
SOME REFERENCES

Free probability was introduced by Voiculescu in [V1]. However, the reduced free
product of C∗–algebras was also considered by Avitzour in [A], (where simplicity was
proved under certain hypotheses).

An early general reference for many basic topics (free convolution, reduced free
product, the free analogue of the Gaussian functor, etc.) and some more advanced
topics is the book [VDN]. See also the book by Nica and Speicher [NS] for more
combinatorial aspects.

For Eric Ricard’s argument that free product of faithful states (or conditional
expectations) if faithful, see [I], where it is used with permission. For an example
showing that the reduced free product lacks the universal property, see [DR]. For the
embedding result, see [BD].

The first appearance of asymptotic freeness in random matrices was in Voiculescu’s
pioneering paper [V3]. This was later extended in [D1] and, vastly, in [V7], though
none of these contain the nice proof that Speicher presented. Voiculescu’s first appli-
cations to free group factors were in [V2]. Rădulescu’s proof that the fundamental
group of L(F∞) is R∗+ is in [R1]. The proof that R ∗ L(Z) ∼= L(Fs) is found in [D1].
The interpolated free group factors were found (independently) in [R2] and [D3], by
slightly different constructions. The results on free products of finite dimensional,
hyperfinite and other algebras, using the heuristic quantity “free dimension,” are
in [D2].

The results of Voiculescu involving free entropy that we discussed are contained
in his papers [V4], [V5] and [V6], while Kenley Jung’s reformulation of free entropy
dimension is in [J1] and his computation of this for generators of hyperfinite von
Neumann algebras is in [J2]. The equivalence of δ0(· · · ) ≥ 0 and embeddability in
Rω is found in [BDJ].
B–valued freeness and the reduced amalgamated free product of C∗–algebras was

introduced by Voiculescu already in [V1], and the W∗–case was well understood at
this time; (but see [BD] for a careful treatment).

The result of Haagerup and Schultz on existence of hyperinvariant subspaces (dis-
cussed in the problem session) is in [HS], while the case of the quasinilpotent DT–
operator is in [DH], and Tucci’s operators are in [T].
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