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When Gelfand passed away on October 5th, 2009, the world
might have seen the last of the classical scholars (in the mould of
Henri Poincare or John von Neumann) whose accomplishments/scholarship
were not confined by artificial borders. The wikipedia ‘paraphrases’
his work thus:

‘Israel Gelfand is known for many developments including:

• the Gelfand representation in Banach algebra theory;

• the Gelfand Mazur theorem in Banach algebra theory;

• the Gelfand Naimark theorem;

• the Gelfand Naimark Segal construction;

• Gelfand Shilov spaces

• the Gelfand Pettis integral;

• the representation theory of the complex classical Lie groups;

• contributions to the theory of Verma modules in the represen-
tation theory of semisimple Lie algebras (with I.N. Bernstein
and S.I. Gelfand);

• contributions to distribution theory and measures on infinite-
dimensional spaces;

• the first observation of the connection of automorphic forms
with representations (with Sergei Fomin);

• conjectures about the index theorem;
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• Ordinary differential equations (Gelfand Levitan theory);

• work on calculus of variations and soliton theory (Gelfand Dikii
equations);

• contributions to the philosophy of cusp forms;

• Gelfand Fuks cohomology of foliations;

• Gelfand Kirillov dimension;

• integral geometry;

• combinatorial definition of the Pontryagin class;

• Coxeter functors;

• generalised hypergeometric series;

• Gelfand - Tsetlin patterns;

• and many other results, particularly in the representation the-
ory for the classical groups.’

When I was requested to write something about Gelfand, my
first reaction was to say ‘how can I hope to do justice to his breadth
and depth of mathematical contributions?’ and at once realised that
no one can. So I agreed to write the piece, and I shall try to say
something about what I am familiar with, namely his work related
to operator algebras, as paraphrased in the first four items in the
awe-inspiring list above.

As a brief advertisement of the sort of thing that these considera-
tions permit us to do, consider the instance of fractional derivatives.
To see what the meaning of D

1

2 f or the ‘derivative of order half’ of
f might be, or what Da might mean for general a, first review the
meaning of ta for a number t: t 7→ ta = ea log t is a meaningfully
defined, in fact even continuous function for t > 0. What Gelfand’s
theory achieves is to permit us to make the transition from merely
polynomial functions to moregeneral functions f(T ) of operators,
provided the operators are ‘good’ and the functions are well-behaved
on appropriate domains. The reason Da can be made sense of is a
combination of a couple of things, the first of of which we will not be
able to go into: (a) it can be viewed as a ‘positive self-adjoint, albeit
unbounded’, operator; and (b) a ‘continuous functional calculus’ can
be defined for self-adjoint operators.
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Operator algebras - which arose at the hands of von Neumann,
primarily from considerations of the then new quantum mechanics -
are far-reaching generalisations of the familiar algebras of continuous
functions. They deal typically with ‘non-commutative involutive al-
gebras’. A motivating toy example is provided by the class Mn(C) of
n × n matrices ((aij)) where aij , 1 ≤ i, j ≤ n are complex numbers,
which is an algebra with the usual definition of linear combinations
and product of matrices; the involution is the assoiation ((aij)) =
A 7→ A∗ = ((aji)) to a matrix of its adjoint or conjugate transpose
matrix. A matrix A satisfying A = A∗ is said to be self-adjoint. If
A is self-adjoint, then the set C∗(A) = {

∑k
i=1

ckA
k : ck ∈ C, k ∈ N}

of all polyonials in A is a commutative ∗-subalgebra of Mn(C). The
celebrated spectral theorem says that this entire sub-algebra can be
diagonalised meaning that there exists a unitary matrix U ∈ Mn(C)1

such that UCU∗ is a diagonal matrix for every C ∈ C∗(A).
It is true that (i) any matrix Z admits a (unique) Cartesian de-

composition Z = X + iY , with X, Y self-adjoint, as well as a polar
decomposition Z = UP with U unitary, and P ‘positive’ (mean-
ing P can be written as A2 for some self-adjoint matrix); and that
(ii) the above two facts and statements which can be proved easily
about commutative ∗-subalgebras of Mn(C) lead to a lot of state-
ments which can be deduced about general matrices.

The generalisation of the last sentence from Mn(C) to more gen-
eral ‘operator algebras’ is what gives crucial importance to the un-
derstanding of commutative operator algebras, and more generally,
to the study of commutative Banach algebras,2 and this is where
the Gelfand transform makes an appearance. Taking a cue from the
mileage obtained from this strategy by commuatative algebraists,
Gelfand started studying the (proper) maximal ideals of a commu-
tative Banach algebra. The starting point in the analysis is the
striking Gelfand-Mazur theorem which asserts that the only complex
Banach algebra in which every non-zero element is invertible is the
one-dimensional C.

The spectrum sp x of an element x in a not necessarily commu-
tative Banach algebra A is defined to be

sp x = {λ ∈ C : (x − λ.1)is not invertible} .

1A matrix U is unitary if U∗U = UU∗ = I; i.e., U∗ = U−1.
2A Banach algebra A is an algebra which comes equipped with a norm such

that (i) A is complete with respect to the distance coming from the norm, and
(ii) ‖xy‖ ≤ ‖x‖ + ‖y‖, which implies that multiplication is continuous. We shall
assume that A has a multiplicative identity 1 and that ‖1‖ = 1.

4



Using some complex function theory, one proves that sp x is
always a non-empty compact set. The next proposition is an almost
immediate consequence of this fact and the Gelfand-Mazur theorem.

Remark 0.1. A guiding example to keep in mind is A = Mm(C), in
which case sp T is nothing but the set of eigenvalues of the matrix
T . In the example of the matrix algebra, this non-emptiness of the
sectrum of all matrices amounts to the fact that all complex poly-
nomials have complex roots. Thus the presence of complex function
theory should come as no surprise.

Proposition 0.2. 1. The following conditions on an I ⊂ A are
equivalent:

• I is a (proper) maximal ideal in A - meaning {0} 6= I 6=
A, and x, y ∈ I, a ∈ A, λ ∈ C ⇒ ax, λx + y ∈ I;

• there exists a homomorphism φ : A → C of unital complex
algebras (i.e.,(a) φ((αx + y)z) = αφ(xz) + φ(yz) for all
x, y, z ∈ A and α ∈ C, and (b) φ(1) = 1) such that

I = ker φ = {x ∈ A : φ(x) = 0} .

and the correspondence I↔φ is bijective

2. For any x ∈ A, the following conditions on a complex number
λ are equivalent:

• λ ∈ sp x

• there exists a complex homomorphism φ as above such that
φ(x) = λ.

Remark 0.3. It should be mentioned that commutativity of A is cru-
cial for this theorem to be valid. For instance, if A = Mn(C), n ≥ 2,
then although part 1 of the above proposition is vacuously true - in
that there exist neither proper maximal ideals nor complex homo-
morphisms -, part 2 is totally false.

What is true, however, is that knowledge of the commutative
theory does lead to deep insights into the non-commutative world.

A consequence of part 2 of the previous Proposition and the so-
called ‘spectral radius formula’3 is that if φ is a complex homomor-
phism on A, then

|φ(x)| ≤ ‖x‖ ∀x ∈ A ,

3This says that

sup{|λ| : λ ∈ sp x} = lim
n→∞

‖xn‖
1

n
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and consequently, ‖φ‖ ≤ 1.
The set of all unital complex homomorphisms on a unital commu-

tative Banach algebra A is called the spectrum of A and is denoted
by Â. In case A does not have a unit, one takes Â to be the set of all
homomorphisms φ : A → C which are not identically equal to zero.
(In the unital case, being not identically zero and sending 1 to 1 are
equivalent.) It is a fact that there exists a unital Banach algebra A1

and a distinguished homomorphism φ0 ∈ ĈA1 such that A can be
identified with ker φ0.

The remarks of the preceding two paragraphs, taken in conjunc-
tion with a result of Alaoglu on weak∗ topologies, have the following
consequence:

Theorem 0.4. Define the Gelfand transform to be the assignment,
to each x in A, of the function Γ(x) = x̂ : Â → C defined by

x̂(φ) = φ(x) .

Then:

• There is a canonical topology on Â such that, if A has an iden-
tity, then Â is a compact Hausdorff space, and otherwise, a
locally compact Hausdorff space, with one-point compactifica-

tion identifiable with Â1 (and φ0 playing the role of the point
at infinity).

• Γ(x) is a continuous function on Â which ‘vanishes at infinity’
if A does not have identity; one says x̂ ∈ C(Â) or x̂ ∈ C0(Â)
if A has or does not have an identity.

• Γ : A → C(Â) (resp., C0(Â)) is a contractive Banach alge-
bra homomorphism - meaning that Γ((αx + y)z) = (αΓ(x) +
Γ(y))Γ(z) and ‖Γ(x)‖ ≤ ‖x‖

In the previous theorem, the algebra operations in the spaces of
continuous functions are the obvious pointwise ones, while the norm
is the ‘sup’ norm: ‖f‖ = sup{|f(x)| : x in the domain of f}.

Thus, the Gelfand transform maps every commutative Banach
algebra into an algebra of continuous functions.

Example 0.5. 1. The space ℓ1(Z) = {α = ((αn))n∈Z :
∑

n |αn| <
∞} is a Banach algebra with respect to ‘convolution product’
α ∗ β = γ defined by

γn =
∑

k∈Z

αkβn−k
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and
‖α‖ =

∑

n

|αn|

Define δn to be the sequence whose only non-zero coordinate is
a 1 in the n-th place, and notice that

δnδm = δm+n

and in particular δ0 is the 1 of ℓ1(Z); further,

α ∈ ℓ1(Z) ⇒ α =
∞∑

n=−∞

αnδn .

It follows that if φ ∈ ℓ̂1(Z) and α ∈ ℓ1(Z), then

φ(α) = φ(
∞∑

n=−∞

αnδn)

=
∞∑

n=−∞

αnφ(δn)

=
∞∑

n=−∞

αnφ(δn
1 )

=
∞∑

n=−∞

αnφ(δ1)
n!.

So we have an identification

̂(ℓ1(Z)) ∋ φ 7→ φ(δ1) ∈ T = {z ∈ C : |z| = 1} ,

and we find that α̂(z) =
∑

n αnzn for all α ∈ ℓ1(Z).

2. More generally than in the previous example, any locally com-
pact abelian group G possesses an intrinsic Haar measure µ
which is translation invariant, meaning µ(E) = µ(sE) for all
s ∈ G (where sE = {st : t ∈ E}; the associated L1(G) = {f :∫
G
|f |dµ < ∞} is a commutative Banach algebra with respect

to convolution product defined by

(f ∗ g)(t) =

∫

G

f(s)g(t − s)dµ(t)
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and norm ‖f‖ =
∫
G
|f |dµ. It is a fact that if Γ denotes the set

{γ : G → T|γ is a continuous group homomorphism} then Γ is
a group with respect to the product rule

(γ1γ2)(t) = γ1(t)γ2(t) ;

and that the equation

φγ(f) =

∫

G

f(s)γ(s)dµ(s)

defines a bijective correspondence Γ ∋ γ → φγ ∈ L̂1(G). The

locally compact topology on L̂1(G) equips Γ with the structure
of a locally compact group, and the Gelfand transform

f̂(γ) =

∫

G

f(s)γ(s)dµ(s)

is essentially nothing but the classical Fourier transform!

In general, the Gelfand transform need not be 1-1; however one
good consequence of this fact comes from an investigation of the best
possible situation. To see this, begin by noting that, in addition to
being a commutative Banach algebra, the space C(X) (resp., C0(X))
of continuous functions on a compact Hausdorff space (resp., contin-
uous functions vanishing at infinity on a locally compact Hausdorff
space) X has the following extra structure:

there exists an involution f 7→ f∗ (where f∗(x) = f(x)) which
satisfies the following properties:

(αf + g)∗ = ᾱf∗ + g∗

(fg)∗ = g∗f∗

(f∗)∗ = f

‖f∗f‖ = ‖f‖2 (0.1)

These axioms are sufficiently important to warrant a definition.
A Banach algebra A is called a C∗-algebra if it admits an involution
satisfying the conditions listed in (0.1). A possible justification for
this definition lies in the following result.

Theorem 0.6. (Gelfand-Naimark theorem) The Gelfand trans-
form is a norm-preserving isomorphism of a commutative Banach
algebra A (onto C(Â) or C0(Â), according as whether A has an
identity or not) if and only if A has the structre of a commutative
C∗-algebra. Further, in that case, Γ is automatically an isomorphism
of *-algebras (i.e., also Γ(x∗) = Γ(x)).
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Thus, not only does the Gelfand-Naimark theorem identify the
precise mathematical structure possessed by the function algebra
C(X) (as that of a commutative unital C∗-algebra), it can also be
seen to identify the important notion of a neither necessarily com-
mutative nor unital C∗-algebra. (The astute reader might have sus-
pected the arrival of non-commutative C∗-algebras from our listing
(0.1) of the axioms where we had demanded that the involution re-
verse products.)

Classic examples of non-commutative C∗-algebras are Mn(C), n >
1, and more generally, their (infinite-dimensional version, given by)
the set L(H) of all continuous linear operators on a Hilbert space H,
where the product AB = A ◦B is given by composition of maps, the
norm is given by

‖A‖ = sup{‖Ax‖ : x ∈ H, ‖x‖ ≤ 1} ,

and the involution is given by setting A∗ to be the unique element4

of L(H) with the property that

〈Ax, y〉 = 〈x, A∗y〉 ∀x, y ∈ H.

More generally, any subalgebra A0 of L(H), or of any C∗-algebra
A for that matter, which is self-adjoint and norm-closed (meaning
{x}n ⊂ A0, x ∈ A, ‖xn − x‖ → 0 ⇒ x, x∗ ∈ A0) is a C∗-algebra
in its own right. Each subset S of a C∗-algebra is contained in
a smallest C∗-subalgebra C∗(S), which is then said to be ‘gener-
ated’ by S. For instance, C∗({x}) is the closure of the set of lin-
ear combinations of ‘words’ in x and x∗ (such as x∗xxx∗x∗xxx for
instance). In particular, it is not hard to see that C∗({x}) is com-
mutative precisely when xx∗ = x∗x; such elements are said to be
normal. Thus, examples of normal elements are self-adjoint (x = x∗)
and unitary (uu∗ = u∗u = 1) ones. It is a pleasant (and not too

deep a) fact that if x is normal, then ̂C∗({x}) = sp x and that
C∗({x}) ∼= {f ∈ {C(sp x) : f(0) = 0}. Thus the Gelfand-Naimark
theorem gives vital information - such, for instance, as the existence
and uniqueness of the positive square root of a positive element (i.e.,
a self-adjoint element with spectrum contained in [0,∞)) about the
C∗-subalgebras generated by normal elements.

4The existence and uniqueness of such an adjoint operator is a small propo-
sition and an easy consequence of the so-called Riesz lemma which says that
the only continuous linear functionals on H are of the form x 7→ 〈x, z〉 for some
(uniquely determined) element z ∈ H.
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By the way, one of the first facts that one proves about C∗-
algebras that is not a consequence of the commutative theory (the
point being that x may not commute with the z of (2) below) is this
statement regarding positivity:

The following conditions on an element x ∈ A are equivalent:

1. x is self-adjoint and sp x ⊂ [0,∞).

2. there exists some z ∈ A such that x = z∗z

Such an x is said to be positive and we write x ≥ 0 or x ∈ A+ to
indicate this fact.

Just as the Gelfand-Naimark theorem identifies commutative uni-
tal C∗-algebras as algebras of continuous functions on a compact
Hausdorff space, there is a ‘non-commutative Gelfand-Naimark the-
orem’ which shows that any C∗-algebra A is isomorphic to a C∗-
subalgebra of some L(H) - which is another way of saying that A
admits a faithful (= 1-1) representation on a Hilbert space H (=
a *-homomorphism into L(H)). The key is to find a way to con-
struct one, and then enough of them, and finally a faithful one. This
comes from an ingenious adaptation of integration theory to the non-
commutative context.

Let us see how to construct a representation of C[0, 1], for in-
stance. The first Hilbert space one can think of in connection with
[0, 1] is the Hilbert space L2([0, 1]) which may be thought of as the
completion of C[0, 1] with respect to the norm given by the inner-
product

〈f, g〉 =

∫
1

0

f(x)g(x)dx ;

and there is a most natural representation π : C([0, 1]) → L(L2([0, 1]),
given by

(π(f)ξ)(x) = f(x)ξ(x) ,

where elements ξ ∈ L2([0, 1]) are viewed as (measurable and) square-
integrable functions on [0, 1]. The fact that all this goes over per-
fectly, almost verbatim, to the case of any C∗-algebra, is the content
of the immensely useful Gelfand-Naimark-Segal construction.

The bridge needed to make this transition is provided by the
celebrated Riesz representation theorem which may be stated thus:

Theorem 0.7. (Riesz representation theorem) The following
conditions on a linear functional φ on C(X) (X compact Hausdorff)
are equivalent:
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1. φ preserves positivity: f ≥ 0 ⇒ φ(f) ≥ 0;

2. there exists a finite positive measure µ defined on (the Borel
sets in) X such that

φ(f) =

∫

X

fdµ ;

3. φ is a continuous, i.e. bounded, linear functional on C(X) and
‖φ‖ = φ(1) (where 1 denotes the identity of C(X)).

Call a linear functional φ on a C∗-algebra positive if φ(z∗z) ≥
0 ∀z ∈ A. Given such a φ, the equation 〈x, y〉φ = φ(y∗x) is seen
to define a ‘semi-inner-product’ on A - meaning it is sesquilinear
and positive semi-definite; and consequently the Cauchy-Schwarz in-
equality is valid:

|φ(y∗x)|2 = |〈x, y〉φ|

≤ 〈x, x〉φ〈y, y〉φ

= φ(x∗x)φ(y∗y) . (0.2)

Putting y = 1 in (0.2) yields

|φ(x∗x)|2 ≤ φ(x∗x)φ(1)

≤ ‖x∗x‖φ(1)2

≤ ‖x‖2φ(1)2

thereby establishing that

φ ≥ 0 ⇒ ‖φ‖ = φ(1) (0.3)

even for non-commutative C∗-algebras.
A second useful consequence of (0.2) is that for x ∈ A, we have

φ(x∗x) = 0⇔φ(y∗x) = 0 ∀y ∈ A ;

hence the so-called radical

Rad(φ) = {x ∈ A : φ(x∗x) = 0}

of a positive linear functional is always a left-ideal in A.
This has two consequences:

1. The quotient vector space A/Rad(φ) has a genuine inner prod-
uct given by

〈x̂, ŷ〉 = φ(y∗x)

where we write ẑ for the coset z + Rad(φ);
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2. For each x ∈ A, the equation λ(x)ŷ = x̂y yields an unambigu-
ously defined linear transformation λ(x) on A/Rad(φ).

We may summarise the conclusions of this Gelfand-Naimark-

Segal (GNS, for short) construction thus::

Theorem 0.8. Let φ be a positive functional on a C∗-algebra. Then
there exists a representation π of A on a Hilbert space H and a vector
ξ ∈ H such that

φ(x) = 〈π(x)ξ, ξ〉 ∀x ∈ A.

Proof. Let H be the Hilbert space completion of the inner-product
space A/Rad(φ). We first assert that the λ(x) defined above is a
bounded operator on A/Rad(φ) and hence extends uniquely to a
bounded operator π(x) on H. For this we begin by noting that if,
for fixed y ∈ A, we define φy(z) = φ(y∗zy), then, φy ≥ 0 since
φy(x

∗x) = φ(y∗x∗xy) = φ((xy)∗(xy)) ≥ 0. Hence by an application
of (0.3) to φy, we find that

|φ(y∗zy)| = |φy(z)|

≤ φy(1)‖z‖

= ‖z‖φ(y∗y) ; (0.4)

and it follows that

‖λ(x)ŷ‖2
φ = ‖x̂y‖2

φ

= φ(y∗x∗xy)

≤ ‖x∗x‖φ(y∗y) by(0.4)

= ‖x‖2‖ŷ‖2
φ .

Hence indeed λ(x) is a bounded operator on A/Rad(φ) (of norm at
most ‖x‖), and hence extends uniquely to a bounded operator π(x)
on H.

If we set ξ = 1̂, then, by definition (π(A)ξ) = {x̂ : x ∈ A} is
dense in H. (One says ξ is a cyclic vector for the representation π.)
Also, note that for any x, y, z ∈ A, we have

〈π(x)ŷ, ẑ〉 = φ(z∗xy)

= φ((x∗z)∗y)

= 〈ŷ, π(x∗)ẑ〉 (0.5)

and the density assertion of the previous paragraph permits us to
conclude that π(x)∗ = π(x∗).
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A simple reasoning using this density in a similar fashion serves
to verify that π respects the algebra operations, and consequently
that π is indeed a representation. Finally, setting y = z = 1 in (0.5)
yields

〈π(x)ξ, ξ〉 = φ(x)

and all parts of the theorem are proved. �

In the case of A = C([0, 1]), with φ(f) =
∫

1

0
f(x)dx, we see that

Rad(φ) = 0. Such a positive functional is said to be faithful. If φ
were a faithful positive functional, then notice that the representation
obtained by the associated GNS construction is also faithful (i.e., 1-
1). (Reason: π(x) = 0 ⇒ φ(x∗x) = ‖π(x)ξ‖2 ⇒ x = 0. It is a
fact that any separable C∗-algebra admits a faithful state; and one
can fairly easily deduce the following non-commutative Glfand

Naimark Theorem, at least in the separable case.

Theorem 0.9. Any C∗-algbera A admits a faithful representation,
and is thus isomorphic to a C∗-subalgbera of some L(H). In case A
is separable, the Hilbert space H can be chosen to be separable.

All the material is the stuff of (beginning graduate-school level)
text-books in functional analysis. The book [Sun] is suggested as
a possible reference only because the author is sure that everything
contained here can be found there with all missing proofs.
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