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Introduction

The goal of this work is to study certain finite dimensional algebras
that arise in invariant theory, knot theory, subfactors, QFT, and
statistical mechanics.

The algebras in question have parameters; for generic values of the
parameters, they are semisimple, but it is also interesting to study
non–semisimple specializations. It turns out that operator algebra
ideas — specifically, the Jones basic construction — are still useful
in the non–semisimple case.



Introduction – cont.

More explicitly, we develop a framework for studying several
important examples of pairs of towers of algebras,

A0 ⊆ A1 ⊆ A2 ⊆ . . . and Q0 ⊆Q1 ⊆Q2 ⊆ . . .

such as

• An = Brauer algebra, Qn = symmetric group algebra.

• An = BMW algebra, Qn =Hecke algebra.

• An = cyclotomic BMW algebra, Qn = cyclotomic Hecke algebra.

• An = partition algebra, Qn = “stuttering" sequence of
symmetric group algebras.

• etc.
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Some properties of these examples:

1. The algebras are generically semisimple, and in the generic
semisimple case, the tower (An)n≥0 is obtained from the tower
(Qn)n≥0 “by repeated Jones basic constructions."

2. More explicitly, this means that there is a generic (integral)
ground ring R for An (independent of n). Every instance of An

over a ground ring S is a specialization: AS
n = AR

n⊗R S. With F
the field of fractions of R, the algebra AF

n is semisimple.

3. An has an ideal Jn such that Qn
∼= An/Jn, and JF

n+1 is isomorphic
to a Jones basic construction for the pair AF

n−1 ⊂ AF
n .
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4. All this results from a method due to Wenzl in the 80’s for
showing the generic semisimplicity and determining the
generic branching diagram of the tower (AF

n)n≥0. (Wenzl
applied this to Brauer and BMW algebras.)

5. One is also interested in non–semisimple specializations (e.g.
symmetric group in characteristic p, Hecke algebras at roots of
unity), and here the framework of cellularity, due to Graham
and Lehrer, is helpful.

6. For studying cellularity of the An, it suffices to work over the
generic ground ring R, since cellularity is preserved under
specialization.

7. In the examples, it is known that the cellular structures of the
Qn’s are coherent, which means well behaved with respect to
induction and restriction.
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8. A reflection of this is that one has cellular bases indexed by
paths on the generic branching diagram of (Qn)n≥0 that are
well behaved with respect to restriction (path bases).

9. In our examples, cellularity of the algebras An was already
known, but previous proofs generally did not give coherence of
the cellular structures, nor path bases, or only gave such
results by methods special to particular examples.
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In this work we have found a cellular analogue of Wenzl’s
construction which applies uniformly to all the examples, and
produces coherent cellular structures and (cellular) path bases for
the An’s.

Advantages:

• Easy to apply in examples, gives efficient proof of cellularity.

• Considerable simplification of previous work in the case of
cyclotomic BMW algebras.

• Relates cellular structure to Jones basic construction: Cell
modules of An either “come from" Qn or from An−2.

• Produces path bases of An

• One can also give a criterion for lifting Jucys–Murphy elements
from Qn to An.



Cellularity, a tool for the non–semisimple theory

Next, we want to introduce a tool for studying the non–semisimple
case, namely the theory of cellularity, due to Graham and Lehrer.



What is cellularity?

Let A be an algebra with involution ∗ over an integral domain S. A is
said to be cellular if there exists a finite partially ordered set (Λ,≥)
and for each λ∈Λ, a finite index set T (λ), such that

• A has an S–basis {cλs,t :λ∈Λ;s, t∈T (λ)}.
• For every order ideal Γ of Λ,

A(Γ) := span{cλs,t :λ∈ Γ,s, t∈T (λ)}

is a ∗–ideal of A. In particular, write Aλ for A({µ :µ≥λ}) and Ăλ

for A({µ :µ>λ}).
• (cλs,t)∗ ≡ cλt,s modulo Ăλ.

• For each λ∈Λ, there is an A–module∆λ, free as S–module,
with basis {cλt : t∈T (λ)}, such that the map
αλ : Aλ/Ăλ→∆λ⊗R (∆λ)∗ defined by αλ : cλs,t+ Ăλ 7→ cs⊗ (cλt )∗ is
an A–A bimodule isomorphism.



What is cellularity?, cont.

• This whole apparatus is called a cell datum. The R–basis is
called a cellular basis.

• The modules∆λ are called cell modules. When the ground ring
is a field, and the algebra A is semisimple, these are exactly the
simple modules.

• In general, general,∆λ has a canonical bilinear form. With
rad(λ) the radical of this form, and with the ground ring a field,
∆λ/rad(λ) is either zero or simple, and all simples are of this
form.



Cellularity – Example, the Hecke algebras

Definition 1

The Hecke algebra HS
n(q

2) over S is the quotient of the braid group
algebra over S by the Hecke skein relation:

− = (q−q−1) .

Fact:
The Hecke algebras HS

n(q
2) are cellular, with Λ= Yn, the set of Young

diagrams with n boxes, ordered by dominance, and T (λ) the set of
standard tableaux of shape λ. The cell modules are known as Specht
modules. The cellular structure is due to Murphy. See, for example,
A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the
Symmetric Group, AMS University Lecture Series.



Cellularity – Basis free formulation

Definition 2

A Λ–cell net is an (order preserving) map from the set of order ideals
of Λ to the set of ∗–ideals of A, Γ 7→ AΓ, with several natural
properties, the most important being:

For each λ∈Λ, there is an A–module Mλ, finitely generated and free
as an S–module, such that whenever Γ⊆ Γ′ are order ideals of Λ, with
Γ′ \Γ= {λ}, then there exists an isomorphism of A–A–bimodules

α : AΓ′/AΓ→Mλ⊗S i(Mλ),

satisfying i ◦α=α ◦ i, where i is the map, induced from ∗, which
interchanges left and right A–modules.



Cellularity – basis free formulation – continued

Proposition 3

Let A be an R–algebra with involution, and let (Λ,≥) be a finite
partially ordered set. Then A has a cell datum with partially ordered
set Λ if, and only if, A has a Λ–cell net.

Of course, then Mλ will turn out to be the cell module
corresponding to λ.



Coherence – Introduction

It is a general principle that representation theories of the Hecke
algebras Hn(q) or of the symmetric group algebras KSn should be
considered all together, that induction/restriction between Hn and
Hn−1 plays a role in building up the representation theory.

Coherence of cellular structures is the cellular version of this
principle.



Coherence

Definition 4

A sequence (An)n≥0 of cellular algebras, with cell data (Λn, ...) is
coherent if for each µ∈Λn, the restriction of∆µ to An−1 has a
filtration

Res(∆λ) = Ft ⊇ Ft−1 ⊇ · · · ⊇ F0 = (0),

with Fj/Fj−1
∼=∆λj for some λj ∈Λn−1, and similarly for induced

modules.
The sequence (An)n≥0 is strongly coherent if, in addition,

λt <λt−1 < · · ·<λ1

in Λn−1, and similarly for induced modules.



Strong coherence

Given a strongly coherent sequence (An)n≥0 of cellular algebras,
with mild additional assumptions, satisfied in our examples, one
always has path bases of cell modules and of the algebras
themselves.

Example of strong coherence: The sequence of Hecke algebras
Hn(q) is a strongly coherent sequence of cellular algebras. This
results from combining theorems of Murphy, Dipper-James, and
Jost from the 80’s



Main theorem

Theorem 5
Suppose (An)n≥0 and (Qn)n≥0 are two sequence of ∗ - algebras over R.
Let F be the field of fractions of R. Assume:

1. (Qn)n≥0 is a (strongly) coherent tower of cellular algebras.

2. A0 =Q0 =R, A1
∼=Q1.

3. For each n≥ 2, An has an essential idempotent en−1 = e∗n−1 and

0→ Anen−1An→ An→Qn→ 0,

is a short exact sequence of ∗ - algebras.

4. AF
n = An⊗R F is split semisimple.

5. (a) en−1 commutes with An−1, and en−1An−1en−1 ⊆ An−2en−1,
(b) Anen−1 = An−1en−1 and x 7→ xen−1 is injective from An−1 to
An−1en1 , and (c) en−1 = en−1enen−1.

Then (An)n≥0 is a (strongly) coherent tower of cellular algebras.



The BMW algebras

A chief example is An = BMW (Birman-Murakami-Wenzl) algebra
on n strands, and Qn =Hecke algebra on n strands.

The BMW algebra is an algebra of braid like objects, namely framed

(n, n)–tangles : .

Tangles can be represented by quasi-planar diagrams as shown
here. Tangles are multiplied by stacking (like braids).



Definition of BMW algebras

Definition 6

Let S be a commutative unital ring with invertible elements ρ, q,δ
satisfying ρ−1−ρ = (q−1−q)(δ−1). The BMW algebra W S

n is the
S–algebra of framed (n, n)–tangles, modulo the Kauffman skein
relations:

1. (Crossing relation) − = (q−1−q)
�

−
�

.

2. (Untwisting relation) =ρ and =ρ−1 .

3. (Free loop relation) T ∪©=δT , where T ∪© is the union
of a tangle T and an additional closed loop with zero framing.



The BMW algebras, cont.

• W S
n imbeds in W S

n+1. On the level of tangle diagrams, the
embedding is by adding one strand on the right.

• The BMW algebras have an S–linear algebra involution, acting
by turning tangle diagrams upside down.

• The following tangles generate the BMW algebra

ei =
i i + 1

and gi =
i + 1i

.

The element ei is an essential idempotent with e2
i =δei.

One has eiei±1ei = ei.



The BMW algebras, cont. 2

The ideal Jn generated by one or all ei’s in W S
n satisfies

W S
n/Jn

∼=HS
n(q

2)where HS
n(q

2) is the Hecke algebra.

There is a generic ground ring for the BMW algebras, namely

R=Z[qqq±1,ρρρ±1,δδδ±1]/J ,

where J is the ideal generated by

ρρρ−1−ρρρ− (qqq−1−qqq−1)(δδδ−1)

and where the bold symbols denote indeterminants.



BMW – Generic ground ring, cont. 3

The generic ground ring R is an integral domain, with field of
fractions F =Q(qqq,ρρρ), and δδδ= (ρρρ−1−ρρρ)/(qqq−1−qqq)+1 in F .

For every instance of the BMW over a ring S with parameters ρ, q,δ,
one has W S

n
∼=W R

n ⊗R S.

The BMW algebras over F are semisimple (theorem of Wenzl).
Outline of proof: Assume W F

k is s.s. for k≤ n. The ideal Jn+1 ⊆W F
n+1

is the Jones basic construction for W F
n−1 ⊆W F

n , so is also s.s. The
quotient W F

n+1/Jn+1 is the Hecke algebra HF
n (qqq

2), which is s.s. since qqq
is not a root of 1. Hence W F

n+1 is s.s.



The BMW algebras, application of our theorem

Now let’s see what’s involved in applying the theorem to the BMW
algebras (with An =W R

n , and Qn =HR
n (q

2)). Hypothesis (1) is the
(strong) coherence of the sequence of Hecke algebras, which is a
significant theorem about Hecke algebras. Hypothesis (4) on the
semisimplicity of W F

n is Wenzl’s theorem. Everything else is
elementary, and already contained in Birman-Wenzl.

All the other examples work pretty much the same way.



Some idea of the proof

The proof is inductive and is a cellular version of Wenzl’s
semisimplicity proof. Suppose we know that Ak is cellular (and
satisfies all the conclusions of the theorem) for k≤ n.

Then we want to show the same for An+1. The main point is to show
that Jn+1 = An+1enAn+1 = AnenAn is a “cellular ideal" in An+1. (This
suffices to show cellularity, because we also have that
An+1/Jn+1

∼=Qn+1 is cellular by hypothesis, and extensions of
cellular algebras by cellular ideals are also cellular.)



Some idea of the proof–cont.

We have a Λn−1–cell net Γ 7→ J(Γ) := span{cλs,t :λ∈ Γ,s, t∈T (λ)}. Now
we want to show that

Γ 7→ Ĵ(Γ) := AnenJ(Γ)An

is a Λn−1–cell net in AnenAn. Along the way to doing this we also
have to show that

J ′(Γ) := An⊗An−1 J(Γ)⊗An−1 An
∼= AnenJ(Γ)An

and in particular An⊗An−1 An
∼= AnenAn, and if Γ1 ⊆ Γ2, then also

J ′(Γ1) imbeds in J ′(Γ2). This is a bit tricky because AnenAn is not a
unital algebra and An is not projective as An−1–module.



Last slide!

Now if λ∈Λn−1 and Γ1 ⊆ Γ2, with Γ2 \Γ1 =λ, then

Ĵ(Γ2)/Ĵ(Γ1)∼= J ′(Γ2)/J ′(Γ1)
∼= An⊗An−1 J(Γ1)/J(Γ2)⊗An−1 An

∼= An⊗An−1 (∆
λ⊗R (∆λ)∗)⊗An−1 An

∼= (An⊗An−1 ∆
λ)⊗R (∆λ)∗⊗An−1 An)

Now we need that Mλ = An⊗An−1 ∆λ is free as R–module, to verify
the crucial property in the definition of a cell net. But as
An–module, Mλ is Ind(∆λ), and by an induction assumption on
coherence of the cellular structures on (Ak)k≤n, this has a filtration
by cell modules for An, so is free as an R–module.


