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Basic construction tower for finite-dimensional
C*-algebras:

Definition: Suppose N C M is a unital inclu-
sion of finite-dimensional C*-algebras. A trace
‘tr’ is called a Markov trace with modulus r
for the inclusion N C M iff it can be extended
to a trace ‘Tr’ on m(N)’ with the property that

Tr(eyx) =7 tr(x) Vr € M.

Recall that = (N) = (M,ey) is the *-algebra
generated by M and ey in B(L2(M,tr)); it is
linearly spanned by M U {xeny : x,y € M}, and
consequently, the extension Tr of ‘tr' to n.(N)’
IS uniquely determined by the modulus = condi-
tion. It is existence which requires some work.



Begin by recalling that if A denotes the in-
clusion matrix for N C M, then the inclusion
matrix for M C (M, ey) is identifiable with A? -
with respect to a certain natural identification
of Pz(N) with P,({M,ep)).

Proposition (PF): (a) If ¢ and v are traces
on M and N respectively, then

where we think of t¢ and tw as column vectors.

(b) Let ‘tr' be a positive faithful trace on M;
write t =ty and s = ¢, (= At). Then, ‘tr’
is a Markov trace of modulus 7 iff AtAt = 7 1¢
iff AAls = 7= 1s : ie.. t and s are the ‘Perron-
Frobenius eigenvectors’ of A!'A and of AA! re-
spectively, and r—1 is the ‘Perron-Frobenius
eigenvalue’ of both these matrices.



Suppose Mg = N C M = My is a ‘connected
inclusion’ of finite-dimensional C*-algebras (mean-
ing their Bratteli diagram is a connected graph).
Let 7~ ! be the Perron-Frobenius eigenvalue of
AN'A and t be the unique associated Perron-
Frobenius eigenvector satisfying the normali-
sation that tr(1) = 1 where ¢4, = t. Then, the
previous Proposition guarantees that:

(i) ‘tr’" is a Markov trace of modulus 7 for Mgy C
My;

(ii) there is a unique extension of ‘tr’ to a trace
‘Tr' on M = (Mq,e1) (Where e; = eyy,) with
the property that ¢tr(x1e1) = 7tr(xq) Vo1 € Mq;

(iii) ‘Tr' is a Markov trace of modulus 7 for
My C M»>; and



(iv) we may repeat the process ad infinitum to
obtain the tower

Mg C M1 C®t Mo C®2 M3 - --

where e, IS the Jones projection implement-
ing the ‘tr’-preserving conditional expectation
EMn_1 of M, onto M,_1 and M, C My 41 is
the basic construction for M,,_1 C M, (so that
M, 41 = (Mn, en) is the *-algebra generated by
My U {en}).

It is a consequence of the baic construction
that the e;,’s satisfy the relations:
67;2 e; Vi
ejez- if |’L—]|22
TE; if|i-—‘j|:: 1

ez-ej
eiejei



But for the foregoing analysis to work as out-
lined, 71 must be the largest eigenvalue of
A'A for some non-negative integer valued rect-
angular matrix A which describes the adjacency
relations in a connected bipartite graph . See
[GHJ] for the following classical result:

Theorem:(Kronecker) For A,I" as above, we
must have

IA]l € [2,00] U {2cos(Z) : n=3,4,5,}
mn

Further if ||[A|| < 2, then ' must be a Coxeter
graph of the following type: Apn, Dn, Eg, E7, Eg,
and ||A][ = 2cos(7), where h is the ‘Coxeter
number’ of . (h =141 for A;, 2l — 2 for Dy,
and 12, 18, 30 for E6,E7,E8.)

To be able to ‘handle’ the continuous range of
T's, we need [1q factors.



The symbols M, N, M; will always denote 11
factors.

Proposition 1:

(a) If [M : N] < oo, then N' N M is finite-
dimensional; in fact, dim(N' N M) < [M : NJ;
and

[M:N]<4=NnNnM=C.

(b) If M; C M; C My, and [M; : M;] < oo and
[M}, © M;] < oo, then



Corollary: If
Mg C M1 C®t My C*2 M3 - -

is the tower of the basic construction associ-
ated with a finite index subfactor Mgy C M,
the following is a grid of finite-dimensional C*-
algebras:
C = MéﬂMo C MéﬂMl C MéﬂMQ C
U U

C = M{ﬂMl C MiﬂMg C
Further, this comes equipped with a consistent
trace (which, on M/ N M; is the restriction of
ter). This grid, with this trace, is called the
standard invariant of Mg C M;.

This turns out to be a complete invariant for
a ‘good class’ of subfactors - the so-called ex-
tremal ones.



To better understand this standard invariant,
start by observing that the tower in the first
row of the grid is described by the total Brat-
teli diagram obtained by glueing the several
individual Bratteli diagrams together. We il-
lustrate varous features of this tower in an ex-
ample:
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Here, we have written P, = M{NMj. This dia-
gram illustrates the following features present
in the corresponding diagram of relative com-
mutants for every subfactor:



(a) The part of the diagram between the nth
and (n—+1)-th floors consists of two parts: (i) a
(horizontal) mirror-reflection of the part of the
diagram between the (n—1)-th and nth floors,
and (ii) a ‘new part’. In fact, new verices, if
any, on the (n+ 1)-th floor are connected only
to new vertices on the n-th floor.

(b) The (red) graph comprising all the ‘new
parts’ is called the principal graph [ of the
subfactor My C My. (It follows from (a) that
the Bratteli diagram for the entire tower {MjN
M, : k > 0} is determined by the principal
graph.)

(c) In fact, the Bratteli diagram for the entire
tower {M] N My : k > 0} is recovered in the
same fashion from the so-called dual principal

graph [, which is just the principal graph of
My C Mo.



(d) In the exhibited example, the principal graph
is the finite graph Ag, and the dual principal
graph turns out to be the same. It is fact that
[ is finite iff [ is finite, in which case the sub-
factor is said to have finite depth.

(e) In addition to the two principal graphs,
which only describe the two towers of rela-
tive commutants, one also needs to encode
the data of how one tower is embedded into
the next. This has been done in at least three
ways: in a paragroup (Ocneanu), a A-lattice
(Popa), or in a planar algebra (Jones). (We
shall elaborate later on the last.) Any one of
these notions is equivalent to the ‘standard in-
variant, and is a complete invariant, provided
the subfactor is extremal. (Finite depth sub-
factors are known to be extremal, and thus
determined by their standard invariant.)
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The richness of the theory of subfactors may
be surmised from the following facts:

(a) To every finite group G is associated a
canonical subfactor RG C R such that

(RC1 c R) 2 (R“2 c R)&G1 = G5

(b) More generally, to every finite-dimensional
Hopf C*-algebra H is associated a canonical
subfactor R ¢ R such that

(R c R) 2 (RM"2 ¢ R)eH, & H>

(c) In fact, subfactors as in (b) are charac-
terise by the property that they have ‘depth
2': the principal graph of R¥ ¢ R is the bipar-
tite graph with even vertices indexed by H (the
set of irreducible *-algebra representations of
H), with one odd vertex, and with the degree
of the odd vertex indexed by © € H being given
by the degree d; of the representation .
11



Planar algebras (PAs):

A planar algebra is a collection {P, : n > 0} of
C-vector spaces which admits an action by the
coloured operad of planar tangles. Here is an
example of a planar tangle:

Figure 1: Tangle T

A planar tangle T' has the following features:

(a) its boundary consists of an external box
(labelled Bg), and some number b (which is 3
in this example, and can, in general, even be
0) of internal boxes (labelled Bq,:-- By).
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(b) each box B; has an even number 2k; of
marked points, and is said to be of colour k;.
In this example,

ko = 3,k1 =4, ko =0, ks = 3.

(c) There are a number of non-crossing ‘strings’
which are either closed curves or have their two
ends on a marked point of one of the boxes,
in such a way that every marked point is the
end-point of some string.

(d) The entire configuration comes with a checker-
board shading.

(e) One special marked point on each box of
non-zero colour is labelled with a ‘*' in such
a way that as one travels outward (resp., in-
ward) from the *-point of an internal (resp.,
the external) box, the black region is to the
right.
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The one thing one can do with tangles is com-
position, when that makes sense: thus, if S
and 1" are tangles, such that the external box
of S has the same colour as the :-th internal
box of T', then we may form a new tangle T'o;S
by ‘glueing S into the -th internal box of T in
such a way that the *-points and the strings
at the common boundary are aligned.

A tangle T with boxes coloured kg,---,kp IS
required to induce a linear map

(27 =)Zr - ®§:1sz- — P,

and these maps are to satisfy some natural
compatibility requirements, the most impor-
tant being compatibility with composition of
tangles:
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Rather than going through all the requirements
of a planar algebra, let us look at one of the
Mmost elementary examples, the Temperley-Lieb
planar algebra. Fix 0 < 7 < 1/4, and let
Py =C, and P, = TLy(7), the C-vector space
with basis I, the set of Kauffman diagrams.
We define the action of a tangle on ‘basis vec-
tors’: thus, for example, if T denotes the tan-
gle of Figure 1, and if Sp € K3,51 € K4 and
S3 € K3 are the Kauffman diagrams shown in
Figure 2, and 1 € C =TLg(7), then

Zr(S1®1® S3) = 3280,

where 8 = 7—2 (since each loop counts for a
multiplicative factor of 3).
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Figure 2: tangle action in 1T'Ly,
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By a homomorphism « between planar algebras
P={P.:k>0}and Q = {Q : k > 0}, one
understands a collection of C-linear maps my. :
P. — Q. which are ‘equivariant’ with respect
to the tangle actions: thus, if T is a kg-tangle
with internal boxes of colours kq,---,kp, then
we must have

Thg © ZQE = chg o (@?leki)

The generators-and-relations approach to pla-
nar algebras:

For any ‘graded set’ L = ano Ly, - where some
L,’s may be empty, define an L-labelled tangle
T to be a tangle equipped with a labelling of
each internal box of colour k£ by an element of
L. (In particular, if L, = ( for some k, then
an L-labelled tangle cannot have an internal
k-box.)
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T he universal PA on label set L:

Let P.(L) be a C-vector space with basis in-
dexed by the set of all L-labelled k-tangles (=
tangles with external box of colour k). It is not
hard to see that P(L) = {P,(L) : k > 0} has a
natural struture of a planar algebra; this is the
universal planar algebra on label set L in the
sense that: given set functions f. : Ly — Py,
for some planar algebra P, there is a unique
planar algebra homomorphism = : P(L) — P
such that ‘m; extends f;.' for each k.

Definition: A planar ideal Z of a PA P is a
collection 7 = {I; : kK > 0} of subspaces of
P = {Pk k> O} such that ZT(®£?:1$Z') c IkO
whenever T' is a tangle and x; € Pki V1<:<b
provided z; € ij for at least one j.

It is easily shown that Z is a planar ideal in P
iff there is a PA homomorphism = : P — Q (for
some PA Q) such that I; = ker(w;) Vj. (This
@ may be chosen as P/|CI = {P./I;, : k > 0}
with its natural PA structure.)
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It is another routine matter to verify that given
any ‘subset’ R = {Rj : k> 0} of a PA P, there
exists a smallest planar ideal Z(R) of P with
the property that R, C I Vk.

Finally, given a label set L = [[;. L;, and a ‘sub-
set’ R = {Ry : £k > 0} of the PA P(L), define
P((L,R)) = P()/Z(R). This is the PA with
presentation given by label set L and relations
R.

We shall conclude with some examples of pre-
sentations of planar algebras:
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Temperley-Lieb Planar algebra, for T < 1/4:

This has label set L = (), and the two relations
listed below. (Taking a cue from group theory,
we think of relations as equations; thus, we say
X =0 is a relation if X €¢ R.)

The PA for RC C R:

For a finite group G, the label set is taken as

Lk:{G if k=2

@ otherwise

and the relations are as follows (where we write
B = /|G| and use ¢ for the ‘Kronecker delta’):
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(modulus)

(unit)

(inverse)

(trace)

(e)
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