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Finite-dimensional C*-algebras:
Recall:

Definition: A linear functional ‘tr’' on an alge-
bra A is said to be

e a trace if tr (xy) = tr (yx) forall z,y € A;
e normalised if A is unital and tr(1) = 1;

e positive if A is a *-algebra and tr (x*z) >
OVz € A;

e faithful and positive if A is a *-algebra and
tr (z*z) >0V 0#zx¢€ A.

For example, M, (C) admits a unique normalised
trace (tr(z) = Y7, x;) which is automati-
cally faithful and positive.



Proposition FDC*: The following conditions
on a finite-dimensional unital *-algebra A are
equivalent:

1. There exists a unital *-monomorphism 7 :
A — M, (C) for some n.

2. There exists a faithful positive normalised
trace on A.



For a finite-dimensional C*-algebra M with faith-
ful positive normalised* trace ‘tr', let us write
L2(M, tr) = {Z : x € M}, with (z,7) = tr(y*z),
as well as m, 7 : M — B(L?(M,tr)) for the
maps (injective unital *~-homomorphism and *-
antihomomorphism, repectively) defined by

m(2)(y) = zy = m(y)(Z) .

We shall usually identify x € M with the oper-
ator m;(x) and thus think of M as a subset of
B(L2(M,tr)).

Fact: m(M) = (M) and w.(M) = m;(M),
where we define the commutant S’ of any set
S of operators on a Hilbert space H by

S'= {2’ € B(H) : 2’ = 2'x Vx € S})

*It is a fact that every finite-dimensional C*-algebra is
unital.



Write Py(M) for the set of minimal central
projections of a finite-dimensional C*-algebra.
It is a fact that there is a well-defined function
m . Py(M) — N, such that Mq = Mm(q)(C) Vq €

Py(M); thus the map M > x 4 xq defines an
irreducible representation of M: and in fact,
{mq :q € Pyz(M)} is a complete list, up to uni-
tary equivalence, of pairwise inequivalent irre-
ducible representations of M, and

M= >  Mq=®ep,a)Mmg(©)
qEP 7 (M)

Since every trace on the full matrix algebra
My, (C) is a multiple of the usual trace. It fol-
lows that any trace ¢ on M is uniquely deter-
mined by the function ¢, : Pz(M) — C defined
by t4(q) = ¢(q0) where gg is @ minimal projec-
tion in Mgq. It is clear that ¢ is positive (resp.,
faithful, or normalised) iff t;,(q) > 0 Vq (resp.,

ty(q) > 0 Vg, or 3 cp, (ar) m(@)ty(q) = 1).
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If N C M is a unital C*-subalgebra of M, the
associated inclusion matrix N\ is the matrix with
rows and columns indexed by P, (N) and P, (M)

dim_qpMaqp
dim qpNgp"
Alternatively, if we write p, for the irreducible

representation of N corresponding to p, then
Npq is nothing but the ‘multiplicity with which
pp occurs in the irreducible decomposition of
mq|N'. This data is sometimes also recorded
in a bipartite graph with even and odd vertices
indexed by P»(N) and P, (M) repectively, with
Npq €dges joining the vertices indexed by p and
q, this bipartite graph is usually called the Brat-
teli diagram of the inclusion.

repectively, defined by setting Apq = \/

Writing En for the tr-preserving conditional ex-
pectation of M onto N, and ep for the orthog-
onal projection of L2(M,tr) onto the subspace
L2(N,tr|y), we have the following result.



Propostion (bc): Suppose N C M is a unital
inclusion of finite dimensional C* algebras. Let
tr be a faithful, unital, positive trace on M.
Then,

(1) The C* algebra generated by M and ey in
B(L2(M,tr)) is m(N)'.

(2) The central support of ey in m-(N)' is 1.
(3) enyzeny = E(x)en for x € M.
(4) N=Mn {eN}’.

(5) If A'is the inclusion matrix for N C M then
Al is the inclusion matrix for M C = (N)'. O

T his basic construction - i.e., the passage from
N C M to M C m(N)" extends almost verba-
tim from inclusions of finite-dimensional C*-
algebras to finite-depth subfactors!



von Neumann algebras :

Introduced in - and referred to, by them, as -
Rings of Operatorsin 1936 by F.J. Murray and
von Neumann, because - in their own words:

the elucidation of this subject is strongly sug-
gested by

e Oour attempts to generalise the theory of
unitary group-representations, and

e various aspects of the quantum mechanical
formalism



Def 1: A vNa is the commutant of a unitary
group representation: i.e.,

M={xe L(H) : xn(g) = w(g)x Vg € G}

Note that L£L(H) is a Banach *-algebra w.r.t.
|| = sup{l|z¢l| : € € H,[|&]] = 1} (‘operator
norm’) and ‘Hilbert space adjoint’.

Defs: (a) ' = {2’ € L(H) : z2’ = 2’z Vx € S},
for S C L(H)

(b) SOT on L(H): xn — = & ||zn&—x|| — 0 V¢
(i.e., xn€ — x€ strongly V&)

(c) WOT on L(H): zn — xzs{xpé — x€,n) —
ovE,n (i.e., zn€ — x€ weakly VE)

(Our Hilbert spaces are always assumed to be
separable.)



von Neumann’s double commmutant theo-
rem (DCT: Let M be a unital self-adjoint
subalgebra of L(H). TFAE:

(i) M is SOT-closed

(ii) M is WOT-closed

(iii) M = M" = (M")’ []
Def 2: A vNa is an M as in DCT above.

The equivalence of definitions 1 and 2 is a con-
sequence of the spectral theorem and the fact
that any norm-closed unital *-subalgebra A of
L(H) is linearly spanned by the set U(A) = {u €
A u*u =wuu* = 1} of its unitary elements.



Some consequences of DCT:

(a) A von Neumann algebra is closed under all
‘canonical constructions’:

for instance, if x — {1g(x) : E € B¢} is the
spectral measure associated with a normal op-
erator z, then x € M<slg(x) e MV E € Be.

(Reason: 1lg(uxu*) = ulg(x)u* for all unitary
w; SO implication = follows from

reMu eUM) = J1ig(x)* = 1E(/u/a:u’*)
= 1p(z) € (UM)) =M )

(b) For implication <, uniform approximability
of bounded measurable functions implies (by
the spectral theorem) that

M = [P(M)] = (span P(M))~ (%),

where P(M) = {p € M : p = p? = p*} is the set
of projections in M.
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Suppose M = n(G)" as before. Then
p—=ran p
establishes a bijection
P(M)«—G-stable subspaces
So, for instance, eqn. (*) shows that

(7(@)) = L(H)eM =C < 7« is irreducible

Under the correspondence, of sub-reps of = to
P(M), (unitary) equivalence of sub-repreps of
7 translates to Murray-von Neumann equiva-

lence on P(M):

p ~a ge3u € M such that v u = p, wu* = ¢

More generally, define

p 2 g&3po € P(M) such that p ~prpo < ¢
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Proposition: TFAE:

1. Either p <prq or q <) p, Vp,q € P(M).

2. M has trivial center: Z(M) =M nNM' =C

Such an M is called a factor. []

If M = n(G)’, with G finite, then M is a factor
iff 7 is isotypical.

In general, any vNa is a ‘direct integral’ of fac-
tors.
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Say a projection p € P(M) is infinite rel M
if dpg = p € P(M) such that p ~p; po < p;
otherwise, call p finite (rel M).

Say M is finite if 1 is finite.

Murray von-Neumann classification of fac-
tors: A factor M is said to be of type:

1. I if there is a minimal non-zero projection
in M.

2. II if it contains non-zero finite projections,
but no minimal non-zero projection.

3. II] if it contains no non-zero finite projec-
tion.
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Def. 3: (Abstract Hilbert-space-free def) M is
a vVNa if

e M is a C*-algebra (i.e., a Banach *-algebra
satisfying ||z * z|| = ||z||2 V )

e M is a dual Banach space: i.e., 4 a Banach
space My such that M = M} as a Banach
space.

Example: M = L°°(€2,B,u1). Can also view it
as acting on L2(2,B,u) as multiplication op-
erators. (In fact, every commutative vNa is
isomorphic to an L°(2,8B,u).)

Fact: The predual M, of M is unique up to
isometric isomorphism. (So, (by Alaoglu), 3 a
canonical loc. cvx. (weak-*) top. on M w.r.t.
which the unit ball of M is compact. This is
called the o-weak topology on M.
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A linear map between vNa's is called normal
if it is continuous w.r.t. the o-weak topologies
on domain and range.

The morphisms in the category of vNa’'s are
unital normal x-homomorphisms.

The algebra L(H), for any Hilbert space H, is
a vVNa - with pre-dual being the space Li«(H)
of trace-class operators.

Any o-weakly closed x-subalgebra of a vNa is
a vVNa.

Gelfand-Naimark theorem: Any vNa is iso-
morphic to a vN-subalgebra of some L(H). (So
the abstract and concrete (= tied down to
Hilbert space) definitions are equivalent.)
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In some sense, the most interesting factors are
the so-called type I factors (= finite type I]
factors).

Theorem: Let M be a factor. TFAE:
1. M is finite.
2. d a trace trp; on M - i.e., linear functional
satisfying:
o try/(xy) = try(yzx) Ve,y € M (trace)
o try/(xz*x) > OVx € M (positive)
e try;(1) =1 (normaliised)

Such a trace is automatically unique, and faith-
ful - i.e., it satisfies try;(z*x) = 0<x =0
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For p,q € P(M), M a finite factor, TFAE:

1. p~npq

2. tryp = tryq

3. Ju € U(M) such that upu* = gq.

If dimeM < oo, then M = M, (C) = L(C™) for
a unique n.

If dimecM = oo, then M is a II; factor, and in
this case, {tryp:pe P(M)} = [0,1].

So [I; factors are the arena for continuously
varying dimensions; they got von Neumann look-
ing at continuous geometries.
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Henceforth, M will be a I1; factor.

Def: An M-module is a separable Hilbert space
‘H, equipped with a vNa morphism = : M —
L(H). Two M-modules are isomorphic if there
exists an invertible (equivalently, unitary) M-
linear map between them.

Proposition: There exists a complete isomor-
phism invariant

H — dimyH € [0, o0]

of M-modules such that:
1. H=KedimyH = dimyK.

3. For each d € [0, o0], 3 an M-module Hq with
dimyrHg = d.

18



T he equation

(z,y) = tryy(y™x)
defines an inner-product on M. Call the com-
pletion L2(M,trys). Then L2(M, try) is an
M — M bimodule with left- and right- actions
given by multiplication.

Hy = L2(M, tryy).

If 0 <d< 1, then Hy; = L2(M,try;).p where
p € P(M) satisfies tryp = d.

H, is a finitely generated projective module if
d < oo.

In particular Kg(M) = R.
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The hyperfinite [/; factor R: Among 114
factors, pride of place goes to the ubiquitous
hyperfinite 117 factor R. It is characterised as
the unique II; factor which has any of many
properties, such as injectivity and approximate
finite-dimensionality (= hyperfiniteness).

Thus, 4 a unique I factor R which contains
an increasing sequence

A CAyC---CApC--

such that U,A, is o-weakly dense in R.

Examples of I factors: Let A : G — U(L(L2(R)))
denote the ‘left-regular representation’ of a count-
able infinite group G, and let LG = (A(G))".
Then LG is a II; factor iff every conjugacy
class of G other than {1} is infinite.

L3> -« = R, while LF5 is not hyperfinite.
Big open problem: is LF, = LF37?
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The study of bimodules over [17 factors is es-
sentially equivalent to that of ‘subfactors’.
(The bimodule nHjs corresponds to m(N) C

mr(M)'.)

A subfactor is a unital inclusion N C M of
11, factors. For a subfactor as above, Jones
defined the index of the subfactor to be

[M : N] = dimyL2(M, try)
and proved:

[M : NJ] € [4,00] U {46082(% :n > 3}

A subfactor N is said to be irreducible if N'N
M = C - or equivalently, L2(M,trys) is irre-
ducible as an N — M bimodule.
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It is known that if a subfactor N C M has finite
index, then N is hyperfinite if and only if M is.
In this case, call the subfactor hyperfinite.

Very little is known about the set I]% of possible
index values of irreducible hyperfinite subfac-
tors.

Some known facts:

(a) (Jones) ZTp = [4,00] U {46082(%) ' n > 3}
and I]% D {46082(% :n > 3}

2 2
(b) (N+V2NQ+4> ,<N+V2:N2+8> eI VN > 1

(c) (N 4 #)? is the limit of an increasing se-
quence in Z9.
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What is relevant for us is that if N C M is a
subfactor of finite index, then the ‘basic con-
struction’ goes through exactly as in finite di-
mensions.

Proposition: (subfl) Let L2(M,try;) denote
the completion of the inner-product space V =
{z : x € M} (with inner-product defined by
(z,7) = tr(y*z)), let L2(N,try) be identified
with the subspace defined as the closure of
Vo ={x :xz € N}, and let e);y denote the orthog-
onal projection of L2(M,try;) onto L2(N,try).

(1) Then there exists a map Exy : M — N
satisfying, for all x € M,a,b € N

(i) En(azxb) = aEnN(x)b
(i) En(a) =a
(III) t’I°|N O EN = tir

(iV) eNTeEN — (ENCB)QN
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(2) Further, if we write 7m; and m, for the maps
defined earlier, if we identify M with =;(M),
then,

(@) m(M)' =m(M) =M

(b) m(N) = (M,en) = (M U{eyn})” is also a
I factor, and [(M,ey) : M] = [M : N]

(c) t"“(M,eN>(37€N) = 7trp(x) for all x € M,
where we write 7 = [M : N]~ 1.

(d) N =Mn{en} ]

All the necessary ingredients are in place for us
to build the Jones tower

Mg C My C® Moy C*®2 M3 ---

where e, IS the Jones projection implement-
ing the ‘tr’-preserving conditional expectation
EMn—l of Mn onto M,_1 and Mp, C M,y is
the basic construction for M,,_1 C My (so that
Mn—l—l — <Mn7€n>)-
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It is easy to deduce from the preceding propo-
sition (applied to appropriate members of the
Jones tower) that

61-2 = e Vi
€.,€5 — €45¢; if |Z — ]| Z 2
€,€7€; — TECy if |Z — ]| =1

where 7 = [M : N]~1. In fact, more generally
than the last equation above, it is true that:

EnLen

tra, g (zen)

(EMn_laj)en Vo € My
Ttryr, () Yo € Mp

In fact, since there is a unique normalised trace
on a I1q factor, we can unambiguously use the
symbol ‘tr’ for the functional on U,M, which
restricts on My to tryy .
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