reader should convince him(her)self that this does indeed define an inner product on

C[0, 1].)

(iii) The set Pn consisting of polynomials with degree strictly less than n is an n -

dimensional subspace of the inner product space C[0, 1] considered in (ii) above, and hence

is an n-dimensional inner product space.

As Example 3.1.2 (iii) suggests, it must be noted that if V is an inner product space

and if W is a subspace of V , then W is an inner product space in its own right. As in

the case of IR 3 , we would like to be able to think of the inner product < u, v > - even

in general inner product spaces - as being given by the expression ||u||||v||cos θ; in order

for this to be possible, we would certainly need the validity of the following fundamental

inequality.

Theorem 3.1.3 (Cauchy-Schwarz inequality) If V is an inner product space, and if

u, v ∈ V , then

| < u, v > | ≤ ||u|| ||v||;
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further, equality occurs in the above inequality if and only if the vectors u and v are

linearly dependent.

Proof : If v = 0 , the theorem is trivially valid, so assume ||v|| > 0 . Consider the

real-valued function defined by f(t) = ||u− tv|| 2, and consider the problem of minimising

this function as t ranges over the real line. (This corresponds to the geometric problem of

finding the ‘distance’ from the point u to the line spanned by v.) Notice first that

0 ≤ f(t) = ||u|| 2 + t 2||v|| 2 − 2t < u, v > .

An easy application of the methods of the calculus shows that this function is minimised

when t = <u,v>
||v|| 2 = t0(say). In particular, for t = t0, the above inequality reads as follows:

0 ≤ ||u|| 2 +
< u, v > 2

||v|| 2
− 2 < u, v > 2

||v|| 2

= ||u|| 2 − < u, v > 2

||v|| 2
. (3.1.1)

This proves the desired inequality. The final assertion follows from the observation that

equality can hold in the inequality if and only if f(t0) = 0 , which happens if and only if

the distance from u to the line through v is zero, which happens if and only if u is on

the line through v. 2

Besides other things, the Cauchy-Schwarz inequality shows that the norm, as defined

by an inner product, is indeed a measure of the ‘size’ of a vector. Specifically, we have the

following:

Proposition 3.1.4 The norm on an inner product space -defined as in Definition 3.1.1(b)-

satisfies the following properties, for all u, v in V and α ∈ IR:

(i) ||v|| ≥ 0, and ||v|| = 0 ⇔ v = 0;

(ii) ||αv|| = |α| ||v||;
(iii) (triangle inequality) ||u + v|| ≤ ||u|| + ||v||.

Proof : The first two properties are trivially verified. As for the third (which is called the

triangle inequality for reasons that the reader should discover for him(her)self, by drawing

a few pictures if necessary),
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||u + v|| 2 = < u + v, u + v >

= ||u|| 2 + ||v|| 2 + 2 < u, v >

≤ ||u|| 2 + ||v|| 2 + 2||u||||v||
= (||u|| + ||v||) 2.

2

Exercise 3.1.2 If u, v are any two vectors in an inner product space, show that:

(i) ||u + v|| 2 = ||u|| 2 + ||v|| 2 ⇔ < u, v > = 0 ; and

(ii) ||u + v|| 2 + ||u − v|| 2 = 2 ( ||u|| 2 + ||v|| 2 ).

What is the geometric interpretation of these identities?

Once we have a notion of orthogonality, it makes sense for us not to pick any basis to

use as a reference frame, but to pick a basis which incorporates this additional structure;

to be precise, we shall be interested in bases which are ‘orthonormal’ in the following sense.

Definition 3.1.5 A set {ei : 1 ≤ i ≤ m} of vectors in an inner product space is said to

be orthonormal if the following conditions are satisfied:

(i) < ei, ej > = 0 if 1 ≤ i < j ≤ m ; i.e., the vectors in the set are pairwise orthogonal;

and

(ii) ||ei|| = 1 for 1 ≤ i ≤ m; i.e., the vectors are ‘normalised’ to have unit norm.

The two conditions above can be simplified using the Kronecker delta symbol thus:

< ei, ej > = δij for 1 ≤ i, j ≤ m.

The reader will have no difficulty in verifying that the standard basis in IRn is an

orthonormal set. In general, in any inner product space, we will like to deal with a basis

which is an orthonormal set. Of course, we first need to prove that such bases exist. A first

step is the following lemma.

Before stating the lemma, we pause to state that unless otherwise stated, the symbol

V will always denote a finite-dimensional inner product space in the rest of these notes.
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Lemma 3.1.6 (a) Any orthonormal set is linearly independent.

(b) If {e1, . . . , em} is an orthonormal set in V and if W =
∨{ei : 1 ≤ i ≤ m}, then

the following hold:

(i) x ∈ W ⇒ x =
∑m

i=1 < x, ei > ei ;

(ii) x, y ∈ W ⇒ < x, y > =
∑m

i=1 < x, ei >< y, ei > and in particular,

||x|| 2 =
m
∑

i=1

| < x, ei > | 2.

Proof : (a) Suppose {e1, . . . , em} is an orthonormal set. Suppose αi, 1 ≤ i ≤ m are

some scalars such that
∑m

i=1 αiei = 0. Fix an arbitrary j, 1 ≤ j ≤ m , take inner product

with ej in the above equation, and use the assumed orthonormality of the ei’s to deduce

that indeed αj = 0 for each j as desired.

(b) (i) The assumption that {ei : 1 ≤ i ≤ m} spans W ensures that x =
∑m

i=1 αiei for

some scalars α1, . . . , αm. Fix an arbitrary j , 1 ≤ j ≤ m , take inner product with ej in

the above equation, and use the assumed orthonormality of the ei’s to deduce that indeed

< x, ej > = αj .

(ii) The second assertion is a trivial consequence of (i) and orthonormality. 2

The above lemma shows that orthonormal sets in an n-dimensional inner product space

cannot have more than n elements. Our next step is to be able to find orthonormal sets

with at least n elements.

Proposition 3.1.7 Let {x1, . . . , xn} be any linearly independent set in V . Then there

exists an orthonormal set {e1, . . . , en} in V such that

∨

{ek : 1 ≤ k ≤ m} =
∨

{xk : 1 ≤ k ≤ m}, for 1 ≤ m ≤ n. (3.1.2)

Proof : The hypothesis ensures that x1 6= 0 ; set e1 = x1

||x1||
.

Inductively, suppose m < n , and suppose we have been able to construct an orthonor-

mal set {e1, . . . , em} so that
∨{ek : 1 ≤ k ≤ m} =

∨{xk : 1 ≤ k ≤ m} . In particular,

if we put z = xm+1 − ∑m
k=1 < xm+1, ek > ek, the assumed linear independence of the

xi’s and the ‘induction hypothesis’ of the previous sentence imply that z 6= 0. Define

em+1 = z
||z|| . It is an easy matter now to prove that {ek : 1 ≤ k ≤ (m + 1)} is an
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orthonormal set such that
∨{ek : 1 ≤ k ≤ (m + 1)} =

∨{xk : 1 ≤ k ≤ (m + 1)}. This

constructive procedure completes the proof of the proposition. 2

The above construction of an orthonormal set from a given linearly independent set is

called the Gram-Schmidt orthogonalisation process. It is both useful and important,

and the purpose of the following exercise is to familiarise the reader with this important

construction.

Exercise 3.1.3 (a) Show that the above construction is almost ‘forced’ in the sense that

if {ẽi : 1 ≤ i ≤ n} is another orthonormal set in V which also satisfies the condition in

equation 3.1.2, then necessarily ẽi = ± ei for 1 ≤ i ≤ n.

(b) Consider the inner product space denoted by Pn in Example 3.1.2 (iii). What is

the result of applying the Gram-Schmidt process to the basis {xk : 0 ≤ k ≤ 3} of the

subspace P3? Can you prove that, for general n , the result of applying this process to the

set {xk : 0 ≤ k ≤ n} will always result in a sequence {pk(x) : 0 ≤ k ≤ n} with the

property that pk(x) is a polynomial of degree exactly equal to k , for 0 ≤ k ≤ n ?

(c) If {x1, . . . , xm} is a linearly independent set in V such that {x1, . . . , xk} is an

orthonormal set for some k ≤ m , and if {e1, . . . , em} is the orthonormal set obtained by

applying the Gram-Schmidt orthogonalisation process to the set {x1, . . . , xm}, then show

that ei = xi for 1 ≤ i ≤ k.

All the pieces are now in place for the proof of the following result.

Theorem 3.1.8 Let V be an n-dimensional inner product space.

(a) There exists an orthonormal basis for V .

(b) The following conditions on an orthonormal set {e1, . . . , em} in V are equivalent:

(i) m = n;

(ii) {e1, . . . , em} is a basis for V ;

(iii) If x ∈ V is arbitrary, then x =
∑m

i=1 < x, ei > ei;

(iv) If x, y ∈ V are arbitrary, then < x, y > =
∑m

i=1 < x, ei >< y, ei >;

(v) If x ∈ V is arbitrary, then ||x|| 2 =
∑m

i=1 | < x, ei > | 2.

(vi) {e1, . . . , em} is a maximal orthonormal set in V .
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Proof : (a) Let {ei : 1 ≤ i ≤ n} denote the orthonormal set obtained upon applying

the Gram-Schmidt process to some basis of V . Then {ei : 1 ≤ i ≤ n} is a spanning set

of V which has exactly as many elements as dim V , and which is linearly independent

in view of Lemma 3.1.6, and is consequently an orthonormal basis for V .

(b) (i) ⇒ (ii) In view of Lemma 3.1.6 (a) and Exercise 1.2.6 it suffices to show that

{ei : 1 ≤ i ≤ n} is a maximal linearly independent set; if it were not, then it would

possible to find a linearly independent set in V with (n + 1) elements, which contradicts

the assumption that dim V = n .

(ii) ⇒ (iii) This follows from Lemma 3.1.6(b)(i).

(iii) ⇒ (iv) This is an immediate consequence of orthonormality.

(iv) ⇒ (v) Put y = x.

(v) ⇒ (vi) The condition (v) clearly implies that the only vector in V which is

orthogonal to each ei is the zero vector, which implies the validity of condition (vi).

(vi) ⇒ (i) If m 6= n, then it follows from Lemma 3.1.6 (a) that we must have

m < n . Then the linearly independent set {ei : 1 ≤ i ≤ m} can be extended to a basis,

say {e1, . . . , em, xm+1, . . . , xn} for V . It follows from Exercise 3.1.3(c) that there exist

vectors em+1, . . . , en such that {ei : 1 ≤ i ≤ n} is an orthonormal basis for V . Thus

the assumption m 6= n has led to a contradiction to the assumption (vi) , and the proof

is complete. 2

A fact that made its appearance in the proof of the implication (vi) ⇒ (i) in (b) of

the above theorem is worth isolating as a separate proposition.

Proposition 3.1.9 Any orthonormal set can be extended to an orthonormal basis. 2

3.2 The Adjoint

In this section, we introduce the vital notion of the adjoint of a linear transformation

between inner product spaces. (Actually, it is possible to define the adjoint of a linear

transformation between any two abstract vector spaces (which do not necessarily have any

inner product structure). We touch upon this general notion in the exercises, but restrict

ourselves, in the text, to the context of inner product spaces. The connecting link between

the two notions is the so-called Riesz representation theorem.)
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We begin with this basic result which identifies the dual space of an inner product space.

Theorem 3.2.1 (Riesz Representation Theorem) Let V be a finite-dimensional in-

ner product space.

(a) If y ∈ V , define φy : V → IR by φy(x) = < x, y > . Then φy ∈ V ∗ for all y in V .

(b) If φ ∈ V ∗ is arbitrary, then there exists a unique element y in V such that φ = φy.

Proof : Assertion (a) is clearly true in view of the ‘bilinearity’ of the inner prod-

uct. (Note, incidentally, that if {e1, . . . , en} is any orthonormal basis for V , then

y =
∑n

i=1 φy(ei) ei.)

As for (b), let B = {e1, . . . , en} denote an orthonormal basis for V , define

y =
∑n

i=1 φy(ei) ei , note that the two linear functionals φy and φ agree on the

basis B and must hence be identically equal. 2

Exercise 3.2.1 Show that the association y 7→ φy given in our statement of the Riesz

representation theorem defines an isomorphism φV : V → V ∗.

We next state a consequence of the Riesz representation theorem which leads to the

definition of the adjoint of a linear transformation between inner product spaces.

Proposition 3.2.2 Suppose T ∈ L(V, W ) , where V and W are finite-dimensional

inner product spaces. Then there exists a unique linear transformation T ∗ : W → V

with the property that

< Tv, w > = < v, T ∗w > for all v in V and w in W. (3.2.3)

(The inner product on the left side of the equation refers to the inner product in W while

the one on the right refers to the inner product in V .)

Proof : First fix a vector w in W and consider the map φ : V → IR defined by

φ(v) = < Tv, w > . Since φ is clearly a linear functional on V , it follows from the

Riesz representation theorem that there exists a unique vector - call it T ∗w - such that

φ(v) = < v, T ∗w > for all v in V .

It is an easy consequence of the uniqueness assertion in (part (b) of the statement of)

the Riesz representation theorem that the mapping T ∗ that we have defined above from

W to V is indeed a linear map and the proof of the thoeorem is complete. 2
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Definition 3.2.3 If T ∈ L(V, W ), T ∗ ∈ L(W, V ) are as in Proposition 3.2.2, then

T ∗ is called the adjoint of T .

We list some basic properties of the operation of adjunction in the following exercise,

whose verification involves nothing more than a repeated use of the uniqueness in the Riesz

representation theorem.

Exercise 3.2.2 (a) Let V, W denote finite-dimensional inner product spaces. Then the

following statements are valid for all S, T ∈ L(V, W ) and α ∈ IR:

(i) (S + T ) ∗ = S ∗ + T ∗ ;

(ii) (αT ) ∗ = α T ∗ ;

(iii) (T ∗ ) ∗ = T ;

(iv) if IV denotes the identity operator on V , then IV
∗ = IV .

(b) If Vi, i = 1, 2, 3 are finite-dimensional inner product spaces, if T ∈ L(V1, V2)

and S ∈ L(V2, V3) , then (ST ) ∗ = T ∗S ∗ .

Inspired by the successful use, in the proof of the Riesz representation theorem, of

representing linear functionals by their matrix with respect to orthonormal bases in the

domain and range, and because it is such bases which are natural in the context of inner

product spaces, we shall henceforth always choose only orthonormal bases in the various

inner product spaces when we wish to represent a linear transformation in terms of a matrix.

Our first task is to identify what the operation of adjunction corresponds to at the level of

matrices. Before we do so, we pause to mention that if A = ((aij)) denotes an m × n

matrix, we shall use the symbol At denote the so-called transpose matrix which is, by

definition, the n × m matrix with (i, j)-th entry equal to aji.

Proposition 3.2.4 Suppose T ∈ L(V, W ) and suppose BV = {e1, . . . , en} (resp.,

BW = {f1, . . . , fm} ) is an orthonormal basis for V (resp., W ). Then,

[T ∗]BV

BW
= ([T ]BW

BV
)t. (3.2.4)

Proof : By definition, the left side of equation 3.2.4 is the n×m matrix with (i, j)-th

entry equal to

< T ∗fj , ei > = < fj , T ei > = < Tei, fj >
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which is nothing but the (j, i)-th entry of the matrix on the right side of equation 3.2.4. 2

We pause now to introduce a very important class of linear transformations between

inner product spaces.

Proposition 3.2.5 Let V, W be inner product spaces. The following conditions on a lin-

ear transformation T : V → W are equivalent:

(i) if {e1, . . . , ek} is any orthonormal set in V , then {Te1, . . . , T ek} is an orthonormal

set in W ;

(ii) There exists some orthonormal basis {e1, . . . , en} for V such that {Te1, . . . , T en} is

an orthonormal set in W ;

(iii) < Tx, Ty > = < x, y > for all x, y in V ;

(iv) T ∗T = IV (the identity operator on V );

(v) ||Tx|| = ||x|| for all x in V.

Proof : (i) ⇒ (ii): Trivial.

(ii) ⇒ (iii): Let {e1, . . . , en} be as in (ii). The hypothesis implies that {Te1, . . . , T en} is

an orthonormal basis for the subspace W0 = ran T of W . The validity of (iii) follows

from Theorem3.1.8(b)(iii), thus:

< Tx, Ty > = < T (
n
∑

i=1

< x, ei > ei) , T (
n
∑

j=1

< y, ej > ej) >

=
n
∑

i,j=1

< x, ei >< y, ej > < Tei, T ej >

=
n
∑

i,j=1

< x, ei >< y, ej > δij

=
n
∑

i=1

< x, ei >< y, ei >

= < x, y >

as desired.

(iii) ⇒ (iv): The hypothesis implies that for all x, y in V , we have:

< T ∗Tx, y > = < Tx, Ty > = < x, y > .
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This means that the vector (T ∗Tx − x) is orthogonal to every vector y in V . Putting

y = (T ∗Tx − x) , we see that this implies that T ∗Tx − x = 0 as desired.

(iv) ⇒ (v): If T ∗T = IV , then it is clear that for all x in V , we have

||Tx|| 2 = < Tx, Tx > = < T ∗Tx, x > = < x, x > = ||x|| 2.

(v) ⇒ (i): It suffices to prove assertion (i) in the case k = 2. (Why?) If e1 and e2 are

a pair of unit vectors which are orthogonal to one another, the hypothesis ensures that

Te1 and Te2 are also a pair of unit vectors. It remains only to prove that c = 0 where

c = < Te1, T e2 > . If a, b are arbitrary scalars, note that

||ae1 + be2|| 2 = a 2 + b 2

while

||T (ae1 + be2)|| 2 = ||aTe1 + bTe2|| 2

= a 2||Te1|| 2 + b 2||Te2|| 2 + 2ab < Te1, T e2 >

= a 2 + b 2 + 2abc.

Hence the condition (v) implies that

a 2 + b 2 = a 2 + b 2 + 2abc.

Since a, b were arbitrary, it must be the case that c = 0 and the proof is complete. 2

Definition 3.2.6 A linear transformation T between two inner product spaces V and

W which satisfies the equivalent conditions of Proposition 3.2.5 is called an isometry.

The following exercises should help clarify the notion of an isometry to the reader.

Exercise 3.2.3 (a) Let T : V → W be an isometry. Prove the following assertions:

(i) The linear transformation T is 1-1, i.e., x, y ∈ V and Tx = Ty ⇒ x = y ;

equivalently, ker T = {0}.
(ii) dim V ≤ dim W .

37



(b) If V, W are finite-dimensional inner product spaces, prove that the following con-

ditions are equivalent:

(i) dim V ≤ dim W ;

(ii) There exists an isometry T : V → W .

(c) Prove that the following conditions on an isometry T : V → W are equivalent:

(i) The linear transformation T maps V onto W , i.e., ran T = W .

(ii) dim V = dim W .

(iii) TT ∗ = IW , i.e., T ∗ is also an isometry.

(An isometry T : V → W which satisfies the equivalent conditions (i)-(iii) above of (c)

is said to be unitary.)

(d) If V, W are finite-dimensional inner product spaces, prove that the following con-

ditions are equivalent:

(i) dim V = dim W ;

(ii) There exists a unitary transformation T : V → W .

(e) If V0 is an arbitrary vector space and if B = {e1, . . . , en} is any basis for V0 ,

show that there exists a unique inner product that one can define on V0 with respect to

which B is an orthonormal basis for V0.

The next exercise considers the special case V = W and also looks at the matricial

analogues of operator-theoretic statements concerning unitary transformations.

Exercise 3.2.4 (a) Given a finite-dimensional vector space V , consider the set GL(V ) = {T ∈ L
is invertible } . (See Corollary 2.1.5 for the terminology.) Prove that GL(V ) is a group.

(See Exercise 2.2.3.)

(b) Show that the set U(V ) = {T ∈ L(V ) : T is unitary } is a ‘subgroup’ of

GL(V ) meaning that it is a subset of GL(V ) which is closed under the formation of

products and inverses (and is consequently a group in its own right).

(b’) Show that the set O(n, IR) = {T ∈ Mn(IR) : TT t = In} is a subgroup of

Gl(n, IR) . (Elements of O(n, IR) are referred to as orthogonal matrices.)
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(c) Show that the set
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is a subgroup of O(4, IR).

Just as invertibility is precisely the property that an operator should have in order that

it map a basis onto a basis, we have seen that unitariry is precisely the property that an

operator on an inner product space should possess in order that it maps an orthonormal

basis onto an orthonormal basis. With this in mind, the following definitions are natural :

two linear operators T1, T2 on a finite-dimensional inner product space V are said to be

unitarily equivalent if there exists a unitary operator U on V such that T2 = UT1U
∗ ;

and two matrices T1, T2 ∈ Mn(IR) are said to be orthogonally similar if there exists

an orthogonal matrix U ∈ On(IR) such that T2 = UT1U
t.

The reader should have no difficulty in imitating the proofs of Lemma 2.2.3 and Theorem

2.2.4 and proving the following analogues.

Exercise 3.2.5 (i) Two operators T1, T2 on a finite-dimensional inner product space V

are unitarily equivalent if and only if there exist orthonormal bases B1, B2 of V such that

[T1]B1
= [T2]B2

.

(ii) Two n×n matrices T1, T2 are orthogonally similar if and only if there exists an operator

T on an n-dimensional inner product space V and a pair of orthonormal bases B1, B2 of

V such that [T ]Bi
= Ti, i = 1, 2.

Before concluding this section, we outline, in an exercise, how the notion of an adjoint

makes sense even when one works in arbitrary vector spaces (which have no inner product

structure prescribed on them) and why the notion we have considered in this section is a

special case of that more general notion.

Exercise 3.2.6 If V, W are abstract vector spaces and if T ∈ L(V, W ) , define

T ′ : W ∗ → V ∗ by the prescription

(T ′φ) (v) = φ (Tv) whenever φ ∈ W ∗, v ∈ V.
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The linear transformation T ′ is called the ‘transpose’ of the transformation T .

(a) Prove analogues of Exercise 3.2.2 and Proposition 3.2.4 with ‘transpose’ in place of

‘adjoint’.

(b) If V, W are inner product spaces, and if φV : V → V ∗ denotes the isomorphism

guaranteed by the Riesz representation theorem - see Exercise 3.2.1 - show that

T ′ = φV ◦ T ∗ ◦ φ−1
W .

(c) Use (b) above to give an alternate solution to (a) above.

3.3 Orthogonal Complements and Projections

This section is devoted to the important notion of the so-called orthogonal complement

V0
⊥ of a subspace of a finite-dimensional inner product space V and to the (probably

even more important notion) of the ‘orthogonal projection of V onto V ′
0 .

Lemma 3.3.1 Suppose V0 is a subspace of a finite-dimensional inner product space V .

Let {ei : 1 ≤ i ≤ m} be any orthonormal basis for V0 and let {fi : 1 ≤ i ≤ (n−m)}
be any set of vectors such that {e1, . . . , em, f1, . . . , fn−m } is an orthonormal basis for V .

Then the following conditions on a vector y in V are equivalent:

(i) < y, x > = 0 for all x in V0;

(ii) y ∈ ∨{f1, . . . , fn−m}, i.e., y =
∑n−m

j=1 < y, fj > fj .

Proof : (i) ⇒ (ii) : On the one hand, the assumption that {e1, . . . , em, f1, . . . , fn−m } is

an orthonormal basis for V implies that

y =
m
∑

i=1

< y, ei > ei +
n−m
∑

j=1

< y, fj > fj ;

the assumption (i) implies that the first sum above is zero, thus ensuring the validity of (ii).

(ii) ⇒ (i) : If x ∈ V0 , the assumption about {ei : 1 ≤ i ≤ m} implies that

x =
∑m

i=1 < x, ei > ei ; while the assumption (ii) implies that y =
∑n−m

j=1 < y, fj > fj ;

since < ei, fj > = 0 , it follows at once that < y, x > = 0 . Since x was an arbitrary

element of V0 , this proves (i). 2

The next result is fundamental and introduces a very important notion.
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Theorem 3.3.2 Let V0 denote an arbitrary subspace of a finite-dimensional inner product

space V . Define

V0
⊥ = { y ∈ V : < y, x > = 0 for all x in V0 } . (3.3.5)

Then,

(a) V0
⊥ is a subspace of V with

dim V0 + dim V0
⊥ = dim V.

(b) If B0 ∪ B1 is any orthonormal basis for V such that B0 is an orthonormal basis

for V0 , then B1 is an orthonormal basis for V0
⊥ ; and conversely, if B0 (resp., B1) is

any orthonormal basis for V0 (resp., V0
⊥ ), then B0 ∪ B1 is an orthonormal basis for V .

(c) (V0
⊥ )⊥ = V0 .

(d) Every vector z ∈ V is uniquely expressible in the form z = x + y , where

x ∈ V0, y ∈ V0
⊥ .

Proof : If B0 = {e1, . . . , em} is an orthonormal basis for V0 and if B1 = {f1, . . . , fn−m}
is such that B0 ∪ B1 is an orthonormal basis for V , it follows at once from Lemma 3.3.1

that V0
⊥ =

∨ {f1, . . . , fn−m} and the truth of (a) and the first half of (b) follow imme-

diately; the second half of (b) follows from the fact that dim V0 + dim V0
⊥ = dim V.

The truth of assertions (c) and (d) follow immediately from (b). 2

Corollary 3.3.3 Let V0 be a subspace of a finite-dimensional vector space V .

(a) Define P : V → V as follows : if z = x + y is the canonical decomposition of

a typical vector z in V as in Theorem 3.3.2 (d), then Pz = x . (This transformation

is called the orthogonal projection onto the subspace V0.) Then,

(i) Pz =
∑m

i=1 < z, ei > ei where {ei : 1 ≤ i ≤ m} is any orthonormal basis for V0;

(ii) P ∈ L(V ) ;

(iii) P = P ∗ = P 2 ;

(iv) ran P = V0 ; in fact, x ∈ V0 ⇔ Px = x ; and

(v) ker P = V ⊥
0 .
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(b) Conversely, if P ∈ L(V ) and if P = P ∗ = P 2 , then P is the orthogonal

projection onto the subspace V0 = ran P.

(c) If P is the orthogonal projection onto a subspace V0 , then IV − P is the

orthogonal projection onto V ⊥
0 .

Proof : (a) Assertion (i) is immediate from the previous Proposition, and assertion (ii)

is an immediate consequence of (i).

(iii) If x, y ∈ V , and if {e1, . . . , em} is any orthonormal basis for V0 , it follows

immediately from (i) that

< Px, y > = < (
m
∑

i=1

< x, ei > ei ) , y >

=
m
∑

i=1

< x, ei > < ei, y > ,

from which it follows immediately that

< Px, y > = < Px, Py > = < x, Py > for all x, y ∈ V. (3.3.6)

This proves that P is self-adjoint - i.e., it is its own adjoint. The fact that P is

idempotent - i.e., it is equal to its square - follows immediately from property (i) above.

(iv) The assertion that if x ∈ V , then x ∈ V0 ⇔ Px = x , is also an immediate

consequence of property (i). This statement clearly proves the equality ran P = V0.

Assertion (v) is also an immediate consequence of (i).

(b) Suppose P ∈ L(V ) and suppose P is self-adjoint and idempotent. Define

V0 = ran P . Then V0 is clearly a subspace of V . The idempotence of P implies that

Px = x for all x ∈ V0 , while the self-adjointness of P implies that if y ∈ V ⊥
0 , then

||Py|| 2 = < Py, Py > = < y, P 2y > = 0

as P 2y ∈ ran P = V0 , whence Py = 0 for all y ∈ V0
⊥ . It follows that if z = x+y

is the canonical decomposition of an arbitrary element z of V as in Theorem 3.3.2(d),

then Pz = x. In other words, the operator P is precisely the orthogonal projection onto

V0.

(c) This is an immediate consequence of the definitions. 2
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Exercise 3.3.1 (a) Compute the matrix [P ]B , where P is the orthogonal projection of

IR 3 onto the subspace {(x, y, z) ∈ IR 3 : x + y + z = 0} and B denotes the standard

basis for IR 3.

(b) If B = B0 ∪ B1 is an orthonormal basis for an arbitrary vector space V , and if P

denotes the orthogonal projection of V onto the subspace V0 =
∨

B0 , compute [P ]B.

Exercise 3.3.2 (a) Suppose P is the orthogonal projection of a vector space V onto

a subspace V0 . Consider the operator (of ‘reflection’ in the subspace V0 ) defined by

U = 2P − IV . Show that U = U ∗ and U 2 = IV ; and deduce in particular that U

is a unitary operator on V.

(b) Conversely, if U is a self-adjoint unitary operator on a finite- dimensional vector

space V , show that U is the operator of reflection in some subspace. (Hint: In (a) above,

express P and V0 in terms of U .)

The next result states an important relationship between a linear transformation and

its adjoint.

Proposition 3.3.4 Suppose T ∈ L(V, W ) , where V and W are finite-dimensional

inner product spaces. Then,

(ran T )⊥ = ker T ∗ (3.3.7)

and in particular,

ρ (T ) = ρ (T ∗) (3.3.8)

where of course the symbol ρ denotes the rank.

Proof : If w ∈ W , then we find that

w ∈ (ran T )⊥ ⇔ < Tv, w > = 0 for all v ∈ V

⇔ < v, T ∗w > = 0 for all v ∈ V

⇔ T ∗w = 0

thus proving the first assertion.

As for the second, it follows from the first assertion and the rank-nullity theorem that

ρ(T ) = dim W − dim(ran T )⊥ = dim W − ν(T ∗) = ρ(T ∗)
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as desired. 2

We conclude this section with some remarks concerning the implications that equation

3.3.8 has for matrices. To start with, we shall identify Mm×n(IR) with L(IRn, IRm) by

identifying an m×n matrix T with the linear transformation T̃ from IRn to IRm for

which [T̃ ]Bm

Bn
= T , where we use the symbol Bk to denote the standard basis for IRk .

Furthermore, it will be convenient to identify Rn with Mn×1(IR) in the natural manner.

Then, the columns of T are, by definition, nothing but the images of the standard basis

under the linear transformation T̃ and consequently the columns of T span ran T̃ . It

follows easily that there is some subset of the set of columns of T which is (a minimal

spanning set and consequently) a basis for ran T̃ . Thus, we find that ρ(T̃ ) is nothing

but ‘the maximum number of linearly independent columns of the matrix T ’. Some books

refer to the expression within quotes in the last sentence as the column-rank of the matrix

T . In analogy, if we define the row-rank of the matrix T to be the ‘maximum number of

linearly independent rows of the matrix T , a moment’s thought reveals that the row-rank

of the matrix T is nothing but the column-rank of the matrix T t . It is now a consequence

of Proposition 3.2.4 and equation 3.3.8 that we have

row-rank of T = ρ(T̃ ∗)

= ρ(T̃ )

= column-rank of T

and the column value of these quantities is simply called the rank of the matrix T .

The following exercise is a nice consequence of the foregoing remarks.

Exercise 3.3.3 By definition, a submatrix of a matrix is the matrix obtained by ‘deleting

some rows and columns’. Show that the rank of a rectangular matrix is the largest size among

all invertible (necessarily sqaure) submatrices.

3.4 Determinants

In this section, we shall introduce a very important scalar that is associated with every

operator on a finite-dimensional vector space. Actually we shall define the determinant of
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a square matrix and define the determinant of the operator T as the determinant of the

matrix [T ]B where B is any basis for V , and use Theorem 2.2.4 to verify that this

definition depends only on the operator T and is independent of the basis B.

Suppose T is an n × n matrix; let us write vj for the j-th column of the matrix T ,

thought of as a vector in IRn. The determinant of T will be defined as a number whose

absolute value equals the ‘n-dimensional volume’ of the ‘n-dimensional parallelopiped with

sides v1, . . . ,vn’. The sign of the determinant will indicate the ‘orientation of the frame

determined by the above vectors’. In order to make all this precise, let us first consider the

cases n = 2 and n = 3 where our geometric intuition is strong and then ‘extrapolate’ to

higher n.

The case n = 2 :

Suppose

T =

[

a c

b d

]

.

Put u = (a, b),v = (c, d). We wish to compute the ‘signed area’ of the parallelogram

determined by these vectors. Notice that the vector n = 1
||(a,b)||(−b, a) is a unit vector

which is perpendicular to u. Thus it is seen that the parallelogram determined by u,v has

‘base’ = ||u|| and ‘height’ = |v · n |; thus the area of this parallelogram is equal to

|(c, d) · (−b, a)| = |(ad − bc)|.
It is also not hard to see that if we write P1, P2, Q for the points in the plane represented

by the vectors u,v,n respectively, then the expression ad − bc is positive or negative

according as the angle P2OP1 is less than or greater than 180o. In mathematics, it is

customary to consider the counter-clockwise (rather than the clockwise) direction as the

‘positive one’.

Thus, we see that the expression (ad − bc) has the following features :

(i) its magnitude is the area of the parallelogram spanned by the vectors u = (a, b) and

v = (c, d);

(ii) its sign is positive precisely when the following happens : if we move in the mathemat-

ically positive direction from u, we will come to v before we come to −v.
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Hence - with T as above - if we define det T = ad − bc , we find that this definition

meets the requirements of defining the ‘signed area’ of the parallelogram spanned by the

columns of T . We shall also write

T =

∣

∣

∣

∣

∣

a c

b d

∣

∣

∣

∣

∣

= ad − bc. (3.4.9)

Notice, in particular, that two vectors (a, c), (b, d) in IR 2 are linearly dependent if and

only if (ad − bc) = 0.

The case n = 3 :

Suppose now that

T =









a d g

b e h

c f k









. (3.4.10)

We first consider the volume of the parallelopiped spanned by the three vectors u =

(a, b, c), v = (d, e, f), w = (g, h, k) in IR 3. A moment’s thought must show that

this volume is given by V ol = B × h where B denotes the (two-dimensional) area of

the parallelogram spanned by u and v, and h equals the magnitude of the orthogonal

projection of w onto the line perpendicular to the plane
∨{u ,v}. (Notice that the

volume must be zero if all the three vectors lie in a plane, i.e., if the set {u ,v ,w} is

linearly dependent; so we assume in the following that these vectors are indeed linearly

independent.)

In order to compute these quantities, we first need to be able to find

(a) the two-dimensional area B of the parallelogram spanned by u and v (in the plane -

i.e., the two-dimensional subspace - spanned by u and v ); and

(b) the vector n orthogonal to u and v - which is unique up to scaling by a constant.

As for (a), it must be clear, after a moment’s deliberation, that if θ is the angle

subtended at the origin by the vectors u and v , then B = ||u|| ||v|| |sin θ|; since

||u|| ||v|| cos θ = u · v , it follows at once that

B 2 = ||u|| 2 ||v|| 2 ( 1 − cos 2 θ)
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= ||u|| 2||v|| 2 − (u · v) 2

= (a 2 + b 2 + c 2)(d 2 + e 2 + f 2) − (ad + be + cf) 2

= a 2(e 2 + f 2) + b 2(d 2 + f 2) + c 2(d 2 + e 2) − 2(adbe + adcf + becf)

= (ae − bd) 2 + (af − cd) 2 + (bf − ce) 2

and hence,

B = ||
(

±
∣

∣

∣

∣

∣

b c

e f

∣

∣

∣

∣

∣

, ±
∣

∣

∣

∣

∣

a c

d f

∣

∣

∣

∣

∣

, ±
∣

∣

∣

∣

∣

a b

d e

∣

∣

∣

∣

∣

)

|| . (3.4.11)

In particular, if u and v are linearly independent, then, the vector displayed in the

above equation is non-zero.

We now proceed to (b). Notice that the 3 × 2 submatrix of T obtained by deleting

the third column has column-rank equal to 2 (in view of the assumed linear independence

of u and v ). It follows from Exercise 3.3.3 and the already discussed case ( n = 2 ) of the

determinant that one of the three determinants
∣

∣

∣

∣

∣

a b

d e

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a c

d f

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

b c

e f

∣

∣

∣

∣

∣

must be non-zero. Assume (without loss of generality) that

∣

∣

∣

∣

∣

a b

d e

∣

∣

∣

∣

∣

6= 0 . (3.4.12)

Now, the vector n = (x, y, z) is perpendicular to the plane
∨{u ,v } if and only if the

following equations are satisfied:

ax + by + cz = 0 (3.4.13)

dx + ey + fz = 0. (3.4.14)

Eliminating y from these equations, we find that

(ae − bd)x + (ce − bf)z = 0.
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Thanks to our assumption that equation 3.4.12 is satisfied, it follows from the last equa-

tion that the vector (x, z) must be proportional to the vector

(∣

∣

∣

∣

∣

b c

e f

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a b

d e

∣

∣

∣

∣

∣

)

.

Similarly, by eliminating x from equation 3.4, we find that the vector (z, y) must be

proportional to the vector

(
∣

∣

∣

∣

∣

a b

d e

∣

∣

∣

∣

∣

, −
∣

∣

∣

∣

∣

a c

d f

∣

∣

∣

∣

∣

)

.

We conclude from the foregoing that in order that the vector (x, y, z) be perpendicular

to both the vectors (a, b, c) and (d, e, f), it is necessary and sufficient that (x, y, z) be a

multiple of the vector

(∣

∣

∣

∣

∣

b c

e f

∣

∣

∣

∣

∣

, −
∣

∣

∣

∣

∣

a c

d f

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

a b

d e

∣

∣

∣

∣

∣

)

.

In some books on vector calculus, the reader might have seen the vector displayed

above being referred to as the so-called cross-product of the vectors (a, b, c) and (d, e, f).

Thus, given vectors u = (a, b, c),v = (d, e, f), their cross-product is the vector displayed

above- and usually denoted by u × v . The foregoing analysis shows that this vector is

perpendicular to the plane spanned by u and v , and has magnitude (i.e., norm) equal to

the area of the parallelogram spanned by the vectors u and v.

Finally, if we write n = u×v
||u×v|| , it follows that the desired volume of the parallelopiped

spanned by the vectors u, v and wis given by

V ol = ||u × v|| |w · n| = |w · (u × v)| .

Furthermore, it is not too hard to verify that the scalar w·(u×v) is positive or negative

according as whether the co-ordinate frame {u,v,w} is ‘right-handed’ or ‘left-handed’;

we thus find that all the requirements of the determinant, as we set them out to be, are

satisfied by the definition
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det T =

∣

∣

∣

∣

∣

∣

∣

∣

a d g

b e h

c f k

∣

∣

∣

∣

∣

∣

∣

∣

= g(bf − ec) − h(af − dc) + k(ae − db)

= aek + bfg + cdh − afh − bdk − ceg .

Exercise 3.4.1 If u,v and w are any three vectors in IR 3 , show that

(i) u · (v×w) = v · (w× u) = w · (u× v), and hence deduce that the determinant

of a 3 × 3 matrix is unaffected by a cyclic permutation of the columns.

(ii) More generally, show that if T̃ is the matrix obtained by interchanging two columns

of a ‘3 × 3 matrix T , then det T̃ = − det T .

(iii) Even more generally than (ii), if σ is any permutation of the set {1, 2, 3} and if

Tσ denotes the matrix obtained by permuting the columns of a 3× 3 matrix T according

to the permutation σ , then show that det Tσ = ǫσ det T , where ǫσ is the so-called

‘sign’ of the permutation defined to be equal to ±1 according as σ is an odd or an even

permutation.

(iv) If S, T ∈ M3(IR) , show that det(ST ) = (det S)(det T ).

(v) Can you see that (i) is an immediate consequence of (ii), that (ii) is a special case

of (iii) and that (iii) is a special case of (iv)?

(vi) Deduce from (iv) that any two 3 × 3 matrices which are similar must necessarily

have the same determinant.

(vii) Show that det T = det T t for all T in M3(IR).

It is worth explicitly stating a couple of consequences of the preceding exercises.

The first concerns the possibility of ‘expanding a determinant along any row’. To be

explicit, if T = ((tij)) is any 3 × 3 matrix, and if 1 ≤ i, j ≤ 3 , let us write T(ij) for

the ‘2 × 2 submatrix obtained by deleting the i-th row and j-th column of T ; then it

follows from Exercise 3.4.1 (i) that

det T =
3
∑

i=1

(−1)i+jtij det T(ij) for 1 ≤ j ≤ 3; (3.4.15)

49



it follows from Exercise 3.4.1(vii) that we also have ‘expansion of a determinant along rows’,

i.e.,

det T =
3
∑

j=1

(−1)i+jtij det T(ij) for 1 ≤ i ≤ 3. (3.4.16)

The second concerns the following ‘closed-form’ expansion for the determinant which

follows easily from Exercise 3.4.1 (iii) : if T = ((tij)) is any 3 × 3 matrix, then

det T =
∑

σ∈S3

ǫσ

(

3
∏

i=1

tiσ(i)

)

(3.4.17)

where we have used the notation S3 for the group of all permutations of the set {1, 2, 3}.

The case of a general n :

Taking our cue from the case n = 3 , we define the determinant of an arbitrary n× n

matrix T = ((tij)) by the formula

det T = |((tij))| =
∑

σ∈Sn

ǫσ

(

n
∏

i=1

tiσ(i)

)

(3.4.18)

where we have used the notation Sn for the group of all permutations of the set {1, . . . , n}.
We shall not go into any proofs here, but just content ourselves with the remark that all

the properties for determinants listed in Exercise 3.4.1 (with the exception of (i) which is

valid only for odd n) and the subsequent remarks are valid with 3 replaced by n . Most

importantly, the magnitude of the determinant of T continues to equal the ‘n-dimensional

volume’ of the parallelopiped spanned by the columns of T and the sign of the determinant

describes the ‘orientation’ of the frame given by {Te1, . . . , T en}.
We list the basic facts concerning determinants as a theorem.

Theorem 3.4.1 (a) The assignment T → det T , as a mapping from Mn(IR) to IR ,

satisfies the following conditions:

(i) (expansion along rows and columns)

det T =
n
∑

j=1

(−1)i+jtij det T(ij) for 1 ≤ i ≤ n
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=
n
∑

j=1

(−1)i+jtij det T(ij) for 1 ≤ i ≤ n

where, as before, the symbol T(ij) determines the submatrix obtained by deleting the i-th

row and j-th column of T .

(ii) The determinant function is multilinear as a function of the columns of the matrix, in

the sense that if S, T ∈ Mn(IR) satisfy Sei = Tei for all i 6= j , for some j , where

B = {e1, . . . , en} denotes the standard basis for IRn ,then det (αS +βT ) = α(det S)+

β(det T ) ∀ α, β ∈ IR.

(iii) The determinant function is an ‘alternating function’ in the sense that if σ ∈ Sn

and if, for T in Mn(IR) , we let Tσ denote the matrix obtained by permuting the columns

of T according to σ - i.e., (Tσ)ij = (T )iσ(j) - then det Tσ = ǫσ det T .

(iv) If S, T ∈ Mn(IR) , then det (ST ) = (det S)(det T ) , and hence similar matrices

have the same determinant.

(b) In view of (a)(iv) above, we see that if T ∈ L(V ) , where V is a finite-dimensional

space, then the value of det [T ]B does not depend upon the choice of the basis B of V and

we define this common value as det T .

(i) If T ∈ L(V ) , then a necessary and sufficient condition for the invertibility of T is

that det T = 0.

2
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Chapter 4

The Spectral Theorem

4.1 The real case

This chapter is devoted to probably the most fundamental result in linear algebra. In order

to get a feeling for what the spectral theorem says, recall Exercises 1.1.3 and 3.3.1(a). In

the former, one was confronted with a seemingly complicated-looking matrix and wished to

obtain some insight into what the operator represented by that matrix ‘looked like’; whereas,

in the latter, one was given a perfectly decent looking operator and was presented with the

somewhat tame problem of computing its matrix; at the end of the computation, what

one saw was the complicated looking matrix of the former exercise. Rather than leaving

the solution of problems of the former sort to such a fortuitous coincidence, the spectral

theorem points a way to understanding fairly general matrices by geometric means.

Actually, part (b) of Exercise 3.3.1 indicates the kind of thing that happens. Explicitly,

the purpose of that exercise was to convince the reader that if P is a projection operator

on some finite-dimensional vector space V - which can be recognised by the easily verified

algebraic conditions P = P ∗ = P 2 - then there exists an orthonormal basis B for

V such that the matrix [P ]B is particularly simple : this matrix has zero entries off the

main diagonal, and on the main diagonal there is a string of 1’s followed by a string of 0’s,

with the number of 1’s being exactly equal to the rank of P (or equivalently the dimension

of the subspace onto which P projects).

The (real case of the) spectral theorem says something entirely similar. It says that if
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T is a self-adjoint operator - i.e., T ∗ = T - on a finite-dimensional (real) inner product

space V , then there exists an orthonormal basis B = {e1, . . . , en} for V such that

[T ]B is a diagonal matrix , i.e., has only zero entries off the main diagonal. An equivalent

formulation is the following.

Theorem 4.1.1 (The (real) spectral theorem) If T is a self-adjoint operator on

a finite-dimensional (real) inner product space, then there exists an orthonormal basis

{e1, . . . , en} for V and real numbers λ1, . . . , λn such that Tej = λj ej for 1 ≤ j ≤ n.

2

There are two ingredients in the proof, which we establish as separate lemmas.

Lemma 4.1.2 Let V0 be a subspace of a finite-dimensional inner product space V . The

following conditions on an operator T on V are equivalent:

(i) T (V0) ⊆ V0 ;

(ii) T ∗(V0
⊥ ) ⊆ V0

⊥ .

Proof : (i) ⇒ (ii) : Let y ∈ V0
⊥ , x ∈ V0 be arbitrary. The assumption (i)

implies that Tx ∈ V0 and consequently,

< T ∗y, x > = < y, Tx > = 0 .

Since x was an arbitrary element of V0 , this shows that T ∗y ∈ V0
⊥ . Since y was

an arbitrary element of V0
⊥ , we have indeed shown that (i) ⇒ (ii).

(i) ⇒ (ii) : This follows from the implication (i) ⇒ (ii) applied with the roles of

(V0, T ) and (V0
⊥ , T ∗) interchanged. 2

Bsfore proceeding further, we establish some terminology and elementary properties

concerning the notion discussed in the above lemma.

Exercise 4.1.1 Let T ∈ L(V ) , with V a finite-dimensional inner product space, let

V0 be a subspace of V , and let P denote the orthogonal projection onto V0.

(a) Prove that the following conditions are equivalent:

(i) T (V0) ⊆ V0 ;
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(ii) TP = PTP .

(When these equivalent conditions are satisfied, we say that V0 is invariant or stable

under T , or that V0 is an invariant subspace for T .)

(b) Use (a) twice to give an alternate proof of Lemma 4.1.2.

(c) If V0 is one-dimensional, show that V0 is invariant under T if and only if there

exists a scalar λ such that Tx = λx for all x in V0.

(d) What are all the invariant subspaces of the following matrix (which is, naturally,

viewed as the operator on IR 3 which it represents with respect to the standard basis) :

N =









0 1 0

0 0 1

0 0 0









?

(Hint: Look at N 2 and N 3.)

Before proceeding any further, it will help matters if we introduce some notation for a

notion which has already appeared more than once. If T ∈ L(V ) and if x ∈ V sat-

isfies x 6= 0 and Tx = λx for some scalar λ , then x is called an eigenvector

of T corresponding to the eigenvalue λ. We shall also find it convenient to have

to use one of these expressions in the absence of the other : thus, we shall say that a

scalar λ (resp. a non-zero vector x) is an eigenvalue (resp., eigenvector) of an operator

T if there exists a non-zero vector x (resp. a scalar λ ) such that Tx = λx . The

(solution to the) following ‘trivial’ exercise might help clarify some of these notions.

Exercise 4.1.2 What are the eigenvalues and eigenvectors of the operator N of Exercise

4.1.1 (d) ?

We prepare the ground for the second ingredient in the proof of the spectral theorem,

with another exercise.

Exercise 4.1.3 Consider the operator T on IR 3 represented (with respect to the standard

basis) by the matrix

T =









1 0 0

0 3 0

0 0 2









.
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(a) What are the eigenvalues of T?

(b) Compute the number

λ = sup { < Tx, x > : x ∈ IR 3, ||x|| = 1 }

and describe the set {x ∈ IR 3 : < Tx, x > = λ and ||x|| = 1}.

Lemma 4.1.3 Let T be a self-adjoint operator on a finite-dimensional (real) inner product

space V . Then T has an eigenvector.

Proof : We shall prove that the number

α = sup { < Tx, x > : x ∈ V , ||x|| = 1 }

is an eigenvalue of T .

First of all, this number is actually a maximum - i.e., the supremum is attained at some

point - and consequently finite. Reason : if ((tij)) is the matrix representing the operator

T with respect to any orthonormal basis, then

α = sup {
n
∑

i,j=1

tijξiξj : ξ1, . . . , ξn ∈ IR,
n
∑

i=1

ξi
2 = 1 }

and thus α is nothing but the supremum of a quadratic polynomial over the unit sphere

in IRn; and any continuous function on a compact set is bounded and attains its bounds.

The rest of the proof consists in showing that if x1 is any unit vector in V such that

< Tx1, x1 > = α , then in fact Tx1 = αx1.

We first argue that the problem faced in proving the assertion of the last paragraph is

a two-dimensional one, as follows: Suppose, to the contrary, that there exists a unit vector

x1 ∈ V such that < Tx1, x1 > = α and that the set {x1, Tx1} is linearly independent.

Let V0 =
∨ {x1, Tx1}, let P denote the orthogonal projection onto V0 and consider

the operator T0 on the 2-dimensional space V0 defined by T0x = PTx for all x in

V0. It is an easy matter to verify that :

(i) < T0x, x > = < Tx, x > for all x in V0; and consequently,

(ii) α = sup { < T0x, x > : x0 ∈ V , ||x|| = 1 } (since x1 ∈ V0).
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Let {x1, x2} be the result of applying the Gram-Schmidt process to {x1, Tx1} and

let B0 = {x1, x2} ; it follows from < Tx1, x1 > = α that

[T0]B0
=

[

α β

β γ

]

,

for some scalars β, γ , the symmetry of the matrix being a consequence of the assumed

self-adjointness of T . Our assumption that x1 is not an eigenvector of T implies that

β 6= 0 and we shall deduce a contradiction from this.

Since any unit vector in V0 is of the form (cos θ)x1 + (sin θ)x2 for some θ , the

assumptions on α imply that

α ≥ α cos 2θ + 2β cos θsin θ + γ sin 2θ for all θ.

It follows that

(α − γ) ≥ 2β cot θ whenever 0 < θ < π

which is clearly possible only if β = 0 , and the proof is complete. 2

Proof of the Spectral Theorem : The proof is by induction on the dimension of

the underlying vector space V . The theorem is trivial if V is one-dimensional; so assume

the theorem is known to hold for all (n − 1)- dimensional vector spaces, and suppose

V is n-dimensional. Lemma 4.1.3 tells us that there exists at least one 1-dimensional

invariant subspace for T , say V0. Appeal now to Lemma 4.1.2 and the self-adjointness

of T to conclude that V0
⊥ is an (n − 1)−dimensional invariant subspace for T . Since

the restriction of a self-adjoint operator to an invariant subspace is again self-adjoint -

Verify ! - we may appeal to the induction hypothesis to find an orthonormal basis B2 for

V0
⊥ consisting of eigenvectors for (the restriction to V0 of T and hence for) T . Set

B = B1 ∪ B2 , where B2 is one of the two possible orthonormal bases for V0 . Then

B is an orthonormal basis for V which diagonalises T - in the sense that [T ]B is a

diagonal matrix. 2

Exercise 4.1.4 Let T be a self-adjoint operator on a finite-dimensional inner-product

space.
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(a) Show that sup { < Tx, x > : x ∈ V , ||x|| = 1 } is the largest eigenvalue of T .

(b) Show that inf { < Tx, x > : x ∈ V , ||x|| = 1 } is the smallest eigenvalue of T .

(c) Can you think of such a description for the ‘intermediate’ eigenvalues ?

Before proceeding further, note that an obvious reformulation of the spectral theorem

in terms of matrices is as follows. (In the theorem, we use the adjective symmetric to

describe a matrix which is equal to its own transpose.)

Theorem 4.1.4 Any (square real) symmetric matrix is orthogonally similar to a diagonal

matrix.

2

As an application of the spectral theorem, we single out a particularly important special

class of self-adjoint operators.

Proposition 4.1.5 The following conditions on an operator T on a finite- dimensional

inner product space V are equivalent :

(i) T is self-adjoint and all its eigenvalues are non-negative.

(ii) There exists a self-adjoint operator S on V such that T = S 2.

(iii) There exists a linear transformation S : V → W , with W some inner product

space, such that T = S ∗S.

(iv) T is self-adjoint and < Tx, x > ≥ 0 for all x in V .

An operator T satisfying the above conditions is said to be positive and we write

T ≥ 0.

Proof : (i) ⇒ (ii) : The spectral theorem says that there exists an orthonormal

basis B = {e1, . . . , en} and scalars α1, . . . , αn such that Tej = αj ej for all j .

Condition (i) ensures that αj ≥ 0 for all j . Define S to be the unique operator for

which Sej =
√

αj ej for 1 ≤ j ≤ n. The operator S is self-adjoint since [S]B is a

(diagonal matrix and hence) symmetric matrix, and clearly S 2 = T .

(ii) ⇒ (iii) : Obvious.

(iii) ⇒ (iv) : If T = S ∗S , then, T ∗ = S ∗(S ∗) ∗ = S ∗S = T and if x ∈ V ,

then < Tx, x > = < S ∗Sx, x > = ||Sx|| 2.
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(iv) ⇒ (i) : Tx = λ x and x 6= 0 ⇒ λ ||x|| 2 = < Tx, x > ≥ 0 ⇒ λ ≥ 0. 2

Note that the ‘square root’ S of a positive operator T , whose existence was proved

above, was constructed so that in fact S ≥ 0. It is a fact that the positive square root of

a positive operator is unique.

Exercise 4.1.5 (a) Show that every self-adjoint operator T admits a unique decomposi-

tion T = T+ − T− such that (i) T± ≥ 0, and (ii) T+T− = 0.

(b) What is this decomposition for the (operator on IR 3 represented, with respect to

standard basis, by the) matrix given by

T =









1 −1 −1

−1 1 −1

−1 −1 1









.

4.2 Complex scalars

What was not so clear from the last section was that while a diagonal entry of a diagonal

matrix is clearly an eigenvalue of the matrix, actually every eigenvalue of a self-adjoint

operator must appear as a diagonal entry in any diagonal matrix which represents the

operator in some orthonormal basis. In fact, it is not even clear why there can be only

finitely many eigenvalues of a self-adjoint operator.

Secondly, although our proof of the spectral theorem made strong use of self-adjointness,

it is natural to ask if one can, by exhibiting sufficient cleverness, come up with a proof which

does not use self-adjointness; in other words, can it be that the spectral theorem is actually

true for all operators ?

The answer to these questions can be found in a closer analysis of the notion of an eigen-

value. On the one hand, a real number λ is an eigenvalue of an operator T ∈ L(V ) pre-

cisely when (T − λIV ) has a non- zero kernel, which is equivalent to the non-invertibility

of (T − λIV ) . On the other hand, an operator S fails to be invertible precisely when

det S = 0 , where of course det S denotes the determinant of any matrix representing

S with respect to any basis for V . This leads naturally to the following definition.
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Definition 4.2.1 Let T ∈ L(V ) , where V is any finite-dimensional vector space, and

let B denote any basis for V . Let [T ]B = ((tij)) . Then the function pT (λ) defined

by

pT (λ) = det(T − λIV ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t11 − λ t12 · · · t1n

t21 t22 − λ · · · t2n

...
...

. . .
...

tn1 tn2 · · · tnn − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.2.1)

is called the characteristic polynomial of the operator T (resp., the matrix ((tij)) ).

It must be observed at the outset that :

(i) the function pT (λ) is indeed a polynomial of degree n ( = dim V ), with leading

coefficient (= coefficient of λn ) equal to (−1)n; and

(ii) the value of the characteristic polynomial is independent of the basis chosen to represent

the operator as a matrix.

Having said all that, the proof of the following statement must be clear.

Proposition 4.2.2 Let T ∈ L(V ) and let λ0 ∈ IR. The following conditions are

equivalent :

(i) λ0 is an eigenvalue of T .

(ii) pT (λ0) = 0.

2

Now we are faced with the following situation. A real polynomial may not have any real

roots. Thus, for instance, if T is the operator on IR 2 given by the matrix

T =

[

0 −1

1 0

]

, (4.2.2)

we see that

pT (λ) =

∣

∣

∣

∣

∣

−λ −1

1 −λ

∣

∣

∣

∣

∣

= λ 2 + 1 .
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Thus this operator has no real eigenvalues - which must have been evident on geomet-

ric grounds. (Why?) In particular, the conclusion of Lemma 4.1.3 (and consequently of

Theorem 4.1.1) is false for this non-self-adjoint operator T .

One way out of this impasse is to ‘allow complex scalars’. The way to make this precise

is to note that the definition of a vector space which we have given - Definition 1.2.1 - makes

perfect sense if we replace every occurrence of the word ‘real’ (resp., the set IR) by the word

‘complex’ (resp., the set IC). As in the real case, one can show that every n-dimensional

complex vector space is isomorphic to the vector space

ICn = {z = (z1, . . . , zn) : z1, . . . , zn ∈ IC}

(where the vector operations are co-ordinatewise).

In fact, all the statements in the first two chapters continue to remain valid for complex

(rather than just real) vector spaces, and the proof of their validity is exactly as in the real

case.

It is only when we come to inner products that there is a minor variation. This is

because the natural norm on ICn is given by ||z|| 2 =
∑n

i=1 |zi| 2 where |λ| is the

absolute value of the complex number λ which satisfies |λ| 2 = λλ̄ , where λ̄ is the

complex conjugate of λ. (Recall that if λ = a+ ib where a, b ∈ IR, then λ̄ = a− ib .)

Consequently, the inner (or dot-)product on ICn is defined by

z · w =
n
∑

i=1

ziw̄i .

Hence, an inner product on a complex vector space V is defined to be a mapping

< ·, · > : V × V → IC satisfying, for all u, v, w ∈ V and α ∈ IC:

(i) < u + v, w > = < u, w > + < v, w >;

(ii) < αu, v > = α < u, v >:

(iii) < u, v > = < v, u >;

(iv) < u, u > ≥ 0 , and < u, u > = 0 ⇔ u = 0.

With this minor modification, all the results of Chapter 3 also go through in the complex

case with only slight changes; for instance, we have :

(i) If {e1, . . . , en} is an orthonormal basis for a complex inner product space, then

< x, y > =
n
∑

i=1

< x, ei >< ei, y > ∀ x, y ;
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(ii) the mapping y → φy (cf. Exercise 3.2.1) defines, not an isomorphism, but an anti-

isomorphism - i.e., a bijective mapping Φ such that Φ(αy + z) = ᾱΦ(y) + Φ(z) - of

V onto V ∗; and

(iii) If T ∈ L(V, W ) is a linear transformation between finite-dimensional complex

inner product spaces, and if BV , BW are orthonormal bases for these spaces, then the

matrix [T ∗]BV

BW
is not simply the transpose, but rather the conjugate-transpose - i.e.,

the entry-wise complex conjugate of the transpose - of the matrix [T ]BW

BV
.

The reason for having to go to complex scalars lies in Proposition 4.2.2 and the following

fundamental fact about the set of complex numbers (which is sometimes expressed by the

statement that the set of complex numbers is algebraicially closed).

Theorem 4.2.3 (The Fundamental Theorem of Algebra) If

p(z) = αnzn + αn−1z
n−1 + · · · + α0

is a complex polynomial of degree n - i.e., each αi is a complex number and the leading

coefficient αn is non-zero - then there exist (not necessarily distinct) complex numbers

λ1, . . . , λn such that

p(z) = αn (z − λ1) · · · (z − λn)

for all z in IC.

2

We will not prove this theorem here, but accept its validity and proceed. The first bonus

of working with complex scalars is the following analogue of Lemma 4.1.3, which is valid

for all (not necessarily self-adjoint) operators on complex inner product spaces.

Lemma 4.2.4 Every operator on a finite-dimensional complex inner product space has an

eigenvector.

Proof : First notice that Proposition 4.2.2 is valid with IR replaced by IC. According

to the Fundamental Theorem of Algebra, there exists a complex number λ such that

pT (λ) = 0. Then, the last sentence shows that λ is indeed an eigenvalue of T , and where

there is an eigenvalue, there must be an eigenvector. 2
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The natural consequence that this lemma has for a general (non-self-adjoint) operator

is not diagonalisability but triangulisability.

Theorem 4.2.5 If T is an operator on a finite-dimensional complex inner product space

V , there exists an orthonormal basis B for V which ‘triangulises’ T in the sense that

[T ]B is upper triangular - i.e., if [T ]B = ((tij)) , then tij = 0 whenever i > j .

Equivalently, there exists a chain

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V (4.2.3)

of subspaces of V such that dim Vi = i, 0 ≤ i ≤ n and such that each Vi is an

invariant subspace for T . (A chain of subspaces as in equation 4.2.3 is also called a flag

of subspaces.)

Proof : The two formulations are indeed equivalent. For if T has an upper tri-

angular matrix with respect to an orthonormal basis {e1, . . . , en} for V , and if we

define Vi =
∨{ek : 1 ≤ k ≤ i}, 1 ≤ i ≤ n , then the Vi’s are easily seen to

give a flag of invariant subspaces of T ; and conversely, given a flag {Vi} of invariant

subspaces of T , simply choose an orthonormal basis {e1, . . . , en} for V such that

Vi =
∨{ek : 1 ≤ k ≤ i} for 1 ≤ i ≤ n and observe that any such basis will triangulise

T . (Verify !)

As in the case of Theorem 4.1.1, the proof is by induction on dim V . The theorem is

trivial when dim V = 1 . So assume that dim V = n and that the theorem is known

to be valid for all spaces of dimension less than n.

Apply Lemma 4.2.4 to the operator T ∗ to find a unit vector xn and a scalar λn such

that T ∗xn = λ̄nxn . Since the one-dimensional space spanned by xn is clearly invariant

under T ∗ , it follows from Lemma 4.1.2 that the subspace Vn−1 = {xn}⊥ is invariant

under T . Apply the induction hypothesis to the operator T0 which is the restriction to

Vn−1 of T to find a flag {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 of invariant subspaces for

T0 ; note that then each Vi is necessarily also invariant under T and deduce that if we

put Vn = V , then {Vi : 0 ≤ i ≤ n} is indeed a flag of invariant subspaces for T . 2

Before concluding this section, we pause to make some natural observations about com-

plex matrices.
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Exercise 4.2.1 (a) Show that the set Mn(IC) has a natural structure of a ‘unital algebra

over the field of complex numbers’; show further that the operation defined in Mn(IC) by

T 7→ T ∗ (where the (i, j)-th entry of T ∗ is, by definition, equal to the complex conjugate

of the (j, i)-th entry of the matrix T ) satisfies the following conditions :

(i) (S + T ) ∗ = S ∗ + T ∗ ;

(ii) (αT ) ∗ = ᾱ T ∗ ;

(iii) (T ∗ ) ∗ = T ;

(iv) (ST ) ∗ = T ∗S ∗.

(b) Show that the set Gl(n, IC) = {T ∈ Mn(IC) : det T 6= 0 } is a group with

respect to the multiplication in Mn(IC).

(c) Show that the set U(n, IC) = {T ∈ Mn(IC) : T ∗T = In} is a subgroup of

Gl(n, IC) , the elements of which are referred to as unitary matrices.

(d) Show that if T ∈ Mn(IC) , then there exists U ∈ U(n, IC) such that UTU ∗ is

an upper triangular matrix.

Exercise 4.2.2 Go through every statement in these notes until §4.1, consider the state-

ment obtained by replacing each occurrence of IR with IC , and either (a) prove it, or (b)

prove a modified version of it, or (c) show that there is no reasonable statement of it which

can be valid. How many of these statements fall into category (c) ?

4.3 The spectral theorem for normal operators

We begin this section with an elementary, nevertheless very useful fact.

Proposition 4.3.1 (a) (Polarisation identity) If x, y are any two vectors in a complex

inner product space V and if T ∈ L(V ) , then

4 < Tx, y > = < T (x + y), (x + y) > − < T (x − y), (x − y) >

+ i < T (x + iy), (x + iy) > − i < T (x − iy), (x − iy) > .

(b) The following conditions on an operator T ∈ L(V ) are equivalent :

(i) T = 0.

(ii) < Tx, x > = 0 for all x.

(iii) < Tx, y > = 0 for all x, y.
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Proof : The proof of the polarisation identity - is a brutal computation. Thus :

< T (x + y), (x + y) > = < Tx, x > + < Ty, y > + < Tx, y > + < Ty, x > . (4.3.4)

Replace y by −y in equation 4.3.4 to obtain :

< T (x − y), (x − y) > = ( < Tx, x > + < Ty, y > ) − ( < Tx, y > + < Ty, x > ) .

(4.3.5)

Take the difference of the two preceding equations to get :

< T (x + y), x + y > − < T (x − y), x − y > = 2 ( < Tx, y > + < Ty, x > ) . (4.3.6)

Replace y by iy in equation 4.3.6 to find that :

< T (x+iy), x+iy > − < T (x−iy), x−iy > = 2i ( − < Tx, y > + < Ty, x > ) . (4.3.7)

Multiply equation 4.3.7 by i , add the result to equation 4.3.5, and the polarisation identity

results.

As for (b), the implication (i) ⇒ (ii) is trivial, while the implication (ii) ⇒ (iii) is

an immediate consequence of the Polarisation identity. As for the implication (iii) ⇒ (i) ,

if < Tx, y > = 0 for all vectors x and y , then in particular, setting y = Tx , we see

that Tx = 0 for all x . 2

The operator T of equation 4.2.2 is an operator on a real inner product space which

satisfies (ii) but not (i) or (iii) of Proposition 4.3.1 (b), and hence the requirement that we

are ‘working over complex numbers’ is essential for the validity of this proposition.

Corollary 4.3.2 Let T be an operator on a finite-dimensional complex inner product

space. The following conditions on T are equivalent :

(i) T is self-adjoint.

(ii) < Tx, x > ∈ IR for all x in V .

Proof : (i) ⇒ (ii) :

< Tx, x > = < x, T ∗x > = < x, Tx > = < Tx, x >
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and a complex number is real precisely when it equals its complex conjugate.

(ii) ⇒ (i) : It follows essentially from the preceding computation that the assumption

< Tx, x > ∈ IR implies that < (T − T ∗)x, x > = 0. The validity of this equation for

all x implies, in view of Proposition 4.3.1 (b), that T = T ∗. 2

Now we address ourselves to the most general form of the spectral theorem one can hope

for, in the context of complex inner product spaces. The clue is furnished by the simple

observation that (while multiplication in Mn(IC) is not, in general, commutative) any two

diagonal matrices commute - i.e., their product is independent of the order in which they

are multiplied - and in particular, any diagonal matrix commutes with its adjoint. This

leads us to the following crucial definition.

Definition 4.3.3 An operator (resp., a square matrix) T is said to be normal if it

commutes with its adjoint - i.e., TT ∗ = T ∗T .

Exercise 4.3.1 (a) A necessary condition for an operator on a finite-dimensional inner

product space to be diagonalisable is that it is normal.

(b) The operator N of Exercise 4.1.1 (d) is not normal and is consequently not diagonal-

isable.

(c) Argue alternatively that the only eigenvalue of N is zero, and as N 6= 0 , it follows

that N cannot be diagonalisable.

We shall find the following simple facts concerning normal operators useful.

Proposition 4.3.4 (a) An operator T on a finite-dimensional complex inner product

space is normal if and only if

||Tx|| = ||T ∗x|| for all x .

(b) If T is normal, then

ker T = ker T ∗ .

(c) If T is normal, then ran T and ker T are orthogonal complements of one

another.
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Proof : (a) In view of Proposition 4.3.1, the operator T is normal if and only if

< (T ∗T − TT ∗)x, x > = 0 for all x.

(b) This is an immediate consequence of (a) above.

(c) This is an immediate consequence of (b) and Proposition 3.3.4. 2

We state an immediate corollary of the above proposition as an exercise.

Exercise 4.3.2 (a) Show that if T is a normal operator on a finite-dimensional complex

inner product space V and if λ ∈ IC , then also (T − λIV ) is normal.

(b) If x is an eigenvector of a normal operator corresponding to an eigenvalue λ ,

then show that x is an eigenvector of T ∗ corresponding to the eigenvalue λ̄.

(c) Show, by example, that the assertion (b) above is false if the assumption of normality

is dropped.

Now we are ready for the spectral theorem.

Theorem 4.3.5 (The Spectral theorem) The following conditions on an operator T on

a finite-dimensional complex inner product space are equivalent :

(i) T is diagonalisable -i.e., there exists an orthonormal basis B = {e1, . . . , en} for

V and complex numbers λ1, . . . , λn such that Tej = λjej for all j.

(ii) T is normal.

Proof : (i) ⇒ (ii) : This has already been observed.

(ii) ⇒ (i) : We shall show that if an upper triangular matrix is normal, then it must

be a diagonal matrix. (In view of Theorem 4.2.5, this will prove the theorem.)

So suppose T = ((tij)) is a normal matrix such that tij = 0 whenever i >

j. This says, in particular, that if {e1, . . . , en} denotes the standard basis for ICn, then

Te1 = t11e1 . It follows from Exercise 4.3.2 (b) that T ∗e1 = t11e1 . On the other

hand, we see, by the form of T ∗ , that we must have T ∗e1 =
∑n

j=1 t1jej . The linear

dependence of the ei’s now forces t12 = · · · = t1n = 0 .

This shows then that Te2 = t22e2 and arguing exactly as above, we see that

also t2j = 0 whenever j 6= 2 . Proceeding thus, we see that indeed we must have

tij = 0 whenever j 6= i for every i and the proof is complete. 2
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As in the real case, note that an equivalent (matricial) formulation of the spectral

theorem is the following :

If an n × n matrix T is normal, then there exists a unitary matrix U ∈ Mn(IC) such

that UTU ∗ is a diagonal matrix.

Exercise 4.3.3 (a) Consider the 3 × 3 matrix

P3 =









0 0 1

1 0 0

0 1 0









.

Show that P3 is a unitary matrix and explicitly exhibit a unitary matrix U such that

UP3U
∗ is diagonal.

(b) Can you generalise (a) from 3 to a general n ?

Before reaping some of the consequences of the spectral theorem, it will be useful to

introduce some terminology.

Definition 4.3.6 Let T denote an operator on a finite-dimensional complex vector space

or an n × n matrix. The spectrum of T is the set, denoted by σ(T ) , defined by

σ(T ) = {λ ∈ IC : λ is an eigenvalue of T}.

The following corollary lists some important special classes of normal operators.

Corollary 4.3.7 Let T be an operator on a finite-dimensional complex inner product

space.

(a) The following conditions on T are equivalent:

(i) T is self-adjoint;

(ii) T is normal and σ(T ) ⊂ IR;

(iii) < Tx, x > ∈ IR for all x in V .

(b) The following conditions on T are equivalent:

(i) T is unitary - i.e., T ∗T = TT ∗ = I;

(ii) T is normal and σ(T ) ⊂ T = {z ∈ IC : |z| = 1}.
(c) The following conditions on T are equivalent:

(i) T admits a factorisation T = S ∗S;
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(ii) T admits a self-adjoint square root - i.e., there exists a self-adjoint S such that

S 2 = T ;

(iii) T is normal and σ(T ) ⊂ [0,∞);

(iv) < Tx, x > ∈ [0,∞) for all x in V .

Proof : (a) (i) ⇒ (ii) : A self-adjoint operator is normal since it clearly commutes

with itself. The fact that every eigenvalue of a self-adjoint matrix is real follows at once

from Exercise 4.3.2 (b).

(ii) ⇒ (iii) : The spectral theorem guarantees the existence of an orthonormal basis

{e1, . . . , en} and complex numbers λ1, . . . , λn such that Tej = λjej for all j. The

assumption (ii) says that each λi is non-negative; hence

< Tx, x > = < T (
n
∑

i=1

< x, ei > ei ), (
n
∑

j=1

< x, ej > ej ) >

= <
n
∑

i=1

< x, ei > λiei ,
n
∑

j=1

< x, ej > ej >

=
n
∑

i=1

| < x, ei > | 2 λi (4.3.8)

≥ 0 .

(iii) ⇒ (i) : This has already been proved in Corollary 4.3.2.

(b) (i) ⇒ (ii) : It is obvious that unitarity implies normality. If U is unitary and

Ux = λx , it follows from Exercise 4.3.2 (b) that also U ∗x = λ̄x so that the assumed

unitarity says that x = U ∗Ux = |λ| 2x and hence λ ∈ T.

(ii) ⇒ (i) : If U is a normal operator, appeal to the spectral theorem to find an

orthonormal basis {e1, . . . , en} and complex numbers λ1, . . . , λn - which have modulus 1

according to the condition (ii) - such that Uei = λei for all i. Deduce as before that also

U ∗x = λ̄x so that we find that, for each basis vector ei , we have U ∗Uei = UU ∗ei = ei .

This implies that U must be unitary.

(c) This is proved exactly like Proposition 4.1.5, the only additional point to be made

being that, in view of (a) above, the assumption that < Tx, x > ≥ 0 ∀ x already implies

the self-adjointness of T . (Note that this part of the argument relies heavily on the fact

that we are working in a complex inner product space.) 2
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We pause to mention a fact that is a consequence of equation 4.3.8; the proof is left as

an exercise to the reader. (Recall that a subset Σ of a (real or complex) vector space is

said to be convex if it contains the line segment joining any two of its points - equivalently,

v0, v1 ∈ Σ ⇒ (1 − t)v0 + tv1 ∈ Σ ∀ t ∈ [0, 1].)

Corollary 4.3.8 If T is a normal operator on a finite-dimensional complex inner product

space, the so-called numerical range of T which is defined to be the set

W (T ) = { < Tx, x > : x ∈ V and ||x|| = 1} (4.3.9)

coincides with the convex hull of the spectrum σ(T ) of T which is, by definition, the

smallest convex set containing σ(T ).

Exercise 4.3.4 (a) Show that any operator T on a complex inner product space (resp.,

any square matrix T ) is uniquely expressible as T = T1 + iT2 where each Ti is self-

adjoint. (In analogy with the one-dimensional case, this is referred to as the Cartesian

decomposition of T and we define Re T = T1, Im T = T2 and call these the real

and imaginary parts of T .)

(b) Show that an operator (resp., square matrix) T is normal if and only if its real and

imaginary parts commute.

The preceding exercise, as well as Exercise 4.1.5 and Corollary 4.3.7 should convey to

the reader that there is a parallel between (real and complex) numbers and operators. This

is a useful parallel to bear in mind; it sometimes suggests results that one might hope to

prove about operators. Thus, complex numbers admit Cartesian decompositions, as do

operators. Complex numbers also possess a ‘polar decomposition’.

Exercise 4.3.5 (a) State and prove a (left as well as a right) version of the polar decom-

position for operators on finite-dimensional complex inner product spaces.

(b) Prove the following alternative form of the spectral theorem : if T is a normal

operator on a finite-dimensional inner product spave V , and if σ(T ) = {λ1, . . . , λk} , then

T =
∑k

i=1 λiPi , where Pi denotes the orthogonal projection onto Vi = ker (T −λiIV ,

for 1 ≤ i ≤ k . (The subspace Wi is also called the eigenspace of T corresponding to

the eigenvalue T .)
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Suggested Reading

Linear algebra is one of the most basic tools of all mathematics. Consequently, it should

come as no surprise that there is a sea of literature on the subject. Rather than giving an

interminably long list of possible texts on the subject, we will content ourselves with four

references, each of which presents the subject from a different point of view, with a different

goal in mind.

(1) P.R. Halmos, Finite-dimensional Vector Spaces, Van Nostrand, Princeton, New Jer-

sey 1958.

This book has a flavour that is probably somewhat similar to these notes, in the sense

that it stresses the ‘geometric’ or ‘operator-theoretic’ point of view. It is written with a

view to the possible extensions of the theory to its infinite-dimensional context of ‘operator

theory on Hilbert space’.

(2) M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear

Algebra, Academic Press, Florida, 1974.

This book is written with the goal of understanding the rudiments of dynamical systems.

It is a beautiful exposition of the interplay between linear algebra and the theory of solutions

of differential equations; the reader will do well to browse through this book, if at least to

realise the power and applicability of the spectral theorem.
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(3) K. Hoffman and R. Kunze, Linear Algebra, 2nd. ed. Prentice-Hall, Englewood Cliffs,

New Jersey, 1971.

This book stresses the matricial point of view. It will equip the reader well with the

skills to actually sit down and tackle problems such as: how does one actually compute the

rank of a, say, 5 × 5 matrix, or invert it if it turns out to be invertible? This point of

view is a necessary complement to the geometric point of view espoused by Halmos or these

notes.

(4) G. Strang, Linear Algebra and its Applications, Academic Press, New York, 1976.

This book, the most recent of the four volumes discussed here, reflects its modernity in

its point of view. It is concerned with serious problems of computation with matrices, such

as : what is a workable algorithm for tackling a specific computation using matrices? which

of these methods are fast from the point of view of machine time or number of computations

involved? what sort of control does one have in rounding-off errors in each of the available

algorithms? and so on. Besides the computational point of view that is evident here, the

reader will find plenty of useful ‘pure mathematics’ here.
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