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Overview

We shall review long-standing links between ergodic theory and von
Neumann algebras - from the original construction of factors1 using the
group-measure-space construction, to more recent use of von Neumann
dimensions of modules over some II1 factors for defining ℓ2-Betti numbers
of standard equivalence relations and obtaining consequent rigidity
theorems.

1We restrict ourselves here to only factors of type II1
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Overview

We shall review long-standing links between ergodic theory and von
Neumann algebras - from the original construction of factors1 using the
group-measure-space construction, to more recent use of von Neumann
dimensions of modules over some II1 factors for defining ℓ2-Betti numbers
of standard equivalence relations and obtaining consequent rigidity
theorems.

Outline of lecture
von Neumann algebras
Ergodic Theory
Group measure space construction
II1 factors
Standard equivalence relations
Orbit equivalence
Measurable equivalence
ℓ2-Betti numbers
Kadison conjecture
strong rigidity theorems.

1We restrict ourselves here to only factors of type II1

V.S. Sunder IMSc, Chennai II1 factors and Ergodic Theory



von Neumann algebras

Proposition: The following conditions on a subset M ⊂ L(H) are equivalent:

1 There exists a unitary group representation π : G → U(H) sich that

M = π(G )′ = {x ∈ L(H) : xπ(g) = π(g)x ∀g ∈ G}

2 M is a unital *-subalgebra of L(H) satisfying

M = M ′′ = (M ′)′

Such an M is called a von Neumann algebra. 2

(Our Hilbert spaces are always assumed to be separable.)
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von Neumann algebras

Proposition: The following conditions on a subset M ⊂ L(H) are equivalent:

1 There exists a unitary group representation π : G → U(H) sich that

M = π(G )′ = {x ∈ L(H) : xπ(g) = π(g)x ∀g ∈ G}

2 M is a unital *-subalgebra of L(H) satisfying

M = M ′′ = (M ′)′

Such an M is called a von Neumann algebra. 2

(Our Hilbert spaces are always assumed to be separable.)

Example: L∞(X ,B, µ) →֒ L(L2(X ,B, µ)) via f · ξ = f ξ. This is essentially the
only abelian von Neumann algebra.
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MvN equivalence and order of projections

P(M) = {p ∈ M : p = p2 = p∗}
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MvN equivalence and order of projections

P(M) = {p ∈ M : p = p2 = p∗}

The linear span of P(M) is norm dense in M.

(Reason: Density of simple functions in L∞ + spectral theorem + Cartesian
decomposition)
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MvN equivalence and order of projections

P(M) = {p ∈ M : p = p2 = p∗}

The linear span of P(M) is norm dense in M.

(Reason: Density of simple functions in L∞ + spectral theorem + Cartesian
decomposition)

If M = π(G )′, then p ∈ P(M) iff ran p is π-stable; so P(M) parametrises the
subrepresentations of π.
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MvN equivalence and order of projections

P(M) = {p ∈ M : p = p2 = p∗}

The linear span of P(M) is norm dense in M.

(Reason: Density of simple functions in L∞ + spectral theorem + Cartesian
decomposition)

If M = π(G )′, then p ∈ P(M) iff ran p is π-stable; so P(M) parametrises the
subrepresentations of π.

Def: For p, q ∈ P(M) say

p ∼M q⇔∃u ∈ M such that u∗u = p, uu∗ = q

p ≺M q⇔∃u ∈ M such that u∗u = p, uu∗ ≤ q

p is finite if p ∼M p0 ≤ p implies p0 = p
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Finite Factors

Proposition: The following conditions on a von Neumann algebra M are
equivalent:

1 ∀p, q ∈ P(M) either p ≺M q or q ≺M p
(i.e., if M = π(G )′, then π is isotypical)

2 Z(M) = M ∩ M ′ = C

Such von Neumann algebras are called factors.

(Any von Neumann algebra is a direct integral of factors.)
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Finite Factors

Proposition: The following conditions on a von Neumann algebra M are
equivalent:

1 ∀p, q ∈ P(M) either p ≺M q or q ≺M p
(i.e., if M = π(G )′, then π is isotypical)

2 Z(M) = M ∩ M ′ = C

Such von Neumann algebras are called factors.

(Any von Neumann algebra is a direct integral of factors.)

Def: A factor is called finite if 1 is a finite projection. A finite factor which is
infinite-dimensional as a C-vector space is called a II1 factor.
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Some facts about II1 factors

Let M be a II1 factor. Then

M admits a positive tracial state, i.e., there exists a linear functional
trM : M → C such that

1 trM(x∗x) ≥ 0 ∀x ∈ M
2 trM(xy) = trM(yx) ∀x , y ∈ M
3 trM(1) = 1

The functional trM is uniquely determined by the above properties, and is
faithful : i.e., trM(x∗x) = 0, x ∈ M ⇒ x = 0.

p ∼M q⇔trM(p) = trM(q).

{trM(p) : p ∈ P(M)} = [0, 1].
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Modules and von Neumann dimension

Def: A module over a II1 factor M is a triple (Hπ, Mπ, π) where Hπ is some
Hilbert space, Mπ ⊂ L(Hπ) is a von Neumann algebra, and π : M → Mπ is an
isomorphism of *-algebras.
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Modules and von Neumann dimension

Def: A module over a II1 factor M is a triple (Hπ, Mπ, π) where Hπ is some
Hilbert space, Mπ ⊂ L(Hπ) is a von Neumann algebra, and π : M → Mπ is an
isomorphism of *-algebras.

Proposition: M-modules are determined, up to isomorphism, by their
M-dimension; thus, to an M-module K is associated a number dimMK ∈ [0,∞]
so that

1 there exists an M-linear bounded operator mapping H1 isomorphically
onto H2 iff dimMH1 = dimMH2

2 dimM(⊕∞

n=1Hn) =
P

∞

n=1 dimMHn

Further, each d ∈ [0,∞] arises as dimMH for some M-module H.
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The group von Neumann algebra LΓ

If Γ is a countable group, let {ξγ : γ ∈ Γ} denote the standard orthonormal
basis of ℓ2(Γ). Let us write λ and ρ respectively for the left- and right-regular
representations λ, ρ : Γ → L(ℓ2(Γ)) defined by

λγξκ = ξγκ = ρκ−1ξγ

and define LΓ = λ(Γ)′′

V.S. Sunder IMSc, Chennai II1 factors and Ergodic Theory



The group von Neumann algebra LΓ

If Γ is a countable group, let {ξγ : γ ∈ Γ} denote the standard orthonormal
basis of ℓ2(Γ). Let us write λ and ρ respectively for the left- and right-regular
representations λ, ρ : Γ → L(ℓ2(Γ)) defined by

λγξκ = ξγκ = ρκ−1ξγ

and define LΓ = λ(Γ)′′

Proposition:

1 (LΓ)′ = ρ(Γ)′′

2 the equation tr(x) = 〈xξ1, ξ1〉 defines a faithful trace on LΓ as well as on
(LΓ)′

3 LΓ is a II1 factor iff every conjugacy class other than {1} in Γ is infinite,
and Γ 6= {1}.
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Ergodic theory

The setting is a triple (X ,B, µ) where (X ,B) is a standard Borel space and µ is
a (usually non-atomic) probability measure defined on B. Our standard
probability spaces will be assumed to be complete - i.e., B contains all µ-null
sets.
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Ergodic theory

The setting is a triple (X ,B, µ) where (X ,B) is a standard Borel space and µ is
a (usually non-atomic) probability measure defined on B. Our standard
probability spaces will be assumed to be complete - i.e., B contains all µ-null
sets.

An isomorphism between standard probability spaces (Xi ,Bi , µi ), i = 1, 2 is a
bimeasurable measure-preserving bijection of conull sets; i.e., it is a bijective
map T : X1 \ N1 → X2 \ N2, where Ni are µi -null sets, such that

1 E ∈ B2⇔T−1(E) ∈ B1

2 E ∈ B2 ⇒ µ1(T
−1(E)) = µ2(E).
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Ergodic theory

The setting is a triple (X ,B, µ) where (X ,B) is a standard Borel space and µ is
a (usually non-atomic) probability measure defined on B. Our standard
probability spaces will be assumed to be complete - i.e., B contains all µ-null
sets.

An isomorphism between standard probability spaces (Xi ,Bi , µi ), i = 1, 2 is a
bimeasurable measure-preserving bijection of conull sets; i.e., it is a bijective
map T : X1 \ N1 → X2 \ N2, where Ni are µi -null sets, such that

1 E ∈ B2⇔T−1(E) ∈ B1

2 E ∈ B2 ⇒ µ1(T
−1(E)) = µ2(E).

Note: For each isomorphism T as above, the equation

αT (f ) = f ◦ T−1

defines an isomorphism of von Neumann algebras:

αT : L∞(X1,B1, µ1) → L∞(X2,B2, µ2).

Further, the map T 7→ αT is a homomorphism of Aut(X ,B, µ) into
Aut(L∞(X ,B, µ)).
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Ergodic Theory

Definition: A homomorphism Γ ∋ γ → Tγ ∈ Aut(X ,B, µ) is called an action of
Γ on (X ,B, µ); such an action is said to be ergodic if it satisfies any of the
following equivalent conditions:

1 E ∈ B, µ(T−1
γ (E)∆E) = 0∀γ ∈ Γ ⇒ µ(E) = 0 or µ(X \ E) = 0.

2 E , F ∈ B, µ(E), µ(F ) > 0 ⇒ ∃γ ∈ Γ such that µ(E ∩ T−1
γ (F )) > 0

3 f ∈ L∞(X ,B, µ), f ◦ Tγ = f a.e. ∀γ ∈ Γ ⇒ ∃C ∈ C such that f = C a.e.

4 f ∈ L2(X ,B, µ), f ◦ Tγ = f a.e. ∀γ ∈ Γ ⇒ ∃C ∈ C such that f = C a.e.
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Group-measure space (a.k.a. crossed-product) construction

Let A = L∞(X ,B, µ) where (X ,B, µ) is a standard probability space, and
suppose α is an action of a countable group Γ on (X ,B, µ).
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Group-measure space (a.k.a. crossed-product) construction

Let A = L∞(X ,B, µ) where (X ,B, µ) is a standard probability space, and
suppose α is an action of a countable group Γ on (X ,B, µ).

The equations

(π(f )ξ)(κ) = (f ◦ ακ)ξ(κ)

(λ(γ)ξ)(κ) = ξ(γ−1κ)

define, resp., a *-homomorphism of A and a unitary representation of Γ on the
Hilbert space ℓ2(Γ, L2(X ,B, µ)) which satisfy the commutation relation

λ(γ)π(f )λ(γ)−1 = π(f ◦ αγ−1)
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Group-measure space (a.k.a. crossed-product) construction

Let A = L∞(X ,B, µ) where (X ,B, µ) is a standard probability space, and
suppose α is an action of a countable group Γ on (X ,B, µ).

The equations

(π(f )ξ)(κ) = (f ◦ ακ)ξ(κ)

(λ(γ)ξ)(κ) = ξ(γ−1κ)

define, resp., a *-homomorphism of A and a unitary representation of Γ on the
Hilbert space ℓ2(Γ, L2(X ,B, µ)) which satisfy the commutation relation

λ(γ)π(f )λ(γ)−1 = π(f ◦ αγ−1)

Def: The crossed-product is defined to be the generated von Neumann algebra

A ⋊α Γ = (π(A) ∪ λ(Γ))′′

V.S. Sunder IMSc, Chennai II1 factors and Ergodic Theory



The Crossed-Product II1 factor

Theorem: Let X ,B, µ) be a non-atomic standard probability space. Suppose
α : G → Aut(X/B, µ) defines a free action of Γ; i.e., suppose
µ({x ∈ X : αγ(x) = x}) = 0 ∀γ 6= 1 ∈ Γ.

Then A ×α Γ is a II1 factor iff the action is ergodic.
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The Crossed-Product II1 factor

Theorem: Let X ,B, µ) be a non-atomic standard probability space. Suppose
α : G → Aut(X/B, µ) defines a free action of Γ; i.e., suppose
µ({x ∈ X : αγ(x) = x}) = 0 ∀γ 6= 1 ∈ Γ.

Then A ×α Γ is a II1 factor iff the action is ergodic.

Example: Let Γ = Z, X = T,B = BT and µ be normalised arc-length, so
µ(X ) = 1; let the action be defined by αn(e

2πiθ) = e2πi(θ+nφ), where φ is
irrational.

More generally, we could have considered the action on a compact second
countable group defined by translation of any countable dense subgroup.
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Standard Equivalence Relations

Suppose Γ acts freely and ergodically on a standard probability space (X ,B, µ)
(and preserves µ) - so M = A ⋊ Γ is a II1 factor.

It turns out that, as far as the factor M is concerned, the group Γ itself is not
important; what matters is the relation

R = RΓ = {(x , γ · x) : x ∈ X , γ ∈ Γ}.

This equivalence relation is a standard Borel space with the Borel structure
given by C = {B ∈ B × B : B ⊂ R}, and it has countable equivalence classes.
Also, there is a natural σ-finite ‘counting measure’ ν defined on (R, C) by

νl(C) =

Z

X

|π−1
l (x) ∩ C |dµ(x)

=

Z

X

|π−1
r (y) ∩ C |dµ(y)

= νr (C)

where πl : R → X and πr : R → X are the left- and right-projection defined by
πl(y , z) = y = πr (x , y).
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Abstract standard equivalence relations

Feldman and Moore initiated the study of abstract standard equivalence
relations R with countable equivalence classes, which are µ-invariant in the
sense that the associated ‘left- and right- counting measures’ νl and νr agree.
(We shall simply write ν for this ‘counting’ measure.)
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Abstract standard equivalence relations

Feldman and Moore initiated the study of abstract standard equivalence
relations R with countable equivalence classes, which are µ-invariant in the
sense that the associated ‘left- and right- counting measures’ νl and νr agree.
(We shall simply write ν for this ‘counting’ measure.)

Such an R is called ‘ergodic’ if the only Borel subsets of X which are
‘R-saturated’ are µ-null or conull. They proved that any standard equivalence
relation R ⊂ X × X which is µ-invariant can be realised as an RΓ for a
necessarily ergodic and measure-preserving action of some countable group Γ,
and asked if the action could always be chosen to be a free one. Later, Furman
showed that this was not necessarily so.
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Abstract standard equivalence relations

Feldman and Moore initiated the study of abstract standard equivalence
relations R with countable equivalence classes, which are µ-invariant in the
sense that the associated ‘left- and right- counting measures’ νl and νr agree.
(We shall simply write ν for this ‘counting’ measure.)

Such an R is called ‘ergodic’ if the only Borel subsets of X which are
‘R-saturated’ are µ-null or conull. They proved that any standard equivalence
relation R ⊂ X × X which is µ-invariant can be realised as an RΓ for a
necessarily ergodic and measure-preserving action of some countable group Γ,
and asked if the action could always be chosen to be a free one. Later, Furman
showed that this was not necessarily so.

FM also associated a II1 factor LR to such an ergodic R, which reduces to the
crossed product in the concrete example of a free ergodic action.
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Orbit equivalence

Def: Two (probobility measure preserving) dynamical systems
(Xi ,Bi , µi , Γi , αi ), i = 1, 2 (or equivalently, their induced equivalence relations
Ri ) are said to be orbit equivalent if there exists an isomorphism T : X1 → X2

such that T (α1(Γ1)x) = α2(Γ2)Tx µ1 − a.e. (or equivalently,
(T × T )(R1) = R2 mod ν2).
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Orbit equivalence

Def: Two (probobility measure preserving) dynamical systems
(Xi ,Bi , µi , Γi , αi ), i = 1, 2 (or equivalently, their induced equivalence relations
Ri ) are said to be orbit equivalent if there exists an isomorphism T : X1 → X2

such that T (α1(Γ1)x) = α2(Γ2)Tx µ1 − a.e. (or equivalently,
(T × T )(R1) = R2 mod ν2).

Theorem: With the foregoing notation, write Ai = L∞(Xi ,Bi , µi ) TFAE:

1 We have an isomorphism of pairs

(A1 ⋊α1 Γ1, A1) ∼= (A2 ⋊α2 Γ2, A2)

2 R1 and R2 are orbit equivalent.

Questions: When are two standard equivalence relations orbit equivalent?
How much of (Γ, α) does R remember?
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Orbit Equivalence

Assume henceforth that all our probability spaces are non-atomic.

Theorem: (Dye) The equivalence relations determined by any two ergodic
actions of Z are orbit equivalent. 2

A volume of work by many people, notably Dye, Connes, Feldman, Krieger, ..
culminated in the following result.
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Orbit Equivalence

Assume henceforth that all our probability spaces are non-atomic.

Theorem: (Dye) The equivalence relations determined by any two ergodic
actions of Z are orbit equivalent. 2

A volume of work by many people, notably Dye, Connes, Feldman, Krieger, ..
culminated in the following result.

Theorem: (Ornstein-Weiss) Ergodic actions (on a standard non-atomic
probabaility space) of any two infinite amenable groups produce orbit
equivalent equivalence relations.

Equivalence relations determined by such actions of such groups are
characterised by the following property of hyperfiniteness:

there exists a sequence of standard equivalence relations Rn on X with finite
equivalence classes such that

Rn ⊂ Rn+1∀n and R = ∪nRn.
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SOE and ME

For ergodic actions, the quotient space Γ\X has only a trivial Borel structure;
the standard equivalence relation R is a good substitute. If µ(A) > 0, then
almost every orbit meets A, so the induced relation RA = R∩ (A × A) should
be an equally good candidate to describe the space of orbits in X .
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SOE and ME

For ergodic actions, the quotient space Γ\X has only a trivial Borel structure;
the standard equivalence relation R is a good substitute. If µ(A) > 0, then
almost every orbit meets A, so the induced relation RA = R∩ (A × A) should
be an equally good candidate to describe the space of orbits in X .

Defs.: (a) Call two equivalence relations Ri stably orbit equivalent (or simply
SOE), if there exists Borel subsets Ai ⊂ Xi of positive measure which meet
almost every orbit, a constant c > 0, and a Borel isomorphism
f : (A1,BA1) → (A2,BA2) which scales measure by a factor of c, such that
(f × f )(RA1) = RA2 (mod null sets). The constant c is called the compression
constant of the SOE.
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SOE and ME

For ergodic actions, the quotient space Γ\X has only a trivial Borel structure;
the standard equivalence relation R is a good substitute. If µ(A) > 0, then
almost every orbit meets A, so the induced relation RA = R∩ (A × A) should
be an equally good candidate to describe the space of orbits in X .

Defs.: (a) Call two equivalence relations Ri stably orbit equivalent (or simply
SOE), if there exists Borel subsets Ai ⊂ Xi of positive measure which meet
almost every orbit, a constant c > 0, and a Borel isomorphism
f : (A1,BA1) → (A2,BA2) which scales measure by a factor of c, such that
(f × f )(RA1) = RA2 (mod null sets). The constant c is called the compression
constant of the SOE.

(b) On the other hand, call two countable groups Γi , i = 1, 2 measurably
equivalent (or simply ME) if they admit commuting free actions on a standard
(possibly σ-finite) measure space (X ,B, µ), which admit a fundamental domain

Fi of finite measure; call the ratio µ(F2)
µ(F1)

the compression constant of the ME.
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SOE and ME

For ergodic actions, the quotient space Γ\X has only a trivial Borel structure;
the standard equivalence relation R is a good substitute. If µ(A) > 0, then
almost every orbit meets A, so the induced relation RA = R∩ (A × A) should
be an equally good candidate to describe the space of orbits in X .

Defs.: (a) Call two equivalence relations Ri stably orbit equivalent (or simply
SOE), if there exists Borel subsets Ai ⊂ Xi of positive measure which meet
almost every orbit, a constant c > 0, and a Borel isomorphism
f : (A1,BA1) → (A2,BA2) which scales measure by a factor of c, such that
(f × f )(RA1) = RA2 (mod null sets). The constant c is called the compression
constant of the SOE.

(b) On the other hand, call two countable groups Γi , i = 1, 2 measurably
equivalent (or simply ME) if they admit commuting free actions on a standard
(possibly σ-finite) measure space (X ,B, µ), which admit a fundamental domain

Fi of finite measure; call the ratio µ(F2)
µ(F1)

the compression constant of the ME.

Theorem: (Furman) Γ1 is ME to Γ2 with compression constant c if and only if
Γ1 and Γ2 admit free actions on standard probability space such that the
associated equivalence relations are SOE with compression constant c.

V.S. Sunder IMSc, Chennai II1 factors and Ergodic Theory



ℓ
2 Betti numbers

Atiyah introduced ℓ2 Betti numbers βn for actions of countable groups Γ on
manifolds with compact quotients, basically as the von Neumann dimension of
the LΓ module furnished by the space of L2 harmonic forms of degree n.
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ℓ
2 Betti numbers

Atiyah introduced ℓ2 Betti numbers βn for actions of countable groups Γ on
manifolds with compact quotients, basically as the von Neumann dimension of
the LΓ module furnished by the space of L2 harmonic forms of degree n.

This was then considerably extended by Gromov and Cheeger, (still using von
Neumann dimension, but exercising great caution) who made sense of the
sequence {βn(Γ)} of ℓ2 Betti numbers for any countable group.
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ℓ
2 Betti numbers

Atiyah introduced ℓ2 Betti numbers βn for actions of countable groups Γ on
manifolds with compact quotients, basically as the von Neumann dimension of
the LΓ module furnished by the space of L2 harmonic forms of degree n.

This was then considerably extended by Gromov and Cheeger, (still using von
Neumann dimension, but exercising great caution) who made sense of the
sequence {βn(Γ)} of ℓ2 Betti numbers for any countable group.

Gaboriau then made sense, (still in terms of the von Neumann dimension of a
suitable M-module of ℓ2-chains) of ℓ2 Betti numbers for any standard
equivalence relation, and related these to the objects defined by Cheeger and
Gromov.
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Gaboriau’s rigidity results: a sample

Theorem:

1 If an equivalence relation R is produced by a free action of a countable
group Γ, then βn(Γ) = βn(R), where the left side is defined á la
Gromov-Cheeger and the right side is defined á la Gaboriau.

2 If Γi , i = 1, 2 are ME with compression constant c, then βn(Γ2) = cβn(Γ1);
in particular, βn(Γ1) = βn(Γ2) if the Γi admit free actions which produce
orbit equivalent equivalence relations.
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Gaboriau’s rigidity results: a sample

Theorem:

1 If an equivalence relation R is produced by a free action of a countable
group Γ, then βn(Γ) = βn(R), where the left side is defined á la
Gromov-Cheeger and the right side is defined á la Gaboriau.

2 If Γi , i = 1, 2 are ME with compression constant c, then βn(Γ2) = cβn(Γ1);
in particular, βn(Γ1) = βn(Γ2) if the Γi admit free actions which produce
orbit equivalent equivalence relations.

The simplest example of two ME groups is a pair of lattices in a locally
compact group with not necessarily compact quotients, acting by left- and
right- multiplication on the ambient group.
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Gaboriau’s rigidity results: a sample

Theorem:

1 If an equivalence relation R is produced by a free action of a countable
group Γ, then βn(Γ) = βn(R), where the left side is defined á la
Gromov-Cheeger and the right side is defined á la Gaboriau.

2 If Γi , i = 1, 2 are ME with compression constant c, then βn(Γ2) = cβn(Γ1);
in particular, βn(Γ1) = βn(Γ2) if the Γi admit free actions which produce
orbit equivalent equivalence relations.

The simplest example of two ME groups is a pair of lattices in a locally
compact group with not necessarily compact quotients, acting by left- and
right- multiplication on the ambient group.

Theorem: (Gaboriau)

1 No lattice in SP(n, 1) is ME to a lattice in SP(p, 1) if n 6= p.

2 No lattice in SU(n, 1) is ME to a lattice in SU(p, 1) if n 6= p.

3 No lattice in SO(2n, 1) is ME to a lattice in SO(2p, 1) if n 6= p.
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Kadison’s conjecture:

Proof: This is due to the following computations made by Borel:

βi (Γ(SP(m, 1))) 6= 0 ⇔ i = 2m

βi (Γ(SU(m, 1))) 6= 0 ⇔ i = m

βi (Γ(SO(2m, 1)) 6= 0 ⇔ i = m

where we write Γ(G ) to denote any lattice in G .

2Actually, Kadison wondered if M2(M) ∼= M for any II1 factor M.

V.S. Sunder IMSc, Chennai II1 factors and Ergodic Theory



Kadison’s conjecture:

Proof: This is due to the following computations made by Borel:

βi (Γ(SP(m, 1))) 6= 0 ⇔ i = 2m

βi (Γ(SU(m, 1))) 6= 0 ⇔ i = m

βi (Γ(SO(2m, 1)) 6= 0 ⇔ i = m

where we write Γ(G ) to denote any lattice in G .

Kadison’s conjecture:

If M is a II1 factor, d ∈ (0,∞) and Hd is an M-module with dimM(Hd) = d ,
then EndM(Hd) = Md(M). The fundamental group of M is defined by

F(M) = {d ∈ (0,∞) : M ∼= Md(M)}

and Kadison’s conjecture2 (unsolved for several decades) asks if F(M) - which
is always a mutiplicative subgroup of R

× - can be trivial.

2Actually, Kadison wondered if M2(M) ∼= M for any II1 factor M.

V.S. Sunder IMSc, Chennai II1 factors and Ergodic Theory



Popa’s use of Gaboriau’s work

Using Gaboriau’s ℓ2 Betti numbers, Popa showed the existence of many
countable groups admitting free ergodic actions α which produce equivalence
relations R such that the corresponding II1 factor LR has trivial fundamental
group.

V.S. Sunder IMSc, Chennai II1 factors and Ergodic Theory



Popa’s use of Gaboriau’s work

Using Gaboriau’s ℓ2 Betti numbers, Popa showed the existence of many
countable groups admitting free ergodic actions α which produce equivalence
relations R such that the corresponding II1 factor LR has trivial fundamental
group.

In fact L∞(T2) ⋊ SL(2, Z) is an example of such a factor.
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Popa’s use of Gaboriau’s work

Using Gaboriau’s ℓ2 Betti numbers, Popa showed the existence of many
countable groups admitting free ergodic actions α which produce equivalence
relations R such that the corresponding II1 factor LR has trivial fundamental
group.

In fact L∞(T2) ⋊ SL(2, Z) is an example of such a factor.

Further, Popa and Gaboriau have shown that the free group Fn, 2 ≤ n < ∞
admits uncountably many free ergodic actions αi such that

The relations Rαi
are pairwise non-SOE; and

F(LRαi
) = {1} ∀i .
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Popa’s strong rigidity theorems

Popa has gone on to prove several stunning strong rigidity theorems. Rather
than state his results too precisely, which would entail a fair bit of preparation,
we shall merely content ourselves by conveying a flavour of one of his theorems:

3Bernoulli actions, for instance.
4‘Relative Kazhdan property (T)’ features in a description of the permssible kind of groups.
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Popa’s strong rigidity theorems

Popa has gone on to prove several stunning strong rigidity theorems. Rather
than state his results too precisely, which would entail a fair bit of preparation,
we shall merely content ourselves by conveying a flavour of one of his theorems:

Certain kinds of free ergodic actions3 of certain kinds of groups 4 G are such
that if the resulting equivalence relation R has the property that RY is
isomorphic to RΓ for some Borel subset Y and some free ergodic action of
some countable group Γ, then Y must have full measure, and the actions of Γ
and G must be conjugate through a group isomorphism.

With Γ,R as above, if Y is a Borel set with 0 < µ(Y ) < 1, it is seen that the
relation RY cannot be obtained as the equivalence relation produced from a
free ergodic action of any countable group. (We thus recover Furman”s result.)

3Bernoulli actions, for instance.
4‘Relative Kazhdan property (T)’ features in a description of the permssible kind of groups.
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