
Home-work 13

on lecture dated 19/12/09

1. Justify the following ‘change of variable’ trick:

(a) If G is any finite group and if f : G → R is any function,
show that

∑

g∈G

f(g) =
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f(g−1),
∏

g∈G
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∏

g∈G

f(g−1)

(b) If A ∈ Mn(R), verify that
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i.e., that det(A) = det(A′).

2. Show that det(A) 6= 0 if and only if A is invertible.

3. (a) Show that the matrix
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satisfies Av1 = v1, Av2 = v2, Av3 = v3, Av4 = −v4, where
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(b) Show that the {v1, v2, v3, v4} of (a) above is a basis for R
4.

(c) If S ∈ L(R4) is defined by Sei = vi, 1 ≤ i ≤ 4, where
{e1, e2, e3, e4} denotes the standard basis of R

4, deduce
that S is invertible, that

S−1AS =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
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,

and, in particular, that det(A) = −1.
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