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Operator algebras come in many flavours. For the purpose of this arti-
cle, however, the term is only used for one of two kinds of self-adjoint
algebras of operators on Hilbert space, viz., C∗-algebras (which are
norm-closed) or von Neumann algebras (which are closed in the
topology of pointwise strong convergence or equivalently, in the weak-
* topology it inherits as a result of being a Banach dual space). To
be fair, there are a number of people in India (eg., Gadadhar Misra,
Tirthankar Bhattacharyya, Jaydeb Sarkar, Santanu Dey, etc.,) who
work on non-selfadjoint algebras, mostly from the point of view of
connections with complex function theory; but in the interest of re-
stricting the size of this paper, I confine myself here to selfadjoint
algebras. I apologise for ways in which my own personal taste and
limitations colour this depiction of operator algebras. Another in-
stance of this arbitrary personal taste is a decision to concentrate
on the work of younger people. Thus, the work of the more senior
people who have worked in operator algebras is only seen via their
collaborations with younger people: e.g., KRP via Srinivasan and
Rajarama Bhat, Kalyan Sinha via Debashish, Partha, Arup, Raja,
etc,. and me via Vijay, Srinivasan and Panchugopal.

Not long ago, interest in operator algebras in India was restricted
to the three centres of the Indian Statistical Institute. Now, I am
happy to note that it has spread to IMSc, some IITs, IISERs, NISER,
JNU, ... . My role in this article has been merely that of compiling
inputs from many active Indian operator algebraists that came to my
mind. I wrote soliciting a response from a certain number of them,
then put together the responses received. (I apologise to those people
who were omitted in this process.) My colleague, Partha, with the
help of his collaborator Arup, agreed to take care of the C∗-related
inputs, while I take care of the von Neumann-related ones with the
help of my collaborator Vijay.

What follows are some areas of ongoing research done in von Neu-
mann algebras in India and some names of people doing such work:
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(a) subfactors and planar algebras, (Vijay Kodiyalam of IMSc, Chen-
nai); (b) quantum dynamical systems and complete positivity (Ra-
jarama Bhat of ISI, Bengaluru); (c) E0 semigroups (R. Srinivasan of
CMI, Chennai, and Panchugopal Bikram of NISER, Bhubhaneswar),
and (d) Masas in II1 von Neumann algebras and free Araki-Woods
factors (Kunal Mukherjee of IIT, Chennai, and Panchugopal Bikram
of NISER, Bhubhaneswar).

1. Subfactors

A subfactor is a unital inclusion N ⊆ M of factors - von Neumann
algebras with trivial centre. The focus will be on II1-subfactors
where both N and M are factors of type II1 in the Murray-von
Neumann classification. The origins of modern subfactor theory lie
in the paper [86] which defined a numerical invariant called the index
of such a subfactor and showed strikingly that it was quantised.

Over the next two decades, there was much work done on subfac-
tors. A major discovery was that of the Jones polynomial for knots
[88] which opened up a new chapter in knot theory. Other work
focused on an object known as the standard invariant of a subfac-
tor which had several apparently different axiomatisations such as
the paragroups of Ocneanu and the λ-lattices of Popa. The stan-
dard invariant was given a topological-combinatorial interpretation
as planar algebras in [87].

Very briefly, a planar algebra P is a collection of vector spaces
P(k,±) equipped with an action of the operad of planar tangles that
is subject to some conditions. Those planar algebras that arise from
finite-index subfactors satisfy further ‘niceness’ properties - including
the important finite-dimensionality (of all the vector spaces P(k,±)) -
and are called subfactor planar algebras.

Much of the work done at Chennai during the last decade in the
area of subfactors and planar algebras can be subsumed under one
of the following areas described in the next 4 sections.

1.1. Planar algebras and free probability theory. One of the
exciting developments in planar algebras has been the realisation
that they are connected with Voiculescu’s free probability theory -
the appearance of planar objects in both theories hinting at this
connection.

The paper [94] considers a planar algebra associated to non-crossing
partitions and relates it to the 2-cabling of the Temperley-Lieb planar
algebra. In the course of establishing the main result a combinatorial
identity relating various features of a planar configuration consisting
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of a straight line and a system of closed curves each of whose com-
ponents intersects the line is obtained, which has since found many
applications.

In [95] a purely planar algebraic proof of a result of Popa is given
that constructs a subfactor with a given planar algebra. This uses
the ideas of a proof of Guionnet-Jones-Shlyakhtenko in [77].

When the initial planar algebra arises from a Kac algebra the
GJS-construction produces interpolated free group factors. This is
the main result of [96] which is then extended to finite depth planar
algebras in general in [98]. The construction of a factor from a graph
is studied further in [12] without assumptions of being bipartite and
it is again shown that the factors that arise are interpolated free
group factors.

1.2. Subfactors and TQFTs. Subfactors, via their representation
categories, yield 2+1-dimensional topological quantum field theories
and invariants of 3-manifolds. The TQFT defined in [92] is of a
rather different kind - being a 1 + 1-dimensional theory defined on
a certain cobordism category. It is shown that unitary TQFTs on
this cobordism category are essentially the same as subfactor planar
algebras.

In [97], a new construction is given of Kuperberg’s 3-manifold in-
variant associated to a finite-dimensional involutive Hopf algebra.
This uses - and indeed was motivated by - Heegaard diagram pre-
sentations of the manifold, which closely resemble the planar tangles
used in Jones’ theory.

1.3. Planar algebras associated to Hopf and Kac algebras.

It was realised right from the outset that subfactors arising from fi-
nite groups, or more generally, finite-dimensional Kac algebras, yield
particularly nice planar algebras as their invariants. These planar
algebras are irreducible (dim P(1,±) = 1), and of depth 2 (P(3,±) are
matrix algebras).

Demonstrating the power of planar algebra techniques in a simple
example, it was shown in [59] how the Ocneanu-Szymanski theorem,
which relates irreducible depth 2 subfactors with finite-dimensional
Kac algebras, has a natural and diagrammatic planar algebraic proof.

Associated to a subfactor is its asymptotic inclusion subfactor
which is regarded as the subfactor analogue of the Drinfeld double
construction for Hopf algebras. In [84] the planar algebra of the as-
ymptotic inclusion subfactor is described when the original subfactor
arises from a Kac algebra.

In [61], to a finite-dimensional Hopf algebra H, a certain natural
inclusion of infinite-dimensional algebras A ⊆ B is associated, such
that B is the smash product of A and the Drinfeld double D(H) of
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H. Moreover, it is shown that D(H) is the only finite-dimensional
Hopf algebra with this property. While there is no appeal to planar
algebras overtly, and indeed the result applies to Hopf algebras for
which there is no natural associated planar algebra, all the proofs
were obtained by planar algebraic techniques and then translated to
the algebraic context.

The algebraic result above is exploited in [60] to produce an ex-
plicit embedding of the planar algebra of the Drinfeld double of a
finite-dimensional, semisimple and cosemisimple Hopf algebra H into
the two-cabling of the planar algebra of the dual Hopf algebra H∗

and to characterise its image.

1.4. Skein theories for planar algebras. Analogous to free groups,
there is a notion of a universal planar algebra associated with a set
and it is of interest to express naturally occurring planar algebras as
quotients of such by explicit sets of relations. Borrowing terminol-
ogy from knot theory, such presentations of planar algebras are called
skein theories. Building on earlier work on the planar algebra of a
Kac algebra, an explicit skein theory for a planar algebra associated
to a semisimple and cosemisimple Hopf algebra - even defined over a
field of arbitrary characteristic - is presented in [93].

A class of planar algebras “without analysis” is that of finite depth
planar algebras, and interesting and very non-trivial skein theories
for some of these were established in several papers - [23], [125],
[110]. It is shown in [99] that every finite depth planar algebra has a
finite skein theory and is further singly generated with the generator
subject to finitely many relations. This is refined further in [100] to
get information about the degree of the generator.

2. Quantum dynamical systems and complete positivity

One parameter semigroups of contractive completely positive maps
on C∗-algebras are known as quantum dynamical semigroups and
they have been studied extensively. The main reason being that
they are used to describe quantum open systems. Dilating these
semigroups one obtains semigroups of ∗-endomorphisms, known as
E-semigroups. Unital E-semigroups are known as E0-semigroups.

One of the main invariants for classification of E0-semigroups are
tensor product systems of Hilbert spaces. A family of Hilbert spaces
{Ht : t > 0}, with an associative family of unitaries {Us,t : s, t > 0},

Us,t : Hs ⊗Ht → Hs+t

is said to be a product system of Hilbert spaces when they satisfy
some technical measurability conditions.
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The product systems are broadly classified into three types. Type
I product systems are well-understood, where as type II and III are
exotic. Whole new classes of E0-semigroups with type III product
systems were obtained by Izumi and Srinivasan in ([82], [83] ). Com-
plete classification of product systems appearing here and computa-
tions of their automorphism groups seems to be a very challenging
problem.

The notion of inclusion systems were introduced by Bhat and
Mukherjee ([14]) where the linking unitaries of product systems get
replaced by co-isometries (independently such systems were called
sub-product systems by O. M. Shalit and B. Solel [138]). In the last
decade the notion has found many uses. While studying quantum
dynamical semigroups, it is inclusion systems one obtains first, and
product systems appear later only through inductive limits. The con-
cept was used in Bhat and Mukherjee ([14]) to compute the index of
some special classes of amalgamated products of tensor product sys-
tems. Further applications can be found in Mukherjee ([115], [116]).

Given a state φ on a unital C∗-algebra A, consider the unital quan-
tum dynamical semigroups {τt : t ≥ 0} on A such that τt0(·) = φ(·)I
for some t0 > 0. It is true that for the von Neumann algebra B(H),
such quantum dynamical semigroups dilate to E0-semigroups in stan-
dard form in the sense of Powers and conversely all E0-semigroups
in standard form arise this way ([131]).

What happens if one considers non-unital completely positive maps
and semigroups of such maps? The theory here has many surprises.
It is possible to have even nilpotent completely positive maps. For
the first time, some majorization type inequalities for such maps have
been obtained in Bhat and Mallick ([13]). Generators of quantum
dynamical semigroups which decay to zero have been studied in Bhat
and Srivastava ([17]).

Another important development has been the growing importance
of the theory of Hilbert C∗-modules in studying completely positive
maps. It is known that product systems of Hilbert C∗-modules are
needed for studying CP semigroups on general C∗-algebras. (Bhat
and Skeide ([16]). A Stinespring type theorem for a class of maps on
Hilbert C∗-modules was proved in Bhat, Ramesh and Sumesh ([15]).

The Bures distance was originally defined by Bures as a metric for
states on von Neumann algebras. The definition has a natural exten-
sion to completely positive maps. Bhat and Sumesh ([18]) initiate a
study of this idea from the point of view of Hilbert C∗-modules and
provide several examples and counter examples. It is seen that the
concept has applications to quantum dynamical semigroups.

Very little is known about E0-semigroups on general von Neumann
algebras and factors. In this context, a good beginning has been done
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by Srinivasan and his co-authors in ([108], [25]). Here, the theory of
Hilbert von Neumann modules is a basic tool and one may gain from
Bikram et al.([27]).

In view of the Choi-Kraus representation, the study of normal
contractive completely positive maps on B(H) amounts to a study
of row contractions. Starting with [132] and [63] there have been
a large number of papers in this field. The dilation theory takes
inspiration from Sz. Nagy dilation, and one talks about models and
characteristic functions for row contractions. See for instance papers
of Santanu Dey, Tirthankar Bhattacharyya, Jaydeb Sarkar and their
collaborators.

3. E0-semigroups

3.1. Introduction. E0-semigroups are semigoups of unital ∗− endo-
morphisms on a von Neumann algebra, which are further assumed to
be σ−weakly continuous. E0-semigroups are classified up to an iden-
tification called as cocycle conjugacy. The study of E0-semigroups
was initiated by R.T. Powers in the eighties (see [130]), with enor-
mous contributions from W. Arveson. The monograph [4] provides
an extensive treatment of the theory of E0-semigroups on type I fac-
tors. E0-semigroups arise naturally in the study of open quantum
systems, the theory of interactions, conformal field theory, and in
quantum stochastic calculus. The study of E0-semigroups lead to
the study of interesting objects like product systems, super prod-
uct systems, C∗−semiflows, which arises as its associated invari-
ants. The subject has established deep connections with other areas
like probability theory. Invariably in all our examples, to construct
E0-semigroups, we will be using the semigroup of right shifts on
L2((0,∞), k), where k is a complex Hilbert space, which we denote
by {St}.

3.2. Type III E0-semigroups on B(H). An analogous statement
of the famous Wigner’s theorem for an E0-semigroup on B(H), would
be that the semigroup is completely determined, up to cocycle con-
jugacy, by the set of all intertwining semigroup of isometries called
units. A unit for an E0-semigroup {αt : t ≥ 0} is a strongly contin-
uous semigroups of isometries {Ut}, satisfying αt(X)Ut = UtX for
all X ∈ B(H). A subclass of E0-semigroups, where the above men-
tioned analogy is indeed true, are called type I E0-semigroups. An
E0-semigroup is said to be type III if there exists no such intertwining
semigroup.

For a complex Hilbert space K, we denote by Γ(K) the symmetric
Fock space associated with K. The Weyl operators {W (x)x ∈ K} ⊆
B(Γ(K)) satisfy the canonical commutation relations, W (x)W (y) =
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e−iIm〈y,x〉W (x + y). There exits a unique E0-semigroup α acting
on B(Γ(L2((0,∞), k)) satisfying αt(W (f)) = W (Stf). This E0-
semigroup is called as the CCR flow of index dimk. Arveson showed
CCR flows are classified up to cocycle conjugacy by their index
(= dim(k)) and they exhaust all isomorphic classes of type I ex-
amples.

In 1987, Powers constructed (see [129]) the first example of a type
III E0-semigroup. In 2000 Boris Tsirelson produced a family consist-
ing of uncountably many type III mutually non-cocycle-conjugate
E0-semigroups (see [148]). Tsirelson’s construction involves compli-
cated techniques from probability theory. In [133] Rajarama Bhat
and R. Srinivasan systematically studied these examples and pro-
vided a purely operator theoretic construction. In Tsirelson’s work,
the type III property and non-isomorphism were proved by arriving
at a contradiction, after messy computations. Bhat and Srinivasan
clarified both by providing sufficient conditions in this operator alge-
braic frame work. They also proved an important dichotomy result
that only type I and III are possible in this construction. The E0-
semigroup can also explicitly be described as generalized CCR flows,
as explained below.

3.3. Generalized CCR flows. For a real Hilbert space G, let GC

denote its complexification and H = Γ(GC). Let {St} and {Tt} be
strongly continuous semigroups of linear operators on G. We say
that {Tt} is a perturbation of {St} if Tt

∗St = 1. and St − Tt is a
Hilbert Schmidt operator, for all t ∈ (0,∞). Given a perturbation
pair ({Tt}, {St}), Izumi and Srinivasan proved that there exists an
unique E0-semigroup {αt} on B(Γ(GC)) satisfying αt(W (x+ iy)) =
W (Stx+ iTty) for all x, y ∈ G which is called as the generalized CCR
flow associated with the pair {St} and {Tt}.

In [82], Masaki Izumi and R. Srinivasan proved several results
about generalized CCR flows, clarifying its relation to the so called
sum systems, and a necessary and sufficient criterion for them to be
type III, which is more powerful than the earlier criterion given in
[133]. They systematically studied the generalized CCR flows associ-
ated with perturbations of the right shift on L2(0,∞) and produced
several interesting results, in particular a new family of generalized
CCR flows, which can not be distinguished from type I examples,
by the invariants introduced by Tsirelson. By associating type III
factors, arising as local algebras, as invariants to these type III E0-
semigroups, they showed that there exists uncountably many non-
isomorphic examples in this family.

3.4. Toeplitz CAR flows. Though Tsirelson’s path breaking re-
sults, initiated a flurry of activity on type III E0-semigroups, there
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was not much work done following the original construction of Pow-
ers. Powers’ construction ([130]) could produce large families of E0-
semigroups by varying the associated quasi-free states. But the prob-
lem is to find invariants to distinguish them up to cocycle conjugacy.
Masaki Izumi and R. Srinivasan generalized Powers construction and
called them ‘Toeplitz CAR flows’.

Let K = L2((0,∞),CN ) and A(K) be the associated CAR alge-
bra. A quasi-free state on A(K) is uniquely determined by a positive
contraction A ∈ B(K), though the values on the (n,m)−point func-
tions. Let (HA, πA,ΩA) be the associated GNS triple and MA :=
πA(A(K))′′. If A satisfies Tr(A − A2) < ∞, then MA is a type
I factor. Further if A is also a Toeplitz operator (i.e it satisfies
S∗
tASt = A), then there exists a unique E0-semigroup on MA sat-

isfying αt(πA(a(x))) = πA((a(Stx))), for all t ≥ 0, x ∈ K, which is
called the Toeplitz CAR flow.

We regardK as a closed subspace of K̃ = L2(R,CN ), denote by P+

the projection from K̃ onto K and identify B(K) with P+B(K̃)P+.

For Φ ∈ L∞(R,MN (C)), define CΦ ∈ B(K̃) by ˆ(CΦf)(p) = Φ(p)f̂(p),
where ˆ is the Fourier transform. Then the Toeplitz operator A =
AΦ ∈ B(K) with the symbol Φ is defined by AΦf = P+CΦf for all
f ∈ K. Arveson determined the most general form of a Toeplitz op-
erator AΦ further satisfying Tr(AΦ − A2

Φ) < ∞, which clarifies the
mysterious choice used by Powers. Such a symbol is called as ad-
missible and the associated E0-semigroup is denoted by αΦ. Masaki
Izumi and R. Srinivasan showed the following in [83]. The original
example of Powers corresponds to the case ν = 1

5 .

Theorem 3.1. For ν > 0, let θν(p) = (1 + p2)−ν, and let

Φν(p) =
1

2

(
1 eiθν(p)

e−iθν(p) 1

)
.

Then Φν is admissible. Let αν := αΦν be the corresponding Toeplitz

CAR flow.

(i) If ν > 1/4, then αν is of type I2.

(ii) If 0 < ν ≤ 1/4, then αν is of type III.

(iii) If 0 < ν1 < ν2 ≤ 1/4, then αν1 and αν2 are not cocycle

conjugate.

To distinguish the E0-semigroups αν in the type III region 0 < ν ≤
1
4 , they used the type I factorizations of Araki-Woods, arising from
local von Neumann algebras for the product systems, as invariants.
They further showed that Toeplitz CAR flows are either of type I
or of type III, a dichotomy result similar to the case of generalized
CCR flows.
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3.5. E0-semigroups on II! factors. Till now, the focus was on E0-
semigroups on type I factors, but they can be studied on a general
von Neumann algebra. Again R.T. Powers initiated the study of
E0-semigroups on type II1 factors. In his initial paper [130] in 1988,
Powers introduced two countable families of E0-semigroups on II1
factors called as Clifford flows and even Clifford flows. Since then
it was open whether these families contain mutually non-cocycle-
conjugate E0-semigroups. In 2004 Alexis Alevras defined an index
through the associated boundary representations, introduced by R.
T. Powers, which is invariant under conjugacy (see [1]). But it is not
clear whether the boundary representation is a cocycle conjugacy
invariant.

In [108], Oliver T Margetts and R. Srinivasan introduced two new
numerical invariants, the coupling index and the gauge index, for E0-
semigroups on II1 factors, and computed them for these examples.
But both the numerical invariants turned out to be trivial for the
above mentioned two families. In this context they also introduced
another invariant called as super-product systems, by generalizing
the concept of product systems of Arveson, using modular theory.
But it was not clear (then!) how to distinguish those super-product
systems. Still, finally, the non-cocycle-conjugacy was proved rather
indirectly, by combining Alevras’ result on boundary representations
and a new invariant called as C∗−semiflows.

3.6. The extendability problem. For any factor M ⊆ L2(M) and
for any given E0-semigroup on a factor M, one may define the com-
plementary E0-semigroup on its commutant (in B(L2(M))), using
the canonical modular conjugation operator J , given by the Tomita-
Takesaki theory. The extendability question is whether these two en-
domorphisms extend to an endomorphism on B(L2(M)). This ques-
tion was systematically studied by G. G. Amosov, A. V. Bulinskii,
M. E. Shirokov in [2], but there was a mistake in their proof imply-
ing the Clifford flows are extendable. Indeed Panchugopal Bikram,
Masaki Izumi, R. Srinivasan and V. S. Sunder showed that Clifford
flows on II1 factors are actually not extendable in [25]. It is still
open whether there exists an extendable E0-semigroup on II1 fac-
tors. On the other hand type III factors admits both extendable
and non-extendable E0-semigroups. It was shown by Oliver Mar-
getts and R. Srinivasan that the E0-semigroups given by quasi-free
representations of CCR relation provides extendable E0-semigroups,
and Panchugopal Bikram proved that the E0-semigroups given by
quasi-free representations of CAR relations are not extendable (see
[24]). This consequently shows that on type III factors the CCR
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flows and CAR flows are not cocycle conjugate, in contrast to the
case of type I factors.

4. Masas, free Araki-Woods, etc.

4.1. Masas. Constructing functions with prescribed properties has
been the tradition of analysts over centuries. In a similar spirit,
construction of maximal abelian subalgebras (masa) with prescribed
properties has been a focal point in the structure theory of von Neu-
mann algebras since birth of the subject. This originated in what is
known today as the group measure space construction of Murray and
von Neumann but was investigated more closely by Dixmier in [64].
The examples of masas cited in [64] opened a new area of research
which was extensively followed by Connes, Krieger, Feldman-Moore,
Jones and finally explored by Popa to the fullest extent from 1980s
to date [48, 49, 102, 128, 127, 126, 69, 70]. The names of contribu-
tors and the references are by no means complete and just; we have
chosen them only to keep the writing within reasonable size. For a
comprehensive account on masas in II1 factors check [139] and the
references therein.

The most successful invariant to distinguish masas in II1 factors is
the Pukanzsky invariant. A refined invariant was considered in [67],
which was subsequently used to distinguish some masas in the free
group factors. This invariant (known as the measure-multiplicity in-
variant) was systematically explored in [112] and shown to ‘detect’
the notions of regularity (Cartan), semiregularity (Cartan inside a
subalgebra) and singularity of masas in finite von Neumann alge-
bras. The results concerning ‘weak asymptotic homomorphism’ of
conditional expectations in the paper are a two-variable version of
a well known theorem of Wiener regarding Fourier coefficients. The
normalizing algebras of masas were shown to behave well under ten-
soring, i.e., NM1

(A1)
′′⊗NM2

(A2)
′′ = NM1⊗M2

(A1⊗A2)
′′, where Ai is

a masa in a finite von Neumann algebras Mi, i = 1, 2, and NM (A)
denotes the group of unitary operators in M which normalise A.
This formula is crucial in providing examples of singular masas in
the hyperfinite II1 factor, as the latter is stable under tensoring with
itself.

The theme of how the measure-multiplicity invariant recognises
properties of masas, like existence of non trivial central sequences,
strong mixing, etc., was pursued in [113], which also established that
for any (possibly even empty) subset E ⊆ N, there exist uncountably
many pairwise non conjugate singular masas (i.e., not in the same
orbit under the natural action of the automorphism group of the
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ambient von Neumann algebra) in L(Fk), k = 2, 3, · · · ,∞, for each
of which the Pukanzsky invariant is E [113].

The study of singular masas is related to the study of weakly
mixing dynamical systems. With this in mind, the study of masas
arising out of mixing dynamical systems was initiated by Jolissaint
and Stalder in [85]. This paper motivated the study of various alge-
braic and analytical properties of subalgebras with mixing properties
in [29]. Some basic results about mixing inclusions of von Neumann
algebras were proved using ultra filters and connections were estab-
lished between mixing properties and normalisers of von Neumann
subalgebras. The special case of mixing subalgebras arising from
inclusions of countable discrete groups finds applications to ergodic
theory, in particular, a new generalisation of a classical theorem of
Halmos on the automorphisms of a compact abelian group. For a
finite von Neumann algebra M and von Neumann subalgebras A,B
of M , the notion of weak mixing of B relative to A is introduced
and shown to be equivalent to the requirement that if x ∈ M and if
there exist a finite number of elements x1, x2, · · · , xn ∈ M such that
Ax ∈

∑
i xiB, then x ∈ B. This essentially involves studying an

appropriate basic construction of Jones. Examples of mixing subal-
gebras were shown to arise from the amalgamated free product and
crossed product constructions .

A follow up paper [28] studied strongly mixing masas in detail.
Some rigidity results were proved in the sense that strongly mixing
masas arising out of group inclusions in group von Neumann algebras
produce masas whose bimodule is coarse and Pukanzsky invariant is
a singleton set when the smaller group is torsion free. Investigating
examples from classical Ergodic theory, notably staircase transforma-
tions, led to the result that there exist uncountably many pairwise
non conjugate strongly mixing masas in L(Fk), k = 2, 3, · · · ,∞, for
each of which the Pukanzsky invariant is {1,∞}. Needless to say
these masas are singular, while the masas described in [113] were not
strong mixing.

To any strongly continuous orthogonal representation of R on a
real Hilbert space hR, Hiai in [79] constructed q-deformed Araki-
Woods von Neumann algebras for 1 < q < 1, which are W ∗-algebras
arising from non tracial representatiomathcals of the q-commutation
relations, the latter yielding an interpolation between the Bosonic
and Fermionic statistics. These are von Neumann algebras that play
a role in quantum field theory to provide examples of field theories
that allow small violations of Pauli’s exclusion principle [76]. The
structure of these algebras is a current topic of study in the subject.
While many properties of these algebras have been investigated in
the last decade, it is still unknown if these von Neumann algebras
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have trivial center. It was shown in [26] that if the orthogonal repre-
sentation is not ergodic then these von Neumann algebras are factors
whenever dim(hR) ≥ 2 and q ∈ (−1, 1). In such case, the centralizer
of the q-quasi free state has trivial relative commutant, thus one can
completely determine its S-invariant. Moreover, in case the factor
is type III1 it satisfies the bicentralizer conjecture of Connes. In the
process, bimodules of ‘generator masas’ in these factors are studied
and it is established that they are strongly mixing. The possibility
of removing the ‘non-ergodicity’ hypothesis imposed and conclud-
ing the factoriality of these algebras, whenever dim(hR) ≥ 3, is the
subject of future study.

4.2. Ergodic Theory. The classical theory of joinings of measur-
able dynamical systems is extended to the noncommutative setting
from several interconnected points of view in [11]. Among these is a
particularly fruitful identification of joinings with equivariant quan-
tum channels between W ∗-dynamical systems that provides noncom-
mutative generalisations of many fundamental results of classical
joining theory. Fully general analogues of the main classical dis-
jointness characterisations of ergodicity, primeness and mixing phe-
nomena, are obtained. This approach to the characterisation of weak
mixing shows that any finite-dimensional invariant subspace of the
induced unitary representation of a ϕ-preserving action of a group
on the standard Hilbert space L2(M,ϕ) lies inside the image MϕΩϕ

of the centraliser, implying that an ergodic dynamics is chaotic on
large regions of the phase space.

Moving beyond states, it is shown that the canonical unitary rep-
resentation of a locally compact separable group arising from an er-
godic action of the group on a von Neumann algebra with separable
predual preserving a f.n.s. (infinite) weight is weak mixing. On
the other hand, there exists a non ergodic automorphism of a von
Neumann algebra, preserving a f.n.s. trace, such that the induced
unitary representation has countable Lebesgue spectrum [101].

4.3. Free Probability. Quantum exchangeable random variables
(namely, random variables whose distributions are invariant for the
natural co-actions of S. Wang’s quantum permtuation groups were
characterized by Koestler and Speicher to be those sequences of iden-
tically distributed random variables that are free with respect to the
conditional expectation onto their tail algebra (that is, free with
amalgamation over the tail algebra). In [65], Dykema, Koestler and
Williams considered, for any unital C∗-algebra A, the analogous no-
tion of quantum symmetric states on the universal unital free product
C∗-algebra A = ∗∞1 A.
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[56] show that the space of tracial quantum symmetric states of
an arbitrary unital C∗-algebra is a Choquet simplex and is a face of
the tracial state space of the universal unital C∗-algebra free product
of A with itself infinitely many times. Using free Brownian motion,
it is also shown that the extreme points of this simplex are dense,
making it the Poulsen simplex when A is separable and nontrivial.

Replacing traciality by KMS condition with respect to a fixed
one parameter automorphism group, quantum symmetries which are
also KMS states for the infinite free product automorphism group
are characterised. Such states are shown to form a Choquet sim-
plex as well whenever it is non-empty and its extreme points are
characterised in [66].

Contributions in the field of C∗-algebras and NCG

A C∗-algebra is a norm closed involutive subalgebra of the algebra
of bounded operators in a Hilbert space. Commutative C∗-algebras
can be identified as the algebra of continuous functions vanishing at
infinity on some locally compact Hausdorff space. Thus one would
like to treat C∗-algebras as space of functions on some ‘Ghost space’
which does not make sense within the framework of usual topol-
ogy. They are looked at from various angles. One may begin with a
classical context and attach a C∗-algebra to it and then analyse its
properties. Or one may look at C∗-algebras as algebras of continuous
functions on some generalised spaces and try to lift concepts from
topology. Very successful developments along these lines include ex-
tending ideas of topological K-theory and the study of topological
groups. Finally one may try to use these topological ideas to the
classification problem. In the coming sections we will see a study
of C∗-algebras constructed out of topological semigroups, lifting of
various ideas from group theory to the setting of compact quantum
groups and finally some contributions in the classification problem.

5. Semigroup C∗-algebras

In the nineties, Murphy studied C∗-algebras associated to dis-
crete semigroups and their crossed products in a series of papers
([117], [118] and [119]). Semigroup C∗-algebras again came into
vogue with Cuntz’ work ([54]) on the C∗-algebra associated to the
ax+ b-semigroup. Subsequently, a systematic study of discrete semi-
group C∗-algebras was undertaken by Xin Li in collaboration with
Cuntz and others. For more on the discrete semigroup C∗-algebras,
we refer the reader to [104] and the references therein.

5.1. Topological semigroup C∗-algebras. The semigroup C∗-algebra
can also be studied in the topological context. Thus let G be a locally
compact second countable Hausdorff topological group and P ⊂ G
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be a closed subsemigroup containing the identity element e. For
technical reasons, one assumes that Int(P ) is dense in P . To keep
the formulae simple, we will assume that G is unimodular. Consider
L2(P ) as a closed subspace of L2(G).

For g ∈ G, let Ug be the right translation operator on L2(G) and
let Wg be the cut-down of Ug onto L2(P ). For a ∈ P , let Va := Wa.
Then {Va : a ∈ P} is a strictly continuous semigroup of isometries.
The reduced C∗-algebra of P , denoted by C∗

red(P ), is defined as the
C∗-algebra generated by {

∫
f(a)Vada : f ∈ L1(P )}. The related

C∗-algebra, called the Wiener-Hopf C∗-algebra W(P,G), is defined
as the C∗-algebra generated by {

∫
f(g)Wgdg : f ∈ L1(G)}. Clearly

C∗
red(P ) ⊂ W(P,G). It is not known in general if W(P,G) coincides

with C∗
red(P ). However, if PP−1 = G then W(P,G) coincides with

C∗
red(P ) (See [134]).
For the rest of this exposition, we assume that PP−1 = G. Let X

be a compact metric space. By a right action of P on X, we mean a
map X × P ∋ (x, a) → xa ∈ X such that xe = x and x(ab) = (xa)b
for a, b ∈ P . We say that the action is injective if for every a ∈ P ,
the map X ∋ x → xa ∈ X is injective. Let X be a compact metric
space on which P acts on the right injectively. Let X ⋊P be the set
{(x, g, y) ∈ X × G × X : ∃ a, b ∈ P such that g = ab−1, xa = yb}
with its obvious groupoid structure. This is often called the Deaconu-
Renault groupoid.

Let us now explain the groupoid considered in [111]. Endow
L∞(G) with the weak *-topology and let G act on L∞(G) by right
translations. Denote the weak∗-closure of {1P−1a : a ∈ P} in L∞(G)
by ΩP . Observe that ΩP is invariant under right translation by el-
ements of P . The compact space ΩP is called the Wiener-Hopf or
the order compactification of P . In the article [134], Renault & Sun-
dar showed that the Wiener-Hopf C∗-algebra W(P,G) is isomorphic
to the reduced C∗-algebra of the Deaconu-Renaut groupoid ΩP ⋊ P
where ΩP is the Wiener-Hopf compactification of P . It should be
noted that this was first proved in [111] for normal semigroups and
later generalised to Lie semigroups by Hilgert & Neeb ([80]).

Another main result of the paper [134] is the abstract realisation
of the Wiener-Hopf compactification. Let X be a compact metric
space on which P acts on the right injectively. For x ∈ X, let
Qx := {g ∈ G : ∃ y ∈ X such that (x, g, y) ∈ X ⋊ P}. Then the
P -space X is homeomorphic to the Wiener-Hopf compactification
ΩP if and only if (i) there exists x0 ∈ X such that {x0a : a ∈ P} is
dense in X and Qx0

= P , (ii) the map x 7→ Qx is injective.
This abstract realisation of the Wiener-Hopf compactification is

exploited in [142] to show that the K-theory of the Wiener-Hopf al-
gebra associated to a symmetric cone is zero. A prototypical example
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of a symmetric cone is the cone of positive self-adjoint matrices of
size n.

Let us conclude by summarising the related works. The question
of defining the universal semigroup C∗-algebra is considered n [140].
It is shown that there exists a universal groupoid C∗-algebra, C∗(G)
generated by symbols {f : f ∈ Cc(G)} such that if P ∋ a → Va ∈
B(H) is a strongly continuous semigroup of isometries and if the
final projections Ea := VaV

∗
a commute then there exists a unique

∗-homomorphism π : C∗(G) → B(H) such that π(f) =
∫
f(a)Vada.

A version of Coburn’s theorem for the quarter plane [0,∞)× [0,∞)
is obtained as a consequence.

Semigroup crossed products defined the same way as group crossed
products are considered in [143]. In particular, groupoid realisations
of semigroup crossed products are achieved in [143] and in [141]. Also
K-theoretic results for semigroup crossed products are derived.

6. Quantum Groups, Operator Algebraic Aspects

In this section we discuss the operator algebraic description of
quantum groups. The theory of operator algebraic quantum groups
has its roots in the early work of Kac [89, 90] in his attempt to
generalize Pontrajin duality. However, the subject really came into
its own following the seminal works of Vaksman & Soibelman ([149],
[150]) and Woronowicz ([157, 158, 159]) in the 1980’s. Woronowicz
formulated a compact quantum group as a tuple G = (A,∆), where
A is a unital C∗-algebra and ∆ : A → A⊗A is a C∗-morphism, which
is coassociative i.e. (∆ ⊗ id) ◦∆ = (id ⊗∆) ◦∆ and for which the
left and right cancellation laws hold, i.e. the sets (A ⊗ 1)∆(A) and
(1 ⊗ A)∆(A) are total in A ⊗ A. Then there exists a unique state,
called the haar state, hG : A → C, that satisfies (hG ⊗ id)∆(.) =
hG(.)1 = (id ⊗ hG)∆. Further, one defines a (finite-dimensional)
representation of G to be an unitary element u = ((uij)) ∈ Mn(A)
such that for any 1 ≤ i, j ≤ n, we have that ∆(uij) =

∑
k uik ⊗ ukj.

Two representations u and v are said to be equivalent if there exists
T ∈ GLn(C) such that (T ⊗ 1)u = v(T ⊗ 1) and a representation u is
said to be irreducible if for any T ∈ Mn(C) such that (T⊗1)u = u(T⊗
1) implies that T = λ·1 for some λ ∈ C. The set of equivalence classes
of irreducible representations of G is denoted by Irr(G). Suppose now
that G is a compact group. Consider the commutative C∗-algebra
C(G), which is the algebra of complex valued continuous functions
on G. In this case, a comultiplication can be defined in the following
way: ∆ : C(G) → C(G)⊗C(G) ∼= C(G×G) with ∆(f)(s, t) = f(st),
where s, t ∈ G. Then it is easy to see that the tuple (C(G),∆) is
a compact quantum group. In this case, the haar state is the state
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on C(G) corresponding to the haar measure on G. Conversely given
a compact quantum group G = (A,∆) where A is commutative is
necessarily A = C(G) for some compact group G, with ∆ defined
as above in the compact group case. This is a version of Gelfand
duality.

The linear span of matrix coefficients of irreducible representations
of G is a Hopf ∗-algebra, which is dense in the C∗-algebra. This alge-
bra is denoted by Pol(G), and its enveloping C∗-algebra is denoted as
Cm(G), called the maximal C∗-algebra associated to G. On the other
hand, the image of A under the GNS representation with respect to
the haar state hG is also a C∗-algebra, denoted as C(G) and is called
the reduced C∗-algebra associated to G. The weak closure of C(G) is
denoted as L∞(G), and is the von-Neumann algebra associated to G.
An instructive example in this context is the dual of discrete group
example. Let Γ be a discrete group, and C∗

r (Γ) denote the reduced
group C∗-algebra of Γ. Then the mapping λg 7→ λg ⊗ λg, where λg

denotes the left translation operator in C∗
r (Γ) associated to a group

element g ∈ Γ, extends to a morphism ∆ : C∗
r (Γ) → C∗

r (Γ) ⊗ C∗
r (Γ)

and the tuple G = (C∗
r (Γ),∆)) is a compact quantum group. In this

case, it can be shown that Pol(G) = C[Γ], the complex group alge-
bra associated to Γ, Irr(G) = Γ as a set, with the group unitaries λg

being all the one-dimensional and irreducible representations of G.
Further, the haar state in this case can be shown to be the canonical
trace on C∗

r (Γ). It then follows that the reduced C∗-algebra, the
von-Neumman algebra and the maximal C∗ algebra associated to G
in this case are, respectively, C∗

r (Γ), L(Γ) and C∗(Γ), the full group
C∗-algebra associated to Γ.

Let us next describe the directions of research being pursued cur-
rently in this field.

Since operator algebraic quantum groups in general and com-
pact quantum groups in particular are generalizations of the idea
of groups, these objects are often studied from a group theoretic per-
spective. In [124], generalizing the center of a compact group (see
also [45]) a notion of center for a compact quantum group has been
introduced. In this paper, normal subgroups, introduced by Wang
[156], are studied and a certain notion of “inner” automorphisms of
compact quantum groups was also introduced. It was then shown
that any normal subgroup of a compact quantum group is stable un-
der the action of any inner automorphism, as in the classical case,
but that the converse in not true. In other words, there are exam-
ples of subgroups of compact quantum groups which are stable under
the action of any normal subgroup, but are not normal. The under-
lying motivation for this was to somehow define a quantum inner
automorphism group of a compact quantum group G, which should
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be isomorphic to the compact quantum group G/Z(G), where Z(G)
denotes the center of G, and further, to show that stability of a sub-
group of G under the action of this quantum inner automorphism
group forces the subgroup to be normal. Results of this type were
very recently obtained by Kasprzak, Skalski and Soltan ([91]).

Another important direction of research in the area has been to de-
fine and understand various “approximation properties” like Haagerup
property for quantum groups and their associated operator alge-
bras. To give examples of quantum groups having Haagerup prop-
erty, it is useful to consider constructions and permanence of the
Haagerup property under various constructions. Keeping this in
mind, the paper of Fima, Mukherjee and Patri ([72]), considers the
bicrossed product construction and the crossed product construc-
tions and proves permanence results for these constructions, which
leads to examples of quantum groups having the Haagerup property.

Closely related is the celebrated Property (T), which is a strong
negation of the Haagerup property in a certain sense. Property (T)
was first defined and studied for quantum groups by Fima ([71]) and
later by Kyed ([103]). However, no non-trivial family of examples
were known. Finally, in the paper by Fima, Mukherjee and Patri
([72]), it was shown that the bicrossed product of a matched pair
consisting of a discrete group with Property (T) and a finite group
yields a compact quantum group whose dual has the Property (T).
This was then used to construct an infinite family of mutually non-
isomorphic non-trivial quantum groups having Property (T).

Just like groups, quantum groups also act on operator algebras
and hence, study of these actions of quantum groups forms a major
area of research in the theory of quantum groups (see for example
[81, 145, 109, 62, 47]). However, in the paper of Mukherjee and Patri
([114]), a different route is taken. In this paper, the study of discrete
group actions on compact quantum groups by quantum group auto-
morphisms (i.e. automorphisms which “commute” with the comul-
tiplication of the quantum group) is initiated. Any such quantum
group automorphism automatically preserves the haar state of the
compact quantum group, so one has an interesting non-commutative
dynamical system. This study was motivated by the study of group
actions on compact groups by group automorphisms, which was ini-
tiated by a paper of Halmos ([78]) and still is a thriving field of study
(see the monograph [137]). Suppose a discrete group Γ is acting on a
compact quantum group G by quantum group automorphisms. We
then call the corresponding dynamical system as a CQG dynami-
cal system. In the paper ([114]), an in-depth study is carried out
of spectral properties of CQG dynamical properties, viz. ergodicity,
weak mixing, mixing, compactness, etc. It is shown for example
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that ergodic CQG dynamical systems are automatically weak mix-
ing, echoing the classical case. Combinatorial conditions are obtained
for these spectral properties, in terms of the induced Γ action on the
set Irr(G), and this is used to study several examples. Further, in
the same paper, it is shown that the spectral “measure” of any er-
godic CQG dynamical system, with Γ = Z, is the haar state and
the spectral multiplicity of such an action is singleton. But unlike
the classical case, it is not clear whether this is infinite and this
leads to very interesting connections to some deep open problems
in combinatorial group theory. Then, the authors go on to study
the structure theory of CQG dynamical systems and under some
conditions, show the existence and uniqueness of the maximal er-
godic normal subgroup of such CQG dynamical systems. Finally,
the authors use the results in the paper to explore maximal abelian
subalgebras (MASAs) of von-Neumann algebra L∞(G) associated to
a compact quantum group G. In particular, the authors consider an
abelian group Γ, with the abelian algebra L(Γ) being a subalgebra
of L∞(G). They find equivalent conditions for L(Γ) to be a MASA
in L∞(G) and prove a striking result that the normalizer of any such
MASA in L∞(G) is always of the form L(Λ), for some discrete group
Λ. This allows the author to prove a rigidity result that if L(Γ) is
a Cartan MASA in L∞(G), then necessarily all the quantum group
is co-commutative, and hence there exists a discrete group Λ with
L∞(G) = L(Λ).

7. The Classification Program

The main goal of the Elliott programme is to classify simple, sepa-
rable, nuclear C∗-algebras by their K-theory and related invariants.
With the remarkable work of Kirchberg, Phillips, Elliott, Gong, Li
and others, the programme achieved great success in the 1990s and
early 2000s.

However, in the early 2000s, examples by Villadsen and Rørdam
showed that some regularity conditions were needed to ensure that
an algebra is classifiable in the sense described above. An important
counterexample to the Elliott conjecture was due to Toms ([146]),
who described two non-isomorphic, unital, simple, nuclear C∗-algebras,
which agree on any continuous homotopy-invariant functor. This
brought to light the importance of the Cuntz semigroup (the invari-
ant that distinguished Toms’ examples), and also led to the Toms-
Winter conjecture ([147]) that seeks to identify the regularity condi-
tions mentioned above. This conjecture has been verified for a large
class of algebras, but has yet to be completely proved.
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Assuming one such regularity condition (finite nuclear dimension),
Elliott, Gong, Lin and Niu [68] have proved a classification theo-
rem for simple, nuclear C∗-algebras which satisfy the Universal Co-
efficient Theorem (UCT), under the additional assumption that all
traces are quasidiagonal. While it is unknown whether all separable,
nuclear C∗-algebras satisfy the UCT, Tikuisis, White and Winter
([144]) have proved that, for a simple, nuclear C∗-algebra satisfy-
ing the UCT, every faithful trace is quasidiagonal. In particular,
this completes the classification (begun by Kirchberg and Phillips)
of unital, simple, C∗-algebras which satisfy the UCT and have finite
nuclear dimension.

The classification of non-simple C∗-algebras seeks to extend re-
sults from the simple realm by representing a non-simple C∗-algebra
as a continuous fields over its primitive ideal space X. Initial re-
sults focussed on the case where X was finite, but the introduction
of powerful approximation theorems due to Dadarlat ([57]) made the
infinite case more tractable. These theorems were used by Dadar-
lat and Vaidyanathan ([58]) to describe the equivariant KK-theory
group for certain continuous fields over [0, 1]. These results consti-
tute the first such explicit description for continuous fields over an
infinite space, and are used to prove that algebras in this class are
classified by their filtrated K-theory.

8. Noncommutative geometry

There are several flavors of non commutative geometry in math-
ematics. The one we are concerned with in the following should
really be called noncommutative differential geometry, which was in-
troduced by Alain Connes during the 1980’s. Following standard
practice, however, we will continue to refer to it by just noncom-
mutative geometry or NCG. This is an extension of noncommutative
topology and was initially developed in order to handle certain spaces
like the leaf space of foliations or duals of groups which are difficult
to study using machinery available in classical geometry or topology.
The basic idea is the same as in most other ‘noncommutative mathe-
matics’, namely, study a set equipped with some structures in terms
of an appropriate algebra of functions on the set. Here one starts
with a separable unital C∗-algebra A which is the noncommutative
version of a compact Hausdorff space. Associated to this, one al-
ready has certain invariants like the K-groups and the K-homology
groups. In geometry, one next equips the space with a smooth struc-
ture. In the noncommutative situation, the parallel is an appropriate
dense subalgebra of A that plays the role of smooth functions on the
space. Given this dense subalgebra, one can then compute various
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cohomology groups associated with it, namely the Hochschild coho-
mology, cyclic cohomology and the periodic cyclic cohomology, which
are noncommutative and far-reaching generalizations of ordinary de
Rham homology and cohomology. In ordinary differential geometry,
in order that one can talk about shapes and sizes of spaces, one needs
to bring in extra structure. One example is the Riemannian struc-
ture, which gives rise to a Riemannian connection, which in turn
enables one to talk about curvature and so on. Other examples of
such extra structures are Spin and Spinc structures. In the presence
of these extra structures, one has an operator theoretic data that
completely encodes the structure. In noncommutative geometry, one
takes this operator theoretic data as the starting point. This operator
theoretic data is what is called a spectral triple. A spectral triple
(H, π,D) for an associative unital *-algebra A consists of a (complex
separable) Hilbert space H, a *-representation π : A −→ L(H) (usu-
ally assumed faithful) and a self-adjoint operator D with compact
resolvent such that [D,π(a)] ∈ L(H) for all a ∈ A. Often one also
have a Z2-grading present, satisfying certain conditions. In the Spin
manifold situation one considers the Hilbert space of square inte-
grable spinors and Dirac operator plays the role of D. This is called
the canonical spectral triple associated with a Spin manifold. It is
for this reason that even in the general context of a spectral triple,
the operator D is often referred to as the Dirac operator. Relevant
concepts of Differential Geometry or Index Theory are transferred to
the noncommutative setting by the usual two step procedure of first
describing it for a Spin manifold in terms of the canonical spectral
triple and then one takes this description as the defining condition
in the general context. This has been amply demonstrated in [51].
Of course the canonical spectral triple has many more properties
and while transferring these concepts to the noncommutative side,
one often demands more properties of the spectral triple like finite
dimensionality, regularity, discreteness of dimension spectrum etc.

9. Quantum groups and NCG

9.1. Spectral triples for quantum groups. Even though Connes
had developed NCG in order to investigate spaces that are intractable
using classical machinery, soon mathematicians realized that the
scope of this new formalsim is possibly much broader. One should be
able to study spaces that are much more noncommutative in nature,
i.e. further away from classical spaces which are usually point sets
with some extra structure. For example, the noncommutative two-
torus was studied extensively by noncommutative geometers. At the
same time, for a considerable time, there were not too many other
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examples of noncommutative geometric spaces that are somewhat
far away from classical spaces. The q-deformations of the classical
Lie groups were particularly intriguing. On one hand, one would ex-
pect them to be nice noncommutative geometric spaces, just as their
classical counterparts have nice geometries, but on the other hand,
the initial studies seemed to suggest that they do not fall perfectly in
Connes’ set up. This situation changed with the papers ([35], [36])
by Chakraborty & Pal where quantum SU(2) was shown to admit
finitely summable spectral triples. The Dirac operator constructed in
[35] was analyzed by Connes in ([52]). He analyzed the spectral triple
from the local index formula perspective. These two papers gener-
ated a flurry of activities in the area in subsequent years. Meanwhile,
an alternative construction of a spectral triple for quantum SU(2)
was provided by Dabrowski et al ([55]), which was soon proved by
Chakraborty & Pal ([37]) to be essentially equivalent to their ear-
lier construction in ([35]). Inspired by Connes’ work, Chakraborty
& Pal extended the results of ([35]) to the case of odd dimensional
quantum spheres ([39]), which are nothing but the quotient spaces
SUq(n + 1)/SUq(n). They characterized all SUq(n + 1) equivariant
spectral triples for these spaces. They also identified explicitly the
C∗-extensions given by these in ([38]). A very natural question in
this context is whether these spectral triples can be endowed with
further properties like Poincaré duality. It turned out that they do
not satisfy Poincaré duality ([40]). But in the same paper, they
also produced explicit finitely summable spectral triples for odd di-
mensional spheres that satisfy Poincaré duality ([40]). Cotinuing
the study of quantum homogeneous spaces, Chakraborty & Sundar
([43]) computed and obtained explicit generators for the K-groups
of the quantum Steiffel manifolds SUq(n)/SUq(n − 2). One must
point out here two important papers by Neshveyev & Tuset ([120],
[121]). In ([120]), they proved the existence of a Dirac operator for
all q-deformations of simply connected simple compact Lie groups by
starting with the classical Dirac and twisting it in a certain way, and
in ([121]), they proved the KK-equivalence of a family of quantum
homogeneous spaces with their classical counterparts. However, even
though they resolve the existence issues for a wider class of quantum
groups, the Dirac operator is not as tractable, and many questions
remain unanswered. So there is a need for lot more work in this
direction.

9.2. Dimensional invariants. In the examples mentioned in the
previous subsection, i.e. for the quantum SU(2) and the quantum
spheres, instead of using KK-theoretic machinery, Chakraborty &
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Pal tries to characterize all equivariant spectral triples. In the pro-
cess, they observed that even without the condition of nontrivial-
ity of the corresponding K-cycle, in many cases there are canonical
spectral triples encoding essential dimensional information about the
space. This led Chakraborty & Pal ([34]) to produce dimensional
invariants for ergodic C∗-dynamical systems utilising the notion of
spectral triples. One should mention here that study of cycles not
necessarily nontrivial is not new. For example, Voiculescu’s work
([152], [153]) on norm ideal perturbations or Rieffel’s work ([136])
on extending the notion of metric spaces. Computation and under-
standing of these invariants promises to be an elaborate program.

9.3. Quantum isometry groups. We have looked at quantum groups
as examples of noncommutative geometric spaces till now. Quantum
groups have another equally, if not more, important role to play in
noncommutative geometry by virtue of being objects governing sym-
metries of noncommutative spaces. Investigation of quantum groups
from this point of view can be traced back to the papers of Manin
([106], [107]), Wang ([154], [155]), Banica ([5], [6], [8]) and others.
In the context of noncommutative geometry, study of this aspect of
compact quantum groups were initiated and pursued extensively by
Goswami and his collaborators. In ([73]), Goswami formulated and
studied the quantum analogue of the group of Riemannian isome-
tries called the quantum isometry group. In Riemannian geometry,
an isometry is characterized by the fact that its action commutes
with the Laplacian. Following this lead, Goswami considered a cat-
egory of compact quantum groups that act on a noncommutative
manifold given by a spectral triple such that the action commutes
with the Laplacian coming from the spectral triple. He goes on to
prove ([73]) that a universal object in the category of such quantum
groups exists if one makes some mild assumptions on the spectral
triple all of which are valid for a compact Riemannian spin manifold.
He calls this universal object the quantum isometry group. Later on,
in a joint work with Bhowmick ([19]), the notion of a quantum group
analogue of the group of orientation preserving isometries was given
and its existence as the universal object in a suitable category was
proved.

This was followed by a number of computations for quantum isom-
etry groups by Goswami, Bhowmick and several others including
Banica, Skalski, Soltan etc (see for example [19], [20], [21], [9], [10],
[105]). Some of the main tools for making explcit computations were
provided by the results about the effect of deformation and taking
suitable inductive limit on quantum isometry groups. In particu-
lar, many interesting noncommutative manifolds were obtained by
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deforming classical Riemannian manifolds in a suitable sense and it
was proved that the quantum isometry group of such a deformed
(noncommutative) manifold is nothing but a similar deformation or
twist of the quantum isometry group of the original, undeformed
classical manifold. This led to the problem of computing quantum
isometry groups of classical Riemannian manifolds.

It was quite remarkable that none the initial attempts of com-
puting quantum isometry groups of connected classical manifolds
including the spheres and the tori (with the usual Riemannian met-
rics) could produce any genuine quantum group, i.e. the quantum
isometry groups for all these manifolds turned out to be the same as
the classical isometry groups. On the other hand, it follows from the
work of Banica et al ([7]) that most of the known compact quantum
groups, including the quantum permutation groups of Wang, can
never act faithfully and isometrically on a connected compact Rie-
mannian manifold. All these led to a conjecture due to Goswami that
it is not possible to have smooth faithful actions of genuine compact
quantum groups on C(M) where M is a compact connected smooth
manifold. After a series of initial attempts, the above conjecture has
been finally proved by Goswami and Joardar ([75]) for two impor-
tant cases: (i) when the action is isometric for some Riemannian
metric on the manifold, and (ii) when the quantum group is finite
dimensional. In particular, the quantum isometry group of an arbi-
trary compact, connected Riemannian manifold M is classical, i.e.
same as C(ISO(M)). This also implies that the quantum isometry
group of a noncommutative manifold obtained by cocycle twisting of
a classical connected compact manifold is a similar cocycle twisted
version of the isometry group of the classical manifold, thus allowing
one to explicitly compute quantum isometry groups of a large class of
noncommutative manifolds. More recently, Goswami has formulated
and proved the existence of a quantum isometry group for a compact
metric space without any geometric structure ([74]).

10. Local index formula in NCG

The Connes-Moscovici local index formula [50] constructs a local
Chern character as a sum of several multilinear functionals. For Dirac
operators associated with a closed Riemannian spin manifold, most
of these functionals vanish (cf. remark II.1, page 63, [50]). Therefore
most of the terms in the local Chern character are visible in truly
noncommutative cases and hence should be interpreted as a signa-
ture of noncommutativity. To have a better understanding of the
contribution of these terms, it is desirable to have examples where
these terms survive. Even though the Connes-Moscovici paper ended



24 V.S. SUNDER

with the hope that in the foliations example these contributions will
be visible, it turned out to be not very tractable in the codimension
one foliations case. So the task of illustrating the local index formula
in simpler examples remained open. The first simple illustration was
given by Connes in [52]. He first showed that the spectral triple given
by Chakraborty & Pal is regular, with discrete dimension spectrum,
so that the Connes-Moscovici local index formula is applicable, and
then goes on to compute the functionals. Connes’ idea was used
by Pal & Sundar ([123]) to establish regularity and discreteness of
the dimension spectrum of the equivariant spectral triples for odd
dimensional quantum spheres constructed earlier by Chakraborty &
Pal ([39]). Extending this technique further and drawing inspiration
from heat kernel expansion, Chakraborty & Sundar ([44]) then gave
a functorial construction of a spectral triple for the double suspension
of a C∗-algebra A starting with a spectral triple for A. Using heat
kernel techniques, they were able to show that if the original spec-
tral triple is regular with discrete dimension spectrum, then the new
one also shares the same properties. As a consequence, if Connes-
Moscovici formula applies to the original triple, it would apply to the
new one as well. To completely extend Connes’ work ([52]), the final
step would be to compute the cocycles. The paper by Chakraborty
& Saurabh ([42]) is the next step towards that goal.

11. Metric properties and differential calculus

If spectral triples encode essential geometric data, the natural
question is what next? Can one recover, say the differential graded
algebra given by the De Rham complex? Can this machinery be
utilised to extend gauge theoretic notions like Yang-Mills? What
about the metric? In his book ([51]), Connes addressed these issues.
Now we will have a glimpse of these developments pursued by the
Indian school.

11.1. Dirac Differential Graded Algebra. Starting with a spec-
tral triple Connes’ gave a functorial construction of a differential
graded algebra that we will refer to as the Dirac differential graded
algebra. This is a unitary invariant of the spectral triple. For the
canonical spectral triple associated with a Riemannian spin mani-
fold, he identified this as the de Rham complex. However, so far
this has been computed for very few special cases. Chakraborty &
Sinha ([41]) computed this for the quantum Heisenberg manifolds,
while Chakraborty & Pal ([36]) did the same for the quantum SU(2).
All these were isolated computations. In [32] Chakraborty and Guin
have identified suitable hypotheses on a spectral triple that helps one
to compute the associated Connes’ calculus for its quantum double
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suspension. This allows one to compute the Dirac differential graded
algebra for spectral triples obtained by iterated quantum double sus-
pension of the spectral triple associated with a first order differential
operator on a compact smooth manifold. This gives the first system-
atic computation of Connes calculus for a large family of spectral
triples.

11.2. Yang Mills functionals. One of the motivations behind the
initiation of the subject of NCG was to formulate the so called action
principles of Physics in this extended framework. For that one had to
make sense of action functionals first. Yang-Mills is one such and in-
deed Connes and Rieffel ([53]) introduced this concept in the frame-
work of NCG. Later Connes gave a spectral formulation of Yang-
Mills. For Noncommutative two torus, both the notions agree (see
[51]). In ([31, 33]), Chakraborty & Guin have shown that these two
notions of Yang-Mills agree both for higher noncommutative torus
and the quantum Heisenberg manifolds of Rieffel.

11.3. Compact quantum metric spaces. The requirements of
Riemannian Geometry is much more elaborate compared to that
of metric spaces. Therefore it is natural to expect that it would
be simpler to extend the notions of compact metric spaces to the
noncommutative framework. Moreover if we keep in mind various
deformation schemes studied in the particle physics literature it may
not always be possible to interpret them as noncommutative geo-
metric spaces in the sense of Connes but interpreting them as com-
pact quantum metric spaces could be a much more modest program.
With this in mind Marc Rieffel introduced the concept of compact
quantum metric spaces as a unital C∗-algebra equipped with a semi-
norm L, called the Lip norm, such that L(a) = 0 for any a im-
plies that a is a scalar, L is lower semicontinuous and the metric
ρL(µ, ν) := supf :L(f)≤1 |µ(f) − ν(f)| induces the weak*-topology on

S(A). Examples of compact quantum metric spaces often arise from
spectral triples. One of the earliest examples of spectral triples on
noncommutative spaces were those by Connes for group algebras.
For a finitely generated discrete group Γ and a proper length func-
tion l on Γ, the spectral triple is given by (CΓ, ℓ2(Γ),Dl) where CΓ
acts on ℓ2(Γ) via the left regular representation while Dl is defined by
the self adjoint extension of the operator defined by D(δγ) = l(γ)δγ .
In [135], Rieffel showed that the spectral triple (CΓ, ℓ2(Γ),Dl) is a
compact quantum metric space if one takes the length function to
be the canonical word length function on the group Γ = Z

n. Very
recently, Christ & Rieffel ([46]) extended this to the case of all groups
of polynomial growth. The case of word hyperbolic groups was taken
care by Ozawa and Rieffel in [122]. On the other hand, Antonescu
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and Christensen ([3]) obtained compact quantum metric space struc-
tures on the reduced group C∗ algebras of groups with the property
of Rapid Decay.

The result of Antonescu and Christensen ([3]) was extended to
the case of discrete quantum groups with Rapid Decay by Bhowmick

et all in [22]. A discrete quantum group C0(Ĝ) dual to the com-
pact quantum group C(G) is a suitable completion of a direct sum
of matrix algebras, the size of the matrix blocks being equal to the
dimension of an equivalence class of irreducible corepresentation of
C(G). It is a fact that every discrete quantum group is the dual of
a compact quantum group and vice versa. Vergnioux ([151]) stud-
ied the notion of a length function of a discrete quantum group and
defined a notion of rapid decay. Unfortunately, his definition rules
out duals of compact quantum groups whose Haar states are not
tracial. This defect was corrected in [22] where a twisted version of
the Sobolev s-norms were defined in order to have a different defi-
nition of the property of Rapid Decay. For quantum groups whose
Haar states are tracial, this definition agrees with Vergnioux’s defi-
nition. Now with a modification of the Lip norm used by Antonescu
& Christensen, Bhowmick et al ([22]) proved that the reduced quan-
tum group C∗-algebras of finitely generated discrete quantum groups
having Rapid Decay property are compact quantum metric spaces.

There is another way to look at certain examples coming from
quantum groups or their homogeneous spaces, for example, those
associated to the quotients of quantum SU(n). They often fit into
short exact sequences. To exploit this, Chakraborty obtains a general
principle to construct compact quantum metric spaces out of certain
C∗-algebra extensions ([30]). In particular this shows that quantum
SU(n) and quantum Steiffel manifolds do admit compact quantum
metric space structures.
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[65] Kenneth J. Dykema, Claus Köstler, and John D. Williams, Quantum sym-
metric states on free product C∗-algebras, Trans. Amer. Math. Soc. 369

(2017), no. 1, 645–679. MR 3557789
[66] Kenneth J Dykema and Kunal Mukherjee, KMS quantum symmetric states,

Journal of Math. Physics (2016), To appear.
[67] Kenneth J. Dykema, Allan M. Sinclair, and Roger R. Smith, Values of
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