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These algebras appeared first in [TL] in the

context of statistical mechanics. See appendix

IIb of [GHJ] for an account of this. Our inter-

est stems from their manner of appearance in

[Jon], where the following striking result was

proved:

Theorem (Jones): The index [M : N ] of a

subfactor satisfies

[M : N ] ∈ [4,∞] ∪ {4cos2(
π

n
) : n = 3,4,5, · · ·}
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For a scalar 0 6= τ ∈ C, and positive inte-

ger n, the Temperley-Lieb algebra TLn(τ)

is the universal unital C-algebra generated by

1, e1, · · · , en−1 and satisfying the relations

e2i = ei ∀i

eiej = ejei if |i − j| ≥ 2

eiejei = τei if |i − j| = 1

We shall first establish finite-dimensionality of

TLn(τ). (In fact, the dimension is the n-th

Catalan number.) To this end, we begin with

the following result from [Jon]:

Lemma 1:

If w is a ‘word’ in e1, · · · , en−1, and if k is the

largest integer for which ek occurs in w, then

there exist words u, v in e1, · · · , ek−1 such that

w = τmuekv.
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Proof: We prove this by induction on k. The

assertion being trivial when k = 1, we assume

the result for all smaller values of k and estab-

lish the validity of the inductive step.

For this, we proceed by induction on the num-

ber M of times ek occurs in the word w. The

result to be proved is trivially true for M = 1,

so we shall reduce the validity of the case when

M ≥ 2 to that of the case M−1. If M ≥ 2, then

w = w1ekw2ekw3, with the wi’s being words

in e1, · · · , ek−1. If w2 does not feature any

ek−1, then it commutes with ek and we have

w = w1ekw2w3 is an expression where ek occurs

only (M − 1) times. If w2 does feature ek−1,

then by the (first) induction hypothesis, we

may write w2 = τru2ek−1v2, where u2, v2 are

words in e1, · · · , ek−2 and consequently com-

mute with ek, so that we find that, indeed

w = w1ekw2ekw3

= τrw1u2ekek−1ekv2w3

= τr+1w1u2ekv2w3
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is an expression of w featuring only (M − 1)

ek’s, and by induction, the proof of the lemma

is complete.

Proposition 1.

(a) TLn(τ) is spanned by elements of the form

w = τm(ei1ei1−1 · · · ej1)

(ei2ei2−1 · · · ej2) · · ·

(eipeip−1 · · · ejp) (1)

for some integers m, p, i1, j1, · · · , ip, jp satisfying

m, p ≥ 0, and

1 ≤ i1 < i2 < · · · < ip < n,

1 ≤ j1 < j2 < · · · < jp < n,

j1 ≤ i1, j2 ≤ i2, · · · , jp ≤ ip (2)

(b) In particular,

dim TLn(τ) ≤
1

n + 1

(
2n

n

)
.
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Proof: (a) The proof is by induction on n.

It clearly suffices to prove that every word in

the ei’s satisfies an equation of the form dis-

played in (a). This assertion is obvious for

n = 1. So suppose this assertion is true for all

values smaller than n.

If, now, w is a word in e1, · · · , en−1, the desired

assertion holds if the w does not feature en−1.

If w features en−1, then, the lemma alows us

to assume that in fact, w = uen−1v, where u, v

are words in e1, · · · , en−2. If we now ‘push the

en−1 as far to the right as possible, we see,

after appropriately utilising the induction hy-

pothesis, that we may write w as in equation

(1), where ip = n − 1 and all the inequalities

in (2) are satisfied, except possibily jp−1 < jp.

Among all possible expressions of w, we claim
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that the one of shortest length will indeed sat-

isfy jp−1 < jp. This is because, if jp−1 ≥ jp, it

can be seen that

(eip−1
· · · ejp−1

)(en−1en−2 · · · ejp−1+1ejp−1
· · · ejp)

= (eip−1
· · · ejp−1+1)

(en−1en−2 · · · ejp−1+2ejp−1
ejp−1+1ejp−1

· · · ejp)

= τ(eip−1
· · · ejp−1+1)

(en−1en−2 · · · ejp−1+2)(ejp−1
· · · ejp)

= τ(eip−1
· · · ejp)(en−1en−2 · · · ejp−1+2) ,

would be another such expression with smaller

length. Thus, the proof of (a) is complete.

(b) We only need to show, in view of (a) above,

that if Sn is the set of tuples (i1, j1, · · · , ip, jp)

which satisfy condition (2), then |Sn| is at most

the Catalan number 1
n+1

(
2n

n

)
. The proof is

completed by observing that the assignment

(i, j) 7→ γ(i,j) sets up a bijection between Sn

and the set denoted by Pg((0,0), (n, n)) in the

proof of Proposition 2,



where γ(i,j) is the path

(0,0) → (i1,0) → (i1, j1) → (i2, j1)

→ · · · (ip, jp) → (n, jp) → (n, n)

�

A Kauffman diagram is an isotopy class of

a planar (i.e., non-crossing) arrangement of

n curves in a box with their ends tied to 2n

marked points on the boundary, with n points

on each horizontal bounding edge, and usu-

ally thought of as being numbered clockwise,

starting from the top left corner; an example,

with n = 4 is illustrated below:
1 2 3 4

6 58 7

The collection of such diagrams will be de-

noted by Kn.
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Proposition 2:

|Kn| =
1

n + 1

(
2n

n

)

Proof: For x, y ∈ R2 such that xi ≤ yi for i =

1,2, let P(x, y) denote the collection of all

‘walks’ γ from x to y, in which each step is

of unit length, and is to the right (R) or up

(U). It is clear that

|P(x, y)| =

(
y1 − x1 + y2 − x2

y1 − x1

)
.

We will primarily be interested in P((0, 0), (n, n)).

For instance, we see that P((0, 0), (2,2)) is as
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follows:

RRUU RUURRURU

URRU URUR UURR



Let Pg((0,0), (n, n)) consist of those paths which

do not cross the main diagonal (- i.e., every ini-

tial segment has at least as many R’s as U ’s.)

Thus, P((0, 0), (2,2)) is as follows:

RRUU RURU

It is an easy exercise to verify that

|Kn| = |Pg((0,0), (n, n))|.

The bijection is illustrated below, for n = 3:

(*

)*

(1(2(34)5)6) (1(23)(45)6)

(1(23)4)(56) (12)(3(45)6)

RRRUUU RRURUU

RRUURU RURRUU

R

L

(12)(34)(56) RURURU
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We need to show that

|Pg((0,0), (n, n))| =
1

n + 1

(
2n

n

)
.

Note - by a shift - that |Pg((0,0), (n, n))| =

|Pg((0,1), (n + 1, n))|, and that the right side

counts the (‘good’) paths in P((1, 0), (n+1, n))

which do not meet the main diagonal. Con-

sider the set Pb((1,0), (n + 1, n)) of (‘bad’)

paths which do cross the main diagonal. The

point is that any path in Pb((1,0), (n+1, n)) is

of the form γ = γ1 ◦ γ2 ∈ Pb((1,0), (n + 1, n)),

where γ1 ∈ P((0, 1), (j, j)), γ2 ∈ P((j, j), (n +

1, n)), and (j, j) is the ‘first point’ where γ

touches the main diagonal. Define γ̃ = γ′
1 ◦ γ2,

where γ′
1 is the reflection of γ1 about the main

diagonal. This yields a bijection

Pb((1,0), (n+1, n)) ∋ γ↔γ̃ ∈ P((0, 1), (n+1, n))
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Hence

|Pg((1,0), (n + 1, n))|

= |P((1, 0), (n + 1, n))| − |Pb((1,0), (n + 1, n))|

= |P((1, 0), (n + 1, n))| − |P((0, 1), (n + 1, n))|

=

(
2n

n

)
−

(
2n

n + 1

)

=
1

n + 1

(
2n

n

)
,

thereby completing the proof of Proposition 2.

�
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The diagram algebras Dn(β)

We now pass to another one-parameter family

D(β) = {Dn(β)} of towers of algebras, which

depends on a complex parameter β, which we

will usually take to be positive.

By definition, Dn(β) is the C-algebra with basis

given by Kn, and multiplication defined (on the

basis) by the rule

ST = βλ(S,T)U

where (1) U is the diagram obtained by con-

catenation - i.e., identifying the point marked

(2n − j + 1) for S with the point marked j for

T , for 1 ≤ j ≤ n - and erasing any ‘internal

loops’ formed in the process, and (2) λ(S, T)

is the number of ‘internal loops’ so erased. For

example, if S and T are the elements of Kn rep-

resented by (1(23)4)(56) and (12)(3(45)6) re-

spectively, then U = (1(23)(45)6) and λ(S, T) =

1 (so ST = βU), while TS = βV , where V =

(12)(34)(56).
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Consider the elements Ei,1 ≤ i < n of Kn de-

fined by requiring that the pairs of vertices

joined by the strings of Ei are (i, i + 1), (2n −

i + 1,2n − i) and {(j,2n − j + 1) : j 6= i,1 ≤

j ≤ n}; pictorially, this means that except for

two strings, all strings come straight down, and

the two exceptions join (i, i +1) and (2n− i +

1,2n − i). We illustrate below the two Ei’s,

when n = 3:

2
E E

1

It is not hard to see that

E2
i = βEi ∀i

EiEj = EjEi if |i − j| ≥ 2

EiEjEi = Ei if |i − j| = 1
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It follows that if we define eD
i = β−1Ei, then

the eD
i ’s satisfy the Temperley-Lieb relations

(with τ = β−2) , and consequently, there exists

a unique unital algebra homomorphism

φ(n) : TLn(β
−2) → Dn(β)

such that φ(n)(eT
i ) = eD

i for 1 ≤ i < n, where

we write {eT
i : 1 ≤ i < n} for the generators

of TLn in order to distinguish them from the

eD
i ’s. We shall henceforth assume that τ and

β are related by τ = β−2, and simply write TLn

and Dn without specifying the parameter, if no

confusion is likely to result.

Proposition 3:

(a) Dn is generated, as a unital algebra, by

{Ei : 1 ≤ i < n}; and consequently,

(b) φ(n) : TLn(β−2) → Dn(β) is an isomor-

phism of unital algebras.
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Proof: (a) This is proved by induction on n.

The proposition is clear when n ≤ 2. For the

inductive step, note that if an S ∈ Kn has a

string ‘coming straight down’, it will follow

from the induction hypotesis that S is in the

unital algebra generated by the Ei’s.

The general case is then reduced to two sub-

cases, according as whether or not S has a

through-string. Both sub-cases fall to the ‘ar-

gument of the wiggle’.

(b) It follows from (a) that φ(n) is surjective,

and so

dim Dn ≤ dim TLn ; (3)

On the one hand, we have (by Proposition 2)

1

n + 1

(
2n

n

)
= |Kn| = dim Dn (4)
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while on the other, we also know (by Proposi-

tion 1(b)) that

1

n + 1

(
2n

n

)
≥ dim TLn ≥ dim φ(n)(TLn) .

(5)

Hence the three inequalities in (5) must all be

inequalities, and φ(n) must be an isomorphism.

�

In view of the above proposition, we shall hence-

forth identify the Temperley-Lieb algebra with

the diagram algebra.


