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Gelfand Naimark theorems

The ‘G-N’ theorems lead to the ‘philosophy’

of regarding C∗-algebras as non-commutative

analogues of topological spaces.

• (commutative G-N th) A is a unital com-

mutative C∗-algebra if and only if A ∼= C(X)

(the algebra of continuous functions on a

compact Hausdorff space).

• (non-commutative G-N th) A is a C∗-algebra

if and only if A is isomorphic to a closed

*-subalgebra of L(H) (the C∗-algebra of

‘bounded operators’ on Hilbert space).
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A Banach algebra is a triple (A, ‖·‖, ·), where:

• (A, ‖ · ‖) is a Banach space

• (A, ·) is a ring

• The map A 3 x 7→ Lx ∈ L(A) defined by

Lx(y) = xy is a linear map and a ring-

homomorphism satisfying

‖xy‖ ≤ ‖x‖‖y‖
(or equivalently, ‖Lx‖ ≤ ‖x‖ ∀x ∈ A).

A is unital if it has a multiplicative identity

1, usually assumed to satisfy ‖1‖ = 1. (We

only consider such unital algebras here.)
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Define GL(A) = {x ∈ A : x is invertible}

Lemma: ‖x‖ < 1 ⇒

• 1 − x ∈ GL(A)

• (1 − x)−1 =
∑∞

n=0 xn

• ‖(1 − x)−1 − 1‖ ≤ ‖x‖(1 − ‖x‖)−1

Corollary: GL(A) is open, and x 7→ x−1 is a

continous self-map of GL(A).
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Define the spectrum of an element x ∈ A by

sp(x) = {λ ∈ C : x − λ /∈ GL(A)}
and its spectral radius by

r(x) = sup{|λ| : λ ∈ sp(x)}

Theorem: The spectrum is always non-empty,

and we have the spectral radius formula

r(x) = lim
n→∞ ‖xn‖1

n .
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Caution: We must exercise some caution and

talk about spA(x), since if D is a unital Banach

subalgebra of A and if x ∈ D, it may be the case

that spD(x) 6= spA(x). For example, by the

maximum modulus principle, the Disc algebra

D = {f ∈ C(D) : f |D is holomorphic}
imbeds isometrically as a Banach subalgebra

of A = C(∂D), and

f ∈ D ⇒ spD(f) = f(D), spA(f) = f(∂D) .

But it turns out that there is no such pathology

if our Banach algebras are C∗-algebras.
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Assume henceforth that A is a unital commu-

tative Banach algebra. Let M(A) denote the

collection of maximal ideals in A. (Conven-

tions: (a) J ∈ M(A) ⇒ {0} 6= J 6= A, if A 6= C,

but (b) {0} ∈ M(C))

Lemma: Let x ∈ A. T.F.A.E.:

1. x /∈ GL(A)

2. ∃J ∈ M(A) such that x ∈ J.

Proof: For (1) ⇒ (2), note that I = Ax is a

proper ideal; pick J ∈ M(A) such that I ⊂ J.
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Note that maximal ideals are closed (since 1

is in the exterior of any proper ideal). This

implies:

Proposition: Write Â for the collection of uni-

tal homomorphisms φ : A → C. Then

(a) J ∈ M(A)⇔∃φ ∈ Â such that J = ker φ.

(b) φ ∈ Â ⇒ φ(x) ∈ sp(x), and so, |φ(x)| ≤
r(x) ≤ ‖x‖ , and Â ⊂ ball(A∗).
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Â is closed and hence compact in the weak-*

topology of ball(A∗).

Proposition: The Gelfand transform of A,

which is the map Γ : A → C(Â) defined by

(Γ(x)) (φ) = φ(x) ∀φ ∈ Â

is a contractive homomorphism of Banach al-

gebras.

(x̂ = Γ(x) is called the Gelfand transform of

x.)

Question: When is Γ an isometric isomor-

phism onto C(Â)?

Answer: When A is a C∗-algebra!
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A C∗-algebra is a Banach algebra A equipped

with an involution - i.e., a self-map a 3 x 7→
x∗ ∈ A satisfying

• (αx + y)∗ = ᾱx∗ + y∗

• (xy)∗ = y∗x∗

• (x∗)∗ = x

- which is related to the norm on A by the

C∗-identity ‖x‖2 = ‖x∗x‖.
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The commutative G-N theorem

The Gelfand transform of a commutative Ba-

nach algebra A is an isometric surjection if and

only if A has the structure of a commutative

C∗-algebra.

In this case, Γ is automatically an isomorphism

of C∗-algebras.
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Sketch of Proof: Suppose A is a C∗-algebra

and x = x∗ is ‘self-adjoint’. For t ∈ R, define

ut = eitx =
∑∞

n=0
(itx)n

n! and note that u∗
t =

u−t = u−1
t . So, by the C∗-identity,

‖ut‖2 = ‖u∗
tut‖ = 1.

Hence

φ ∈ Â ⇒ 1 ≥ |φ(ut)| = |eitφ(x)| .

Since t ∈ R is arbitrary, deduce that φ(x) ∈ R.

Also, for self-adjoint x, note that

‖x‖ = ‖x∗x‖1
2 = ‖x2‖1

2

so

‖x‖ = ‖x2‖1
2 = · · · = lim

n→∞ ‖x2n‖
1
2n = r(x) = ‖Γ(x)‖
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For a (possibly non-commutative) unital C∗-
algebra A, and x ∈ A, let C∗(x) be the C∗-
subalgebra of A generated by the set {1, x}.

Proposition: (a) T.F.A.E.:

(1) C∗(x) is commutative

(2) x∗x = xx∗ (such x’s are called normal).

(b) If x is normal, there exists a unique unital

C∗-algebra isomorphism γx : C(sp(x)) → C∗(x)
such that γx(idsp(x)) = x.

It is customary to write γx(f) = f(x) and call

γx the continuous functional calculus for x.
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Sub-classes of normal elements:

Proposition: An element satisfies the alge-

braic condition in the second column of the

table below if and only if it is normal and its

spectrum is contained in the set listed in the

third column.

Name Alg. def. sp(x) ⊂?

self-adjoint x = x∗ R
unitary x∗x = xx∗ = 1 T

projection x2 = x∗ = x {0,1}
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Study of general C∗-algebras is facilitated by

applying the commutative theory to normal el-

ements of these types. Normal elements can

be dealt with the same facility as functions.

Here is a sample of such results:

• (Cartesian decomposition) Every element

z ∈ A admits a unique deomposition z =

x + iy, with x, y self-adjoint; in fact, x =
z+z∗

2 , y = z−z∗
2i

• Every self-adjoint element x ∈ A admits a

unique decomposition x = x+ − x−, where

x± are positive (in the sense of the next

theorem) and satisfy x+x− = 0; in fact,

x± = f±(x), where f± ∈ C(R) are defined

by f±(t) =
|t|±t
2
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The most important notion in the theory in-

volves positivity. Its main features are listed

in the next two results.

Theorem: (a) The following conditions on an

element x ∈ A are equivalent:

1. x = x∗ and sp(x) ⊂ [0,∞)

2. ∃y = y∗ ∈ A such that x = y2

3. ∃z ∈ A such that x = z∗z

Such x’s are said to be ‘positive’; the set A+

of positive elements of A is a ‘positive cone’

(proved using (1) above).

(b) If x ∈ A+, then the y of (2) above may

be chosen to be positive, and such a ‘positive

square root of x’ is unique, and in fact y = x
1
2.

16



Proposition: (a) Let φ ∈ A∗. T.F.A.E.:

1. φ(A+) ⊂ R+

2. ‖φ‖ = φ(1)

Such φ’s are said to be positive (linear func-

tionals); the set A∗
+ of of positive elements of

A∗ is a ‘positive cone’.

(b) (Cauchy-Schwarz inequality)

|φ(y∗x)|2 ≤ φ(x∗x)φ(y∗y) ∀φ ∈ A∗
+, x, y ∈ A .
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Gelfand-Naimark-Segal (GNS) construction:

Theorem: T.F.A.E.:

1. φ ∈ A∗
+

2. there exists a triple (H, π,Ω) (essentially

unique) of a Hilbert space H, a represen-

tation π of A on H (i.e., π : A → L(H)

is a homomorphism of C∗-algebras), and a

vector Ω ∈ H such that

• φ(x) = 〈π(x)Ω,Ω〉 ∀x ∈ A

• Ω is a cyclic vector in the sense that

H = {π(x)Ω : x ∈ A}−

(It is not uncommon to write H = L2(A, φ).)
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Sketch of proof: The equation

〈x, y〉φ = φ(y∗x)

defines a semi-inner product on A (i.e., satis-

fies all requirements of an inner product except

possibly positive - definiteness). Let Nφ = {x ∈
A : ‖x‖2φ = 〈x, x〉φ = 0}. The fact that φ sat-

isfies Cauchy-Schwarz inequality implies that

Nφ is a left-ideal in A (i.e., a subspace which is

closed under left multiplication by any element

of A).

Then A/Nφ is a genuine inner product space,

whose completion is the desired Hφ, while the

equation

π0(x)(y + Nφ) = xy + Nφ

happens to define a bounded operator π0(x) on

A/Nφ; define πφ(x) to be its unique continuous

extension to Hφ.
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Lemma: If x = x∗ ∈ A, there exists φ ∈ A∗
+

such that |φ(x)| = ‖x‖

Proof: Let A0 = C∗({x}). Then pick φ0 ∈
Â0 ⊂ A∗

0 such that |φ0(x)| = ‖x‖.

Use Hahn-Banach thm. to find φ ∈ A∗ such

that φ|A0
= φ0 and ‖φ‖ = ‖φ0‖(= φ0(1) =

φ(1)). It follows that φ ∈ A∗
+.
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Lemma: Any (unital) homomorphism of C∗-
algebras is norm-decreasing.

Proof: If π : A → B is a (unital) homomor-

phism of C∗-algebras, then clearly π(GL(A) ⊂
GL(B); in particular, if x = x∗ ∈ A, we see that

(π(x) is also self-adjoint, and sp(π(x)) ⊂ sp(x),

so)

‖π(x)‖ = r(π(x)) ≤ r(x) = ‖x‖ ;

and for general z ∈ A,

‖π(z)‖ = ‖π(z)∗π(z)‖
1
[2 ≤ ‖z∗z‖

1
[2 ≤ ‖z‖ .

2

If we write πx for the above GNS representation

of A on, say, Hx, then ⊕{x=x∗∈A}πx is easily

verified to be an isometric representation of A.
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Rings of Operators (a.k.a. von Neumann

algebras):

Introduced in - and referred to, by them, as -

Rings of Operators in 1936 by F.J. Murray and

von Neumann, because - in their own words:

the elucidation of this subject is strongly sug-

gested by

• our attempts to generalise the theory of

unitary group-representations, and

• various aspects of the quantum mechanical

formalism
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Def 1: A vNa is the commutant of a unitary

group representation: i.e.,

M = {x ∈ L(H) : xπ(g) = π(g)x ∀g ∈ G}
Note that L(H) is a Banach *-algebra w.r.t.

‖x‖ = sup{‖xξ‖ : ξ ∈ H, ‖ξ‖ = 1} (‘operator

norm’) and ‘Hilbert space adjoint’.

Defs: (a) S′ = {x′ ∈ L(H) : xx′ = x′x ∀x ∈ S},
for S ⊂ L(H)

(b) SOT on L(H): xn → x ⇔ ‖xnξ−xξ‖ → 0 ∀ξ

(i.e., xnξ → xξ strongly ∀ξ)

(c) WOT on L(H): xn → x⇔〈xnξ − xξ, η〉 →
0∀ξ, η (i.e., xnξ → xξ weakly ∀ξ)

(Our Hilbert spaces are always assumed to be

separable.)
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von Neumann’s double commutant theo-

rem: Let M be a unital self-adjoint subalgebra

of L(H). TFAE:

(i) M is SOT-closed

(ii) M is WOT-closed

(iii) M = M ′′ = (M ′)′ 2

Def 2: A vNa is an M as in DCT above.

The equivalence of definitions 1 and 2 is a con-

sequence of the spectral theorem and the fact

that any norm-closed unital *-subalgebra A of

L(H) is linearly spanned by the set U(A) = {u ∈
A : u∗u = uu∗ = 1} of its unitary elements.
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Some consequences of DCT:

(a) A von Neumann algebra is closed under all

‘canonical constructions’:

for instance, if x → {1E(x) : E ∈ BC} is the

spectral measure associated with a normal op-

erator x, then x ∈ M⇔1E(x) ∈ M ∀ E ∈ BC.

(Reason: 1E(uxu∗) = u1E(x)u∗ for all unitary

u; so implication ⇒ follows from

x ∈ M, u′ ∈ U(M ′) ⇒ u′1E(x)u′∗ = 1E(u′xu′∗)
⇒ 1E(x) ∈

(
U(M ′)

)′
= M )

(b) For implication ⇐, uniform approximabil-

ity of bounded measurable functions by sim-

ple functions implies (by the spectral theorem)

that

M = [P(M)] = (span P(M))− (∗),
where P(M) = {p ∈ M : p = p2 = p∗} is the set

of projections in M .
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Suppose M = π(G)′ as before. Then

p↔ran p

establishes a bijection

P(M)↔G-stable subspaces

So, for instance, eqn. (*) shows that

(π(G))′′ = L(H)⇔M = C ⇔ π is irreducible

Under this correspondence, between sub-reps

of π and P(M), (unitary) equivalence of sub-

reps of π translates to Murray-von Neumann

equivalence on P(M):

p ∼M q⇔∃u ∈ M such that u∗u = p, uu∗ = q

More generally, define

p ¹M q⇔∃p0 ∈ P(M) such that p ∼M p0 ≤ q
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Proposition: TFAE:

1. If p, q ∈ P(M), either p ¹M q or q ¹M p.

2. M has trivial center: Z(M) = M ∩ M ′ = C

Such an M is called a factor. 2

M = π(G)′, G finite, is a factor iff π is isotypi-

cal.

In general, any vNa is a ‘direct integral’ of fac-

tors.
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Say a projection p ∈ P(M) is infinite rel M if

∃p0 ∈ P(M) such that p ∼M p0 ¯ p; otherwise,

call p finite (rel M).

Say M is finite if 1 is finite.

Murray von-Neumann classification of fac-

tors: A factor M is said to be of type:

1. I if there is a minimal non-zero projection

in M .

2. II if it contains non-zero finite projections,

but no minimal non-zero projection.

3. III if it contains no non-zero finite projec-

tion.
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Def. 3: (Abstract Hilbert-space-free def) M is

a vNa if

• M is a C∗-algebra (i.e., a Banach *-algebra

satisfying ‖x ∗ x‖ = ‖x‖2 ∀ x)

• M is a dual Banach space: i.e., ∃ a Banach

space M∗ such that M ∼= M∗∗ as a Banach

space.

Example: M = L∞(Ω,B, µ). Can also view it

as acting on L2(Ω,B, µ) as multiplication op-

erators. (In fact, every commutative vNa is

isomorphic to an L∞(Ω,B, µ).)

Fact: The predual M∗ of M is unique up to

isometric isomorphism. (So, (by Alaoglu), ∃ a

canonical loc. cvx. (weak-*) top. on M w.r.t.

which the unit ball of M is compact. This is

called the σ-weak topology on M .
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A linear map between vNa’s is called normal

if it is continuous w.r.t. the σ-weak topologies

on domain and range.

The morphisms in the category of vNa’s are

unital normal ∗-homomorphisms.

The algebra L(H), for any Hilbert space H, is

a vNa - with pre-dual being the space L∗(H)

of trace-class operators.

Any σ-weakly closed ∗-subalgebra of a vNa is

a vNa.

Gelfand-Naimark theorem: Any vNa is iso-

morphic to a vN-subalgebra of some L(H). (So

the abstract and concrete (= tied down to

Hilbert space) definitions are equivalent.)
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In some sense, the most interesting factors are

the so-called type II1 factors (= finite type II

factors).

Theorem: Let M be a factor. TFAE:

1. M is finite.

2. ∃ a trace trM on M - i.e., linear functional

satisfying:

• trM(xy) = trM(yx) ∀x, y ∈ M (trace)

• trM(x∗x) ≥ 0∀x ∈ M (positive)

• trM(1) = 1 (normaliised)

Such a trace is automatically unique, and faith-

ful - i.e., it satisfies trM(x∗x) = 0⇔x = 0
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For p, q ∈ P(M), M a finite factor, TFAE:

1. p ∼M q

2. trMp = trMq

3. ∃u ∈ U(M) such that upu∗ = q.

If dimCM < ∞, then M ∼= Mn(C) = L(Cn) for

a unique n.

If dimCM = ∞, then M is a II1 factor, and in

this case, {trMp : p ∈ P(M)} = [0,1].

So II1 factors are the arena for continuously

varying dimensions; they got von Neumann look-

ing at continuous geometries.
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Henceforth, M will be a II1 factor.

Def: An M-module is a separable Hilbert space

H, equipped with a vNa morphism π : M →
L(H). Two M-modules are isomorphic if there

exists an invertible (equivalently, unitary) M-

linear map between them.

Proposition: ∃ a complete isomorphism invari-

ant

H 7→ dimMH ∈ [0,∞]

of M-modules such that:

1. H ∼= K⇔dimMH = dimMK.

2, dimM(⊕nHn) =
∑

n dimMHn.

3. For each d ∈ [0,∞], ∃ an M-module Hd with

dimMHd = d.
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The equation

〈x, y〉 = trM(y∗x)

defines an inner-product on M . Call the com-

pletion L2(M, trM). Then L2(M, trM) is an

M − M bimodule with left- and right- actions

given by multiplication.

H1 = L2(M, trM).

If 0 ≤ d ≤ 1, then Hd = L2(M, trM).p where

p ∈ P(M) satisfies trMp = d.

Hd is a finitely generated projective module if

d < ∞.

In particular K0(M) ∼= R.
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The hyperfinite II1 factor R: Among II1
factors, pride of place goes to the ubiquitous

hyperfinite II1 factor R. It is characterised as

the unique II1 factor which has any one of sev-

eral properties, such as injectivity and approxi-

mate finite-dimensionality (= hyperfiniteness).

Thus, ∃ a unique II1 factor R which contains

an increasing sequence of finite-dimensional ∗-
subalgebras

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ · · ·
such that ∪nAn is σ-weakly dense in R.

Examples of II1 factors: Let λ : G → U(L(`2(G)))

denote the ‘left-regular representation’ of a count-

able infinite group G, and let LG = (λ(G))′′.
Then LG is a II1 factor iff every conjugacy

class of G other than {1} is infinite.

LΣ∞ ∼= R, while LF2 is not hyperfinite.

Big open problem: is LF3
∼= LF2?
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The study of bimodules over II1 factors is es-

sentially equivalent to that of ‘subfactors’.

(NHM ↔πl(N) ⊂ πr(M)′.)

A subfactor is a unital inclusion N ⊂ M of

II1 factors. For a subfactor as above, Jones

defined the index of the subfactor to be

[M : N ] = dimNL2(M, trM)

and proved:

[M : N ] ∈ [4,∞] ∪ {4cos2(
π

n
: n ≥ 3}

A subfactor N ⊂ M satisfies N ′ ∩ M = C iff

L2(M, trM) is irreducible as an N−M bimodule.

Such a subfactor is called irreducible.
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It is known that if a subfactor N ⊂ M has finite

index, then N is hyperfinite if and only if M is.

In this case, call the subfactor hyperfinite.

Very little is known about the set I0
R of possible

index values of irreducible hyperfinite subfac-

tors.

Some known facts:

(a) (Jones) IR = [4,∞] ∪ {4cos2(π
n) : n ≥ 3}

and I0
R ⊃ {4cos2(π

n : n ≥ 3}

(b)

(
N+

√
N2+4
2

)2

,

(
N+

√
N2+8
2

)2

∈ I0
R ∀N ≥ 1

(c) (N + 1
N )2 is the limit of an increasing se-

quence in I0
R.

37



Open problems:

(a) Is I0
R countable?

(b) Does there exist ε > 0 such that

I0
R ∩ (4,4 + ε) = ∅?
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Crossed products and examples of factors:

The left-regular representation of a count-

able group G is the association

G 3 t 7→ λt ∈ U(L(`2(G)))

given by

(λtξ)(s) = ξ(t−1s) .

Here, of course, `2(G) denotes the Hilbert space

of square-summable functions ξ : G → C. If we

write

1s(t) = δs,t ,

then clearly {1s : s ∈ G} is an o.n.b. for `2(G).

We shall identify operators on `2(G) with their

matrices w.r.t. this o.n.b.; thus

L(`2(G)) 3 x↔((x(s, t))) ,

where x(s, t) = 〈x1t,1s〉 ; for example,

λu(s, t) = 〈λu1t,1s〉 = 〈1ut,1s〉 = δs,ut .
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Suppose G acts on a von Neumann algebra

M ⊂ L(H); i.e., assume:

(i) αt is a *-automorphism of M for each t ∈ G,

and

(ii) G 3 t 7→ αt ∈ Aut(M) is a group homomor-

phism.

Then the crossed-product construction is

(analogous to the ‘semi-direct product con-

struction’ for groups and) results in a von Neu-

mann algebra M̃ ⊂ L(H̃), a normal representa-

tion π : M → L(H̃), and a unitary group repre-

sentation λ : G → U(L(H̃)), such that:

(a) M̃ = (π(M) ∪ λ(G))′′; and

(n) λ(u)π(x) = π(αu(x))λ(u) ∀ u ∈ G, x ∈ M .

It turns out that the isomorphism type of M̃ is

independent of the choices of H̃, π and λ.
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The model of the crossed-product we shall use

is as follows:

H̃ = `2(G;H) ∼= `2(G) ⊗H ∼= ⊕t∈GH ,

where

ξ̃↔
∑

t

1̃t ⊗ ξ̃(t)↔((ξ̃(t)))

As before, we identify operators x̃ ∈ L(H̃) with

their ‘operator-matices ((x̃(s, t))) - defined by

the requirement that

〈x̃(s, t)ξ, η〉 = 〈x̃(1t ⊗ ξ), (1s ⊗ η)〉 ,

or equivalently,

(x̃ξ̃)(s) =
∑

t

x̃(s, t)ξ̃(t) .

Define

(π(x)ξ̃)(s) = (αs−1(x)ξ̃(s))

(λ(u)ξ̃)(s) = ξ̃(u−1s)
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In matricial terms, we see that

(π(x))(s, t) = δs,tαt−1(x)

(λ(u))(s, t) = δs,utidH

In fact, we find that

M̃ = {L(H̃) 3 x̃ : ∃x(s) ∈ M, s ∈ G such

that x̃(s, t) = αt−1(x(st
−1)) ∀s, t ∈ G} .

Remark: It is customary to denote the crossed

product by M oα G. (If α is the trivial action

on C - with αt = idC ∀t - then

C oα G ∼= L(G) = (λ(G))′′.)
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Aside on abelian vNa’s: Any abelian vNa is

isomorphic to some A = L∞(Ω,B, µ), with µ a

probability measure.

Any automorphism θ ∈ Aut(A) is of the form

θ(f) = f ◦ T for some non-singular automor-

phism of (Ω,B, µ) (meaning a bi-measurable

bijection T : Ω → Ω such that µ ◦ T−1 and µ

have the same null sets). Further, TFAE:

1. µ({ω ∈ Ω : Tω = ω}) = 0

2. θ = θT is ‘free’ in the sense of the next

definition.
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Def.: (a) An automorphism θ ∈ Aut(M) is said

to be free if, for x ∈ M ,

xy = θ(y)x ∀y ∈ M⇔x = 0 .

(b) An action α : G → M is said to be free if

αt is free for all t 6= 1.

(c) An action α : G → M is said to be ergodic

if

Mα := {x ∈ M : αt(x) = x ∀t ∈ G} == C.

Note: If M = A is abelian as before, the action

is given by

αt(f) = f ◦ T−1
t

for an action t → Tt of G as non-singular au-

tomorphisms of (Ω,B, µ); and the action α is

ergodic in the above sense iff the action t 7→ Tt

is ergodic in the classical sense, meaning

E ∈ B, µ(E∆TtE) = 0 ∀t ∈ G ⇒ µ(E)·µ(Ω\E) = 0.
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Proposition: TFAE:

(i) π(M)′ ∩ M̃ ⊂ π(Z(M))

(ii) The action α is free. 2

Proposition: Suppose the action is free. Then,

TFAE:

(i) M̃ is a factor.

(ii) The restricted action αZ : G → Aut(Z(M)

is ergodic.

Corollary: If G 3 t 7→ Tt is a free ergodic ac-

tion of G as non-singular automorphisms of

(Ω,B, µ), then M = L∞(Ω,B, µ)oαG is a factor

- where, of course, αt(f) = f ◦ T−1
t .

The type of this factor is described below.
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Theorem:(MvN)

Let A, G, Tt, M be as in the previous corollary.

Then:

(a) M is of type III iff there does not exist

a σ-finite measure ν which has the same null

sets as µ and is left invariant by each Tt.

(b) Suppose M is not type III, and that ν is

a G-invarian measure which is mutually abso-

lutely continuous with µ. Then,

(i) M is of type I iff ν has atoms (or, is equiv-

alently, purely atomic).

(ii) M is of type II iff ν is non-atomic.

(iii) M is a finite factor iff ν is a finite measure.

2
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(In) If G = Zn acts transitively on Ω = {1,2, · · · , n}
and if µ denotes counting measure on Ω, then

M ∼= Mn(C).

(I∞) If G = Z acts transitively on Ω = {1,2, · · · , n}
and if µ denotes counting measure on Ω, then

M ∼= L(`2(Z))).

(II) If a countable dense subgroup G of a lo-

cally compact group Ω acts by translation on

Ω, and if µ denotes Haar measure on Ω, then

M is a type II factor, which is of type II1 iff

Ω is compact.

(III) The ax + b group G acts naturally on

R in an ergodic and free manner. Further

G0 = {g ∈ G : g preserves Lebesgue measure}
is a proper subgroup (corresponding to a = 1)

which also acts ergodically on R. It follows that

no measure mutually absolutely continous with

Lebesgue measure is left invariant by all of G.

So M is of type III in this case.
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Fact: If M is a factor, and θ ∈ Aut(M), TFAE:

(i) θ is free.

(ii) θ is ‘outer’: i.e., there does not exist u ∈
U(M) such that θ = Adu - i.e., θ(x) = uxu∗ for

all x ∈ M

Corollary: If α : G → Aut(M) is an outer ac-

tion - i.e., if αt is outer for each t 6= 1 - then

M oα G is a factor. If M is a II1 factor and

G is a finite group, then M oα G is also a II1
factor.

Facts: (i) If G = Un(C), then G admits an

outer action on the hyperfinite II1 factor R;

(ii) In particular, any finite group admits an

outer action on R.
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Theorem:

Let G, H be finite groups. Then TFAE:

(i) There is an ‘isomorphism of hyperfinite sub-

factors’

(R ⊂ R oα G) ∼= (R ⊂ R oβ H)

(ii) There is an isomorphism of groups

G ∼= H.
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Subfactors:

The standard module: Assume M is a ‘finite’

vNa, with faithful trace trM ; then L2(M, trM)

has a distinguished dense subspace D = {x̂ :

x ∈ M} such that

〈x̂, ŷ〉 = trM(y∗x) ∀x, y ∈ M

and that L2(M, trM) is an M − M bimodule,

with

a · x̂ · b = âxb .

(The reason for the hats is that we shall iden-

tify an a ∈ M with the unique operator a ∈
L(L2(M, trM)) such that

ax̂ = âx ∀x̂ ∈ D
and we will need to distinguish between the

operator a and the vector â. Thus we view M

as contained in L(L2(M, trM).)
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Since trM is a trace, it follows that the map-

ping x̂ 7→ x̂∗ defines a conjugate-linear norm

preserving self-map of D which is its own in-

verse, and consequently extends uniquely to an

anti-unitaty involution of L2(M, trM)), which is

usually denoted by J (or JM , if it is necessary

to draw attention to the dependence on M)

and called the modular conjugation of M .

The definitions imply that Ja∗Jx̂ = x̂a, so that

a · x̂ · b = aJb∗Jx̂ ,

thus establishing the easy half of part (a) of:

Proposition: (baby version of the celebrated

Tomita-Takesaki theorem)

(a) JMJ(= {JaJ : a ∈ M}) = M ′; and

(b) D is precisely the collection of bounded

vectors, meaning that a ξ ∈2 (M, trM) belongs

to D iff ∃K > 0 such that ‖aξ‖ ≤ K‖â‖ ∀ a ∈ M .
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Suppose now that N ⊂ M is a vN subalgebra.

Notice then that there is an (isometric) identi-

fication of L2(N, trN) as a subspace L2(M, trM)

(where we write trM |N = trN). Let eN denote

the orthogonal projection of L2(M, trM) onto

L2(N, trN).

If we express operators on L2(M, trM) as 2 ×
2 operator-matrices w.r.t. the decomposition

L2(M, trM) = L2(N, trN) ⊕ kereN , we see that

eN =

[
1 0
0 0

]
, JM =

[
JN 0
0 J1

]
, M 3 a = ((aij)) ,

where J1 is some antiunitary operator on ker eN

and aij ∈ L(Hj,Hi), with H1 = ran eN and

H2 = ker eN .

To keep track of various identifications, it will

help if we write πM
l (a) to denote the operator

of left multiplication by a on L2(M, trM). Then

if a ∈ N , note that πM
l (a)(H1) ⊂ H1, and we

find that in this case, we must have a12 =

a21 = 0 and a11 = πN
l (a).
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More generally, for any a ∈ M , the fact that

JMπM
l (M)JM ∈ πM

l (M)′ implies that
[

JNa11JN JNa12J1
J1a21JN J1a22J1

]
∈ πM

l (M)′ ⊂ πM
l (N)′ ,

and in particular, JNa11JN ∈ πN
l (N)′ = JNπN

l (N)JN :

i.e., a11 ∈ πN
l (N).

So we have a well-defined map EN : M → N

such that

a ∈ M ⇒ a11 = πN
l (EN(a)) .

Proposition: The (linear) maps EN (resp., eN)

satisfy, for arbitrary x ∈ M, a, b ∈ N :

(i) ÊNx = eN x̂;

(ii) ENx = x ⇒ x ∈ N ⇒ xeN = eNx (projec-

tion);

(iii) EN(axb) = a(ENx)b (N-bilinear)
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(iv) EN(x∗x) > 0 ⇒ x 6= 0 (faithful & positive)

(v) trN ◦ EN = trM (trace-preserving) 2

The map EN is called the trace-preserving con-

ditional expectation of M onto N - because,

if M = L∞(Ω,B, µ), any vN subalgebra is of the

form N = L∞(Ω,B0, µ) for some sub-σ-algebra

B0, and EM agrees with the conditional expec-

tation familiar from classical probability theory.

The first step in the analysis of subfactors is

the so-called basic construction due to Jones.

(This notion makes sense in greater generality

than the case we state, but we shall only need

this.)
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Proposition: Suppose N ⊂ M is a subfactor.

Define M1 = JMN ′JM . Then

(a) M1 is also a factor and M ⊂ M1.

(b) M1 is a II1 factor iff [M : N ] < ∞; in this

case, [M1 : M ] = [M : N ] and dimC(N ′ ∩ M) <

∞; and hence

[M : N ] ≤ 4 ⇒ N ′ ∩ M = C .

(c) M1 = (M ∪ {eN})′′. 2

We abbreviate the content of (c) above and

say that

N ⊂ M ⊂eN M1

is the basic construction. Thus, applied to a

subfactor (N =)M−1 ⊂ (M =)M0 of finite in-

dex, say d, the basic construction yields an-

other subfactor M0 ⊂ M1 = 〈M, e1(= eN)〉 also

of index d.
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The tower of the basic construction:

And, as Jones says, we should ‘push a good

thing along’, and inductively construct :

N = M−1 ⊂ M = M0 ⊂e1 M1 ⊂e2 M2 · · · ⊂en Mn · · ·
We then find that:

(a) Each Mn is a II1 factor.

(b) en implements the CE of Mn−1 onto Mn−2,

meaning

enxn−1en = EMn−2
(xn−1)en

(c) [Mk+l : Ml] = λk, and Ml ⊂ Mk+l ⊂ Mk+2l

is an instance of the basic construction.
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So, to the subfactor N ⊂ M is canonically as-

sociated the grid ((Aij = M ′
i ∩ Mj)) of finite-

dimensional C∗-algebras - with Aij ⊂ Akl when-

ever −1 ≤ k ≤ i ≤ j ≤ l - which comes equipped

with a consistent ‘trace tr’ - which agrees on

Aij with trMj
.

Owing to a certain periodicity of order 2 -

Aij
∼= Ai+2,j+2 - it turns out that the entire

data of this grid is already contained in the

first two rows (for i = 0,1, namely the grid:

(†)
N ′ ∩ N ⊂ N ′ ∩ M · · · N ′ ∩ MN · · ·

∪ ∪ · · ·
M ′ ∩ M · · · M ′ ∩ MN · · ·

This grid, equipped with the trace tr (cf. the

first para above), is called the standard in-

variant of the subfactor N ⊂ M .
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Write π(A) for the set of minimal (non-zero)

projections in the centre Z(A) of a finite di-

mensional C∗-algebra A. The Wedderburn-

Artin theorem then guarantees the existence

of a function d : π(A) → N such that

A ∼= ⊕p∈π(A)Md(p)(C)

Further, π(A) parametrises the set of inequiv-

alent irreducible representations of A thus : if

a↔ ⊕p ap under the above isomorphism, then

πp(a) = ap. If φ : A → B is a (unital) in-

clusion of finite-dimensional C∗-algebras, de-

fine the associated non-negative integer-valued

‘inclusion matrix’ Λ with rows and columns in-

dexed by π(A) and π(B) respectively thus: if p0

is a minimal projection of A such that p0 ≤ p,

then Λ(p, q) = trMd(q)(C)πq(φ(p0)) (= ‘the no.

of times that πq|A contains πp’).

It is a fact that two inclusions Ai ⊂ Bi, i = 1,2

are isomorphic iff they have the same inclusion

matrix.
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Non-negative integer matrices may be viewed

as adjacency matrices of bipartite graphs; so

inclusions may be described by bipartite graphs.

Successive inclusion ‘graphs’ can be glued to-

gether into the Bratteli diagram of a tower.

Thus the representation theory of the Σn’s

shows that the Bratteli diagram for

C ⊂ CΣ3 ⊂ CΣ4

is:
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The standard invariant may be viewed as hav-

ing three ingredients:

(i) the tower {N ′ ∩ Mn : n ≥ −1};

(ii) the tower {M ′ ∩ Mn : n ≥ 0}; and

(iii) the data of how the former tower is in-

cluded in the latter.

These three ingredients are described by the

so-called principal graph, dual principal graph

and the flat connection associated to the sub-

factor, respectively.
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The principal graph invariant:

The presence of the Jones projections {en : n ≥
1} in the tower of the basic construction causes

the presence of a certain reflection symmetry

in the Bratteli diagram of the tower {N ′∩Mn :

n ≥ −1}. We illustrate this with an example.

N’

N’

N’

N’

N’

N’

N’

N

M

M

M

M

M

M

1

2

3

4

5
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Thus, if we write An for N ′∩Mn, then at each

stage, the ‘inclusion graph’ for An ⊂ An+1 con-

tains a reflection of that of An−1 ⊂ An and a

possibly ‘new part’. The graph obtained by

retaining only the ‘new parts’ is the principal

graph. (In the above example, the preincipal

graph is the Coxeter graph E6.) It should be

clear that the Bratteli diagram for the entire

tower {An} can be recaptured from the princi-

pal graph.

Since the ‘dual principal graph’ associated to

the subfactor N ⊂ M is just the principal graph

associated to M ⊂ M1, we see that the dual

principal graph also exhibits the same reflection

symmetry as the principal graph.
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A discussion of flat connections is beyond the
scope of these lectures; but we will say that it
imposes constraints on when a pair of graphs
can arise as the principal and the dual principal
graphs of a subfactor. We will state a few
sample results though.

Suppose Γ and Γ′ denote the principal and dual
graphs associated with a subfactor. Then:

(a) Γ is finite iff Γ′ is finite; and in this case,

‖A(Γ)‖ = ‖A(Γ′)‖ = [M : N ]
1
2 ,

where A(Γ) denotes the ‘adjacency matrix’ of
Γ.

Thus if Γ denotes the E6 graph (with 6 ver-
tices), then

A(Γ) =




0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0



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(b) If [M : N ] < 4, then Γ is isomorphic to Γ′

and to one of the Coxeter graphs An, D2n, E6

or E8.

(c) There exists a subfactor, of index 5+
√

13
2 ,

with

Γ

Γ ’ =

=

and if 4 < [M : N ] < 5+
√

13
2 , then the principal

graph is infinite, and in fact, isomorphic to A∞.
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From subfactors to knot invariants:

Jones’ polynomial invariant of knots is a conse-

quence of the connection between subfactors

and braid groups. So we shall digress with a

sortie into braid groups and knots.

To an Indian, the term ‘braid’ can be moti-

vated by the following ‘3-strand braid’:

1 2 3

1 2 3

3−strand braid

(= ( b
1
b
2

1−
)
k
)

Informal definition of an n-strand braid: two

parallel rods with n hooks each, and n strands

with one end of each strand tied to a hook on

one of the rods - with two braids being iden-

tified if they can be (homotopically) deformed

into one another.
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We shall think of an n-strand braid b as follows

- with ‘all the action taking place’ within the

box:

b

1

1

general

n−strand braid

n

n

The collection Bn of all n-strand braids is equipped

with a product thus:

ab a =b

b

a

x=

(To verify that this multiplication is associa-

tive, we need the assumption that homotopic

braids are the same.)
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Bn turns out to be a group; the identity ele-

ment 1n ∈ Bn is given by

1

1

2

2

n−1

n−1 n

n

= identity braid

while the inverse of a braid is obtained by re-

flecting in a horizontal mirror placed at the

level of the lower rod of the braid, thus:

=

− 1

=
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Since braids can be built up ‘one crossing at

a time’ it is clear that Bn is generated , as

a group, by the braids b1, b2, · · · , bn−1 shown

below - together with their inverses:

1 k k+1 n

1 k k+1 n

1 k k+1 n

nk k+11

b
k b

k

−1
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The bj’s satisfy the following relations:

• bibj = bjbi if |i − j| ≥ 2

b b1 3
b b
3 1

=

• bibi+1bi = bi+1bibi+1 for all i < n − 1

b
2

b
1b

1
b
2

b
1

b
2

=
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In order to describe a celebrated theorm by

Artin on the braid group, we briefly digress into

presentations of (finitely generated) groups.

Recall that the free group with generators

{g1, · · · , gn} if for any set {h1, · · · , hn} of ele-

ments in any group H, there exists a unique

homomorphism φ : G → H with the property

that φ(gk) = hk for each k = 1, · · · , n. Such a

group exists, is unique up to isomorphism, and

is denoted by the symbol

G = 〈g1, · · · , gn〉 .

For example, Z = 〈1〉 is the free group on one

generator.
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A group G is said to have presentation

G = 〈g1, · · · , gn|r1, · · · , rm〉
if:

(i) it is generated by the set {g1, · · · , gn}

(ii) the gi’s satisfy each relation rj for j =

1, · · · , m; and

(iii) for any set {h1, · · · , hn} of elements in any

group H, which ‘satisfy each of the relations

r1, · · · , rm’, there exists a unique homomor-

phism φ : G → H with the property that φ(gk) =

hk for each k = 1, · · · , n.

Such a group exists, and is unique up to iso-

morphism.
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Examples of presentations

(i) Cn = 〈g|gn = 1〉 is the cyclic group of order

n.

(ii) Dn = 〈g, t|gn = 1, tgt−1 = t−1〉 is the dihe-

dral group of symmetries of an n-gon.

(Dn has 2n elements.)

g = rotation by 120

t = reflection about an altitude
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The Braid group is often referred to as Artin’s

Braid Group, partly because of the following

theorem he proved:

Theorem: (Artin) Bn has the presentation

Bn = 〈b1, · · · , bn−1|r1, r2〉 ,

where

• (r1) bibj = bjbi if |i − j| ≥ 2

• (r2) bibi+1bi = bi+1bibi+1 for all i < n − 1

It is a fact that the permutation group Σn has

the presentation

Σn = 〈t1, · · · , tn−1|r1, r2, r3〉 ,

where r1, r2 are the braid relations above, and

(r3) is t2i = 1 for all i < n .

(We may choose ti to be (i i + 1).)
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Remarks: (a) There exists a unique homomor-

phism φ : Bn → Σn such that φ(bi) = ti for each

i. (φ is onto, and hence Σn is a quotient of

Bn.)

In fact, φ(b) = β, where

1 2 3 4

b

β(  ) β(  )3 2

(b) There exist 1-1 homomorphisms Bn ↪→ Bn+1

given by b
(n)
k 7→ b

(n+1)
k for each k < n.

(c) The generators bi are all pairwise conjugate

in Bn; in fact, if b = b1b2 · · · bn, then bbib
−1 =

bi+1 ∀i < n − 1. (For example:

b1b2b3 · b1 = b1b2b1b3 = b2 · b1b2b3)
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The closure of a braid b ∈ Bn is obtained by

sticking together the strings connected to the

j-th pegs at the top and bottom. The result

is a many component knot (also called a link)

b̂.

b
3

(b
3
)
^

right−handed

trefoil knot

b
2

=
=

=

= (b )
^2

= =

Hopf link
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Two theorems make this ‘closure operation’

useful:

Theorem (Alexander):

Every tame link is the closure of some braid

(on some number of strands).

Theorem(Markov):

Two braids have equivalent closures iff you can

pass from one to the other by a finite sequence

of moves of one of two types (the so-called

‘Markov moves’).

(Two links are ‘equivalent’ if each may be con-

tinuously deformed into the other: the two

should be ambient isotopic in R3.)
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Type I Markov move:

c(n)b(n)(c(n))−1 ∼ b(n)

c

c
−1

b b=

Type II Markov move:

b(n) ∼ b(n+1)(b
(n+1)
n )−1

b b
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Def: A link invariant (taking values in some

set S) is a function

L 3 L 7→ φL ∈ S

such that φL1
= φL2

whenever L1 ∼ L2. 2

The theorems of Alexander and Markov give

us a strategy for constructing link invariants:

simply define φL = φn(a) if L = â for some

a ∈ Bn, where {φN : Bn → S : n ≥ 1} is any

family of functions which satisfy, for all n:

1.

φN(cbc−1) = φn(b) ∀ b, c ∈ Bn.

2.

φn(a
(n)) = φn+1(a

(n+1)(b
(n+1)
n )±1)

for all a(n) ∈ Bn.
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And the Jones projections from subfactor the-

ory permit us to put this atrategy into prac-

tice. Recall that a subfactor N ⊂ M with

[M : N ] = d < ∞ gives rise to a sequence

{en : n ≥ 1} of projections which have the fol-

lowing properties:

(a) enem = emen if |m − n| > 1;

(b) enen±1en = d−1en;

(c) there is a faithful positive trace tr defined

on the unital *-subalgebra A∞ generated by

{en : n ≥ 1}, such that

tr(xen+1) = d−1tr(x)

whenever x is in the unital algebra An gener-

ated by {e1, · · · , en}.
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Comparing the braid relations and the relations

(a),(b) satisfied by the Jones projections, we

see - after a little algebra - that if we define

gi = C[(q + 1)ei − 1] ,

- for any C 6= 0, and i ≥ 1 - then the gi’s satisfy

the braid relations, povided q ∈ C satisfies

q + q−1 + 2 = d ;

and so we have a homomorphism πn from Bn

into the group of invertible elements of An such

that

πn(bi) = gi ∀1 ≤ i ≤ n .

Motivated by condition 2. of the last page,

we choose the constant C such that tr gn+1 =

tr g−1
n+1; this forces C = q

1
2 and

tr πn+1(a
(n+1)(b

(n+1)
N )±1)

= [−(q
1
2 + q−

1
2)−1]tr πn(a

(n)) ∀a(n) ∈ Bn
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Note that

τ = 4cosh2z⇔q = e±2z ,

and in particular τ−1 is a possible finite index

value iff

q ∈ Q = {e±2πi
n : n ≥ 3} ∪ [1,∞)

In conclusion, we find that for each q ∈ Q, there

exists a link invariant (in fact an invariant of

oriented links)

L 3 L 7→ φ
q
L ∈ C

such that if πn, C etc. are associated to τ =

(q + q−1 + 2)−1 as above, then

φ
q

â(n)
= [−(q

1
2 + q−

1
2)]n−1tr πn(a

(n))

It is customary to write Vl(q) for what we de-

noted above by φ
q
L, so as to draw attention to

the function q 7→ VL(q).

We list some remarkable properties of this func-

tion - commonly referred to as the one-variable

Jones polynomial - below.
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Proposition: Let L be any oriented link.

(a) If L has an odd number of components,

then VL(q) is a Laurent polynomial in q; and

if L has an even number of components, then

VL(q) is q
1
2× a Laurent polynomial in q.

(b) If L̃ denotes the ‘mirror-reflection’ of L,

then

VL̃(q) = VL(q−1).

(c) VUn(q) = [−(q
1
2 + q−

1
2)]n−1, where Un de-

notes the unlink on n components.

(d)

q−1VL+
(q) − qVL−(q) = (q

1
2 − q−

1
2)VL0

(q)

for any skein-related triple L+, L−, L0.

(e) the invariant V is uniquely determined by

properties (c) and (d) above.
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Three links L+, L−, L0 are said to be skein-

related if they may be represented by link-

diagrams which are identical except at one cross-

ing, where they look like:

_LL L
+ 0

An instance of such a triple is given by:

T +
U

1
H

+

where

L+ = T+, L− = U1, L0 = H+
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