Syllabus of Courses		
Day	ROLAND Summary: random matrices, combinatorial side of free probability, non-microstates free entropy, and free stochastic calculus	KEN Summary: free products of operator algebras, interpolated free group factors, microstates free entropy dimension, amalgamated free products.
1	random matrices calculation of asymptotics of	noncommutative probability spaces free products of groups
	mixed moments of independent GUE semicircular variable definition of freeness	freeness (analogous to but incompatible with independence) computation of moments: $\phi(ab)$, $\phi(a_1ba_2)$, $\phi(a_1b_1a_2b_2)$ "up-down" lemma
2	definition of free convolution free central limit theorem definition of free cumulants main properties: vanishing of mixed cumulants possibly: circular elements and polar decomposition	free products of operator algebras (construction) positivity of free convolution free product of traces is a trace
3	 combinatorial description of sum and of product of free variables (Kreweras complement) <i>R</i>- and <i>S</i>-transform possibly: example of Kesten measure, basics of analytic properties of Cauchy transform, Stieltjes inversion formula 	the universal unital C^* -algebra generated by two projections the S-transform for the product of two free projections the reduced free product of two two-dimensional C^* -algebras
4	asymptotic freeness for random matrices: Gaussian matrices and constant matrices UAU^* and B	free analogue of the Gaussian functor polar decomposition of a circular operator
5	operator-valued freeness definition, basic combinatorial theory, <i>R</i> -transform relation with random (band or block) matrices possibly: relation between different levels of freeness	application of random matrices to $L(\mathbf{F}_n)_{1/k}$ interpolated free group factors

DAY	Roland	Ken
6	non-microstates free entropy	free products of von Neumann algebras and "free dimension"
	basic definitions: conjugate variable, free Fisher information,	microstates free entropy dimension (packing number approach)
	free entropy χ^*	*-algebra invariance of the microsates free entropy dimension
	a few properties (in particular: additivity, maybe	
	characterization)	
	possibly: maximization problems of free entropy	
7	Fock space construction and semicircular functor	$L(\mathbf{F}_n)$ has no Cartan subalgebra
	maybe: something about classical Brownian motion,	
	chaos decomposition	
	free Brownian motion	
	free stochastic calculus (definition of stochastic integral,	
	Ito-formula, Burkholder–Gundy inequality)	
8	free stochastic differential equation	amalgamated free products of operator algebras
	maybe: relation with free diffusion	
9	application to construction of Guionnet–Shlyakhtenko	microstates free entropy dimension in amalgamated free products