
NOTES ON FREE PROBABILITY

VIJAY KODIYALAM

These are the notes for a set of lectures on Free Probability given as part of the
Advanced Instructional School conducted at IMSc, Chennai between Feb. 1 and
Feb. 20, 2016. The notes are very closely based on the book of Nica and Speicher
and roughly correspond to the first 5 chapters of that book together with a part of
Chapter 8. Comments and corrections are very welcome.

1. Basic definitions

1.1. Some definitions. A probability space consists of a complex, unital alge-
bra A and a linear functional φ : A → C such that φ(1A) = 1. Elements of A will
be called random variables. If φ is a trace the probability space A will be said
to be tracial.

If A is equipped with a conjugate linear, product-reversing involution ∗, i.e., A
is a ∗-algebra, and φ is positive in the sense that φ(a∗a) ≥ 0 for all a ∈ A, then A
is said to be a ∗-probability space. If A is a ∗-probability space, we may speak of
self-adjoint (a = a∗), unitary (aa∗ = 1 = a∗a) and normal (aa∗ = a∗a) random
variables. Our main interest will be in ∗-probability spaces.

1.2. Adjoint preservation. If A is a ∗-probability space, the functional φ pre-
serves ∗, i.e., φ(a∗) = φ(a). To see this note first that this implies that if x ∈ A
is self-adjoint, φ(x) ∈ R. The converse holds too. For any element a ∈ A
can be expressed uniquely as x + iy where x, y ∈ A are self-adjoint (and x =
1
2 (a + a∗), y = 1

2i (a − a∗)) and so if for self-adjoint x, we have φ(x) ∈ R, then
φ(a) = φ(x) + iφ(y) is the decomposition of φ(a) into its real and imaginary parts.

Then, φ(a∗) = φ(x) − iφ(y) = φ(a). Finally to see that for self-adjoint x, φ(x) is
real, note that x can be written as a∗a− b∗b where a = 1

2 (x+ 1) and b = 1
2 (x− 1).

Now appeal to the positivity of φ.

1.3. Cauchy-Schwarz. If A is a ∗-probability space, we also have the following
Cauchy-Schwarz inequality for the sesquilinear form defined by φ :

|φ(b∗a)|2 ≤ φ(a∗a)φ(b∗b).

To prove this, note that the quadratic function of the real valued variable t given
by φ((a − tb)∗(a − tb)) is always non-negative. Hence its discriminant is negative
and this gives:

(Re(φ(b∗a))2 ≤ φ(a∗a)φ(b∗b)

The RHS is invariant under replacing a with aeiθ while the maximum of the LHS
as θ varies is exactly |φ(b∗a)|2, yielding the desired inequality.

1
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1.4. More definitions. The functional φ is said to be faithful if φ(a∗a) = 0
implies that a = 0. A morphism λ : (A, φ) → (B,ψ) of ∗-probability spaces is
a unital ∗-algebra homomorphism such that ψ ◦ λ = φ. If φ is faithful, then λ is
necessarily injective.

2. Examples of probability spaces and representations

2.1. Classical examples. Let (X,B, µ) be a classical probability space. Thus X
is a set, B is a σ-algebra of measurable subsets of X and µ is a probability
measure on B. Associated to this data is the probability space A = L∞(X,B, µ)
where φ is defined by

φ(a) =

∫

X

a dµ

for a ∈ A. This A is then a commutative (hence, of course, tracial) ∗-probability
space where ∗ is the usual complex conjugation.

There are other probability spaces that one may associate to this data. For
instance, one problem with the above space is the following. Consider a Gaussian
random variable. This is one for which the probability density function is given by

1√
2π
e−

x2

2 .

i.e., the µ-measure of {x ∈ X : a(x) ∈ I} is given by
∫

I

1√
2π
e−

x2

2 dx,

for any interval I. This random variable is certainly not given by an L∞ function
on X since its density is not compactly supported. So the framework needs to be
enlarged to be able to treat Gaussian random variables.

Define L∞−(X,B, µ) = ∩1≤p<∞Lp(X,B, µ). Note that this is a descending inter-
section since µ is a finite measure and hence also equals ∩∞

p=1L
p(X,B, µ). Further,

this is an algebra. For if a, b ∈ L∞−(X,B, µ), then for any finite p ≥ 1, a, b ∈
L2p(X,B, µ). Thus ap, bp ∈ L2(X,B, µ). By Cauchy-Schwarz, apbp ∈ L1(X,B, µ),
or equivalently, ab ∈ Lp(X,B, µ). Since p is arbitrary, ab ∈ L∞−(X,B, µ). So with
A = L∞−(X,B, µ) and φ as before we have a more interesting ∗-probability space.
Both these spaces are faithful.

2.2. Matrix examples. A first non-commutative example of a ∗-probability space
is given by A =Md(C) for d ≥ 2 with φ given by the normalised matrix trace. Note
that for a ∈ A, φ(a∗a) is 1

n times the square of the Hilbert-Schmidt norm (sum of
the squares of the norms of all entries) of a and thus φ is indeed positive and even
faithful.

More generally, a method of constructing new ∗-probability spaces from old is
the matrix construction. If A is a ∗-probability space with φ, then for any d ∈ N, we
have a ∗-probability space Md(A) with usual multiplication and ∗ and functional

φ(d) given by φ(d)(a) = 1
d

∑d
i=1 φ(aii). It is easily checked that φ(d) is positive and

is tracial if φ is so and faithful if φ is so.
In particular, we may do the matrix construction with L∞−(X,B, µ) to get the

∗-probability space A =Md(L
∞−(X,B, µ)) with linear functional φ defined by

φ(a) =

∫

X

tr(a)dµ
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where tr denotes the normalised trace of a matrix. The random variables of this
space are called random matrices over (X,B, µ), and can also be regarded as matrix
valued functions on X .

2.3. Group algebras. Amore interesting non-commutative example related to the
genesis of free probability theory is given by the following. Let G be a countable
group and A = CG - the group algebra of G. Elements of A are finite formal linear
combinations of elements of G with the obvious multiplication. Make A a ∗-algebra
by conjugate linearly extending g∗ = g−1. Define φ on A by φ(g) = δg,1 and extend
by linearity. This is a trace on A and is faithful and positive since if a =

∑

g cgg,

then φ(a∗a) =
∑

g |cg|2.

2.4. Subalgebras of L(H). Finally, an extremely general example is given as fol-
lows. Let H be a Hilbert space and L(H) be the ∗-algebra of bounded operators
on H. Let A be any unital ∗-subalgebra of L(H) and Ω ∈ H be a unit vector. We
refer to Ω as a vacuum vector. Define φ on A by φ(a) = 〈aΩ|Ω〉 - the so-called
vector-state defined by Ω. Then φ is positive since φ(a∗a) = ||aΩ||2 ≥ 0, but is
not necessarily faithful or tracial. In particular, L(H) itself is a ∗-probability space
for any choice of unit vector Ω ∈ H, the corresponding functional being denoted by
φΩ.

2.5. Representations. A representation of a ∗-probability space (A, φ) is a mor-
phism into (L(H), φΩ) for some Hilbert space H and unit vector Ω ∈ H. Equiva-
lently, it is a unital ∗-homomorphism λ : A→ L(H) such that φ(a) = 〈λ(a)Ω|Ω〉.

All examples discussed so far except for L∞−(X,B, µ) have natural and faithful
representations on Hilbert space. For instance, in the group algebra case, the
natural Hilbert space that arises is ℓ2(G) - the Hilbert space with orthonormal basis
given by {ξg : g ∈ G}. The vector Ω = ξ1 and the representation λ : CG→ L(ℓ2(G))
is given by λ(g)(ξh) = ξgh. Note that 〈λ(g)Ω|Ω〉 = 〈ξg |ξ1〉 = δg,1, as needed.

The algebra LG is defined to be the double commutant of λ(CG) in L(ℓ2(G))
and is one of the standard examples of a II1-factor when G has all non-trivial
conjugacy classes infinite. The origins of free probability theory lie in the open
decision problem of whether LF2

∼= LF3 where Fk is the free group on k-generators.

3. ∗-distributions of normal elements

3.1. Analytic ∗-distributions. In general, by the ∗-distribution of a random vari-
able a of a probability space, we will mean some scheme that keeps track of the
values of φ on the unital ∗-subalgebra generated by a.

If a is normal, the unital ∗-subalgebra generated by a is the span of all {ak(a∗)l :
k, l ≥ 0}, and so the ∗-distribution must be something that specifies all φ(ak(a∗)l)
for k, l ≥ 0. The best possible such gadget is a compactly supported Borel proba-
bility measure µ on C for which

φ(ak(a∗)l) =

∫

zkzldµ.

If such a µ exists, then it is necessarily unique by the Stone-Weierstrass theorem
and is called the analytic ∗-distribution of the normal random variable a.

While not all normal random variables of ∗-probability spaces need have an
analytic ∗-distribution, most interesting ones do. In particular if a ∗-probability
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space has a representation on Hilbert space, then its normal random variables do
have analytic ∗-distributions.

3.2. ∗-distributions of self-adjoints are R-supported. Suppose that a is self-
adjoint and has an analytic ∗-distribution, say µ. Then µ is supported in R. For
consider

∫

C
|z − z|2dµ = 0 and since |z − z|2 is a non-negative continuous function

it must vanish on the support of µ. Hence supp(µ) ⊆ R. So here, the ∗-distribution
of a is a compactly supported measure µ on R such that

φ(ap) =

∫

R

tpdµ.

4. Examples of ∗-distributions and general ∗-distributions
4.1. The classical case. Consider A = L∞(X,B, µ), and say a ∈ A, so that
a : X → C is a bounded measurable function. In classical probability theory the
distribution of a is the push-forward measure of µ to C, i.e.,

ν(E) = µ(a−1(E)).

The boundedness of a implies that ν is compactly supported.
Consider what we defined as the analytic ∗-distribution of a. Let’s check that

this is the same as ν. The displayed equation above is the same as:
∫

C

1Edν =

∫

X

1E(a(x))dµ.

By properly approximating we get
∫

C

fdν =

∫

X

f(a(x))dµ.

for every bounded measurable function f on C. We now take f to agree with zkzl

on the support of µ and 0 outside to get
∫

C

zkzldν =

∫

X

a(x)ka(x)
l
dµ = φ(ak(a∗)l).

4.2. Matrix algebras. Consider A = Md(C) and let a ∈ A be a normal matrix
with eigenvalues λ1, · · · , λd. We may diagonalize a to get that

tr(ak(a∗)l) =
1

d

d
∑

i=1

λki λi
l
=

∫

C

zkzldµ

where µ = 1
d

∑d
i=1 δλi

. This µ is called the eigenvalue distribution of a.

4.3. Haar and p-Haar unitaries. Let (A, φ) be a ∗-probability space. An element
u ∈ A is said to be a Haar unitary if it is unitary and φ(uk) = 0 for k ∈ Z \ {0}.
For p a positive integer, u ∈ A is said to be a p-Haar unitary if it is unitary,
up = 1, and φ(uk) = 0 for k ∈ Z a non-multiple of p.

If u is a Haar unitary, the Haar measure on S1 ⊆ C is its analytic ∗-distribution.
For, by definition, φ(uk(u∗)l) = δk,l while for the Haar measure µ on S1, we have

∫

S1

zkzldµ =

∫ 2π

0

ei(k−l)θ dθ

2π
= δk,l
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If u is a p-Haar unitary, its analytic ∗-distribution is given by µ = 1
p

∑p−1
i=0 δωi

where ω is a primitive pth-root of 1. This is because for any k ∈ Z,

∫

C

zkdµ =

p−1
∑

i=0

ωik

which is 1 or 0 according as p divides k or not.
In the probability space CG, elements g ∈ G of infinite order are Haar unitaries

while those of finite order p are p-Haar unitaries.

4.4. The distribution of u+u∗. Let u be a Haar unitary in a ∗-probability space
A. We want to consider whether the self-adjoint element u + u∗ has an analytic
∗-distribution and determine its moments, which are, by definition, the numbers
φ((u + u∗)p) for p ≥ 0.

The moments are easy to determine. We have (u + u∗)p =
∑p

k=0

(

p
k

)

uk(u∗)p−k.

So φ((u + u∗)p) vanishes unless p is even in which case it is given by
(

p
p

2

)

. Now we

want a compactly supported measure ν on R for which
∫

R

tpdν

vanishes for odd p and is given for even p by
(

p
p

2

)

.

We know the corresponding measure for u itself which is the Haar measure µ on
S1. Hence

φ((u + u∗)p) =

p
∑

k=0

(

p

k

)

φ(uk(u∗)p−k)

=

p
∑

k=0

(

p

k

)
∫

S1

zkzp−k

=

∫

S1

(z + z)pdµ

=
1

2π

∫ π

−π

(2 cos(θ))p dθ

=
1

π

∫ π

0

(2 cos(θ))p dθ

Since we want to write this as a moment, set t = 2cos(θ), so that θ = cos−1( t2 ) and

dθ = −dt√
4−t2

. Hence,

φ((u + u∗)p) =
1

π

∫ 2

−2

tpdt√
4− t2

dt

So the sought after compactly supported measure is given by

dν =

{ dt
π
√
4−t2

if |t| < 2

0 if |t| ≥ 2

Note that when p = 2k, knowledge of φ((u + u∗)2k) implies that
∫ π

0

(cos(θ))2kdθ =
π

4k

(

2k

k

)

.

We will use this later.
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4.5. Distribution of a polynomial function. What we did in the previous ex-
ample can be done more generally. Suppose that a is a normal element in a
∗-probability space which has an analytic ∗-distribution µ. Let P be a polyno-
mial in two (commuting) variables z, z and let b = P (a, a∗). Then b has an
analytic ∗-distribution ν given by the push-forward of µ by P : C → C, i.e.,
ν(E) = µ(P−1(E)).

To see this, first note that ν is a Borel measure on C and further that it is
compactly supported since if K is the support of µ, then P (K) is bounded hence
contained in some compact L and then the support of ν is contained in L.

Also φ(bk(b∗)l) =
∫

C
P (z, z)k(P (z, z)∗)ldµ =

∫

C
wkwldν, as needed, just as in an

earlier proof.

4.6. Application to a p-Haar unitary. We may use this for a p-Haar unitary
u. Its analytic ∗-distribution is given by µ = 1

p

∑p−1
i=0 δωi and so the analytic ∗-

distribution of u+u∗ is given by the push-forward of µ by the map z+z. Denoting
this measure by ν, a little thought shows that ν is also atomic with mass 1

p at 1, 1
p

at −1 if p is even, and 2
p at all 2cos(2kπp ) for 0 < k < p

2 .

4.7. General ∗-distributions. Let (A, φ) be a ∗-probability space and a ∈ A be
some element. The ∗-subalgebra of A generated by a is the linear span of all words
in a and a∗. The values of φ on such words will be referred to as ∗-moments of a.

Let C〈X,X∗〉 be the polynomial algebra in two non-commuting variables X and
X∗ equipped with its obvious ∗-structure. The algebraic ∗-distribution of a
is defined to be the (∗-preserving) linear functional µ : C〈X,X∗〉 → C defined
uniquely by:

µ(Xǫ1Xǫ2 · · ·Xǫk) = φ(aǫ1aǫ2 · · ·aǫk)
for all k ≥ 0 and ǫi ∈ {∗, 1}.

Note that just as the analytic ∗-distribution is a compactly supported measure
on R, the algebraic ∗-distribution is a linear functional on C〈X,X∗〉, independent
of which probability space the random variable a belongs to.

When a ∈ A is self-adjoint, its ∗-moments are just its moments, i.e., φ(ap)
for p ≥ 0, and following classical probability terminology, the first moment φ(a) is
called the mean of a and the quantity φ(a2)− φ(a)2 is called the variance of a.

5. A non-unitary isometry

5.1. Definitions. Let (A, φ) be a ∗-probability space. An element a ∈ A such that
a is an isometry, i.e., a∗a = 1, but is not unitary so that aa∗ 6= 1 is called a
non-unitary isometry. Of course, a is not normal and A is necessarily infinite-
dimensional. Further assume that a generates A as a ∗-algebra. It is then easy to
see that A is the span of all ak(a∗)l for k, l ≥ 0. Assume further that the elements
ak(a∗)l for k, l ≥ 0 are all linearly independent and that φ(ak(a∗)l) = 0 unless
k = l = 0. Note that this φ is clearly not faithful.

5.2. Existence. How are we sure of existence ? Consider the Hilbert space H =
ℓ2(N ∪ {0}), with orthonormal basis ξn for n ≥ 0. Let S ∈ L(H) be the unilateral
shift defined by Sξn = ξn+1 for n ≥ 0. One checks that S∗ξn = ξn−1 for n > 0 and
that S∗ξ0 = 0. Hence SS∗ = 1 but S∗S = P where P is the orthogonal projection
onto the closed subspace spanned by all ξn for n > 0. Thus S is a non-unitary
isometry.
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Further, the elements Sk(S∗)l for k, l ≥ 0 are all linearly independent. For
suppose we have a relation of the type P0(S) + P1(S)S

∗ + P2(S)(S
∗)2 + · · · +

Pn(S)(S
∗)n = 0 where the Pi are polynomials in 1 variable that are not all zero.

Let m be least so that Pm 6= 0 and apply this operator to ξm to get Pm(S)ξ0 = 0.
This clearly imples that Pm = 0.

5.3. Toeplitz algebra. Let ψ be the vector state defined on L(H) by ξ0, i.e.,
ψ(T ) = 〈Tξ0|ξ0〉. Then the map π : A → L(H) defined by linearly extending
π(ak(a∗)l) = Sk(S∗)l is a representation of the ∗-probability space A. The closure
of π(A) in the norm topolgy on L(H) is called the Toeplitz algebra and is an
important example in C∗-algebra theory.

5.4. Meaning of ∗-distribution. By the ∗-distribution of a, we meant a gadget
that keeps track of the values of φ on the ∗-algebra generated by a. In this case,
that algebra is spanned by ak(a∗)l. So is knowing all φ(ak(a∗)l) enough to know
its ∗-distribution ? Not really because the corresponding measure for these values
is the Dirac mass at 0 which is the same one as for the 0 ∈ A. To understand the
∗-distribution of a, we also need to understand the process by which monomials in a
and a∗ are reduced to the form ak(a∗)l. This needs a little combinatorial digression.

6. Dyck paths and Catalan numbers

6.1. Definitions. By a NE-SE path we mean a path in the plane that begins at
(0, 0) and moves in steps of (1,±1), i.e., NE or SE steps. The length of the path is
the number of steps. There is an empty path of length 0. A NE-SE path is called
a Dyck path if it never goes below the x-axis and ends on the x-axis.

6.2. Parametrisation of paths. A NE-SE path of length k is clearly parametrised
by a sequence (λ1, · · · , λk) where each λi ∈ {±1} and the ith-step of the path is
by (1, λi). The y-coordinate of the end-point after i-steps is given by λ1 + · · ·+ λi.
Thus (λ1, · · · , λk) parametrises a Dyck path exactly when each λ1 + · · · + λi ≥ 0
and λ1 + · · ·+λk = 0. Since each λi = ±1, the length of a Dyck path is necessarily
even.

6.3. The reflection trick. We want to show that for every integer p ≥ 0, the
number Cp of Dyck paths of length 2p is given by

Cp =
1

2p

(

2p

p

)

.

This uses a very pretty and justly famous ‘reflection trick’ due to Andre.
To apply this, begin by observing that (m,n) is the end-point of a NE-SE path if

and only if m ≥ 0, m and n have the same parity, and |n| ≤ m. If these conditions
hold, any NE-SE path with end-point (m,n) has m+n

2 NE steps and m−n
2 SE steps.

So the number of such is the binomial coefficient
(

m
m+n

2

)

.

The reflection trick establishes a bijection between the sets of non-Dyck NE-SE
paths ending at (2p, 0) and all NE-SE paths ending at (2p,−2). Given this, the
number of Dyck paths ending at (2p, 0) is given by

(

2p
p

)

−
(

2p
p−1

)

= 1
2p

(

2p
p

)

, as desired.

The bijection is given by reflecting the part of the path that lies to the right of
where it first touches y = −1 about that line.
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6.4. The Catalan recurrence. For every positive integer p, the number Cp above
is called the pth-Catalan number and we will show that it satisfies the recurrence
Cp =

∑p
k=1 Ck−1Cp−k subject to the initial conditions C0 = C1 = 1.

To prove this, call a Dyck path irreducible if the only points at which it touches
the x-axis are its end-points. It should be clear that the number of irreducible
Dyck paths of length 2p equals the number Cp−1 of Dyck paths of length 2p − 2.
The reducible Dyck paths of length 2p are divided into classes according to the
first time they touch the x-axis (leaving the beginning point) which may be any
(2k, 0) for 1 ≤ k ≤ p− 1. The number in the kth-class is clearly Ck−1Cp−k. Thus

Cp =
∑p−1

k=1 Ck−1Cp−k + Cp−1 =
∑p

k=1 Ck−1Cp−k.

7. Distribution of a+ a∗

7.1. Connection with Dyck paths. The first observation is the following. Con-
sider a monomial aǫ1aǫ2 · · ·aǫk where each ǫi ∈ {∗, 1}. Let λi = 1 or −1 according
as ǫi is ∗ or 1. Then φ(aǫ1aǫ2 · · · aǫk) = 1 or 0 according as (λ1, · · · , λk) corresponds
to a Dyck path or not.

To see this we use the representation π on Hilbert space of the algebra A to
conclude that

φ(aǫ1aǫ2 · · · aǫk) = ψ(Sǫ1Sǫ2 · · ·Sǫk)

= 〈Sǫ1Sǫ2 · · ·Sǫkξ0|ξ0〉
= 〈ξ0|(Sǫk)∗(Sǫk−1)∗ · · · (Sǫ1)∗ξ0〉

Now, a little thought shows that (Sǫk)∗(Sǫk−1)∗ · · · (Sǫ1)∗ξ0 which is either some
ξn or vanishes, vanishes exactly when some λ1 + · · · + λj < 0 (for 1 ≤ j ≤ k)
and otherwise gives ξλ1+···+λk

. The required equality for φ(aǫ1aǫ2 · · · aǫk) is now
immediate by definition of a Dyck path.

7.2. Moments. We now ask, as before, whether the self-adjoint element a+a∗ has
an analytic ∗-distribution and what its moments are. Again the moments are easy
to determine.

For k ≥ 0, φ((a+a∗)p) is the sum of φ of all monomials in a and a∗ of total degree
p and thus vanishes for odd p and for p = 2k gives Ck - the kth-Catalan number.
Next, we want a compactly supported probability measure µ on R whose moments
are φ((a + a∗)p). Since this vanishes for p odd, it suggests that the measure µ is
symmetric about the origin.

7.3. The measure. We claim that the measure µ is supported in [−2, 2] and has

density given by 1
2π

√
4− t2 in that interval. To see this, we need to verify that

when p = 2k,

φ((a + a∗)p) =

∫ 2

−2

tp

2π

√

4− t2dt.

(That both sides vanish for odd p is clear.)
Set t = 2cos(θ), dt = −2sin(θ)dθ to reduce to calculating

∫ π

0

4k+1(cos(θ)2k)

2π
(sin(θ)2)dθ =

4k+1

2π

{
∫ π

0

cos(θ)2kdθ −
∫ π

0

cos(θ)2k+2dθ

}

=
4k+1

2π

{

π

4k

(

2k

k

)

− π

4k+1

(

2k + 2

k + 1

)

.

}
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A little calculation now shows that this equals Ck, as desired.

7.4. Semicircular element. This example motivates the ultra-important defini-
tion of a semicircular element. In a ∗-probability space (A, φ), for a positive r, a
self-adjoint a is said to be (centered) semi-circular of radius r if a has analytic

∗-distribution given by 2
πr2

√
r2 − t2dt on the interval [−r, r]. Equivalently, if its

odd moments vanish and (2k)th moment is given by ( r2 )
2kCk for k ≥ 0.

A semicircular element of radius 2 is said to be standard semicircular. Thus,
our calculation has established that S+S∗ standard semicircular. However, rather
unsatisfactorily, the measure was pulled out of thin air. To remedy this we will
study the Cauchy transform.

7.5. Another example of a standard semicircular element. In the probabil-
ity space (A, φ) considered earlier the element 1

i (a−a∗) is also standard semicircular.
To see this it suffices to see that there is an automorphism θ of the ∗-probability
space (A, φ) that takes a to −ia (so that a + a∗ 7→ −i(a − a∗)). Note that A as
an algebra is the quotient of C〈A,A∗〉 by the relation A∗A = 1. So there is an
automorphism of A taking a to −ia (and a∗ to ia∗). To verify that this preserves
φ use the connection with Dyck paths.

Another way to see this is to see that S and −iS are unitarily conjugate in
L(ℓ2(N ∪ {0})) by a unitary that fixes ξ0. The unitary diagonal matrix with (t, t)
entry given by (−i)t (for t ≥ 0) works.

8. The Cauchy transform

8.1. Definition. The Cauchy transform is a method to derive a measure from the
knowledge of its moments. Let µ be a probability measure on R. Its Cauchy

transform is the function Gµ defined on the upper half-plane H+ by

Gµ(z) =

∫

R

1

z − t
dµ(t).

This is analytic in H+ and takes values in H−. Suppose that µ is compactly
supported. Say r = sup{|t| : t ∈ Supp(µ)}. Then, for |z| > r, we have a power
series expansion

Gµ(z) =

∞
∑

n=0

αn

zn+1
,

with αn =
∫

R
tndµ. In particular lim|z|→∞zGµ(z) = α0 = 1.

8.2. Inversion formula. The Stieltjes inversion formula states the following.
Suppose that Gµ has a continuous extension to H+ ∪ R and that on R, this is the
function g, so that,

g(t) = limǫ→0Gµ(t+ iǫ).

Then,

dµ(t) = − 1

π
Im(g(t))dt.

We discuss a couple of applications.
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8.3. Standard semicircular element. Begin by noting that in this case,

Gµ(z) =
∑

p≥0

Cp

z2p+1
,

and we know that if it comes from a compactly supported measure µ on R, then it
converges for |z| large enough which anyway can be directly verified by calculating
the radius of convergence.

I find it easier to think in terms of the generating function

H(z) =
∑

p≥0

Cpz
p

which is analytic in a neighbourhood of z = 0. The Catalan recurrence gives

H(z)2 =
H(z)− C0

z
.

Now Gµ(z) =
1
zH( 1

z2 ), and therefore

Gµ(z)
2 − zGµ(z) + 1 = 0.

This first holds for z ∈ H+ with |z| large enough and then by analyticity for all
z ∈ H

+.
Solve to get

Gµ(z) =
z ±

√
z2 − 4

2
.

To make sense of this, we first note that there is a branch of
√
z2 − 4 defined

on C \ [−2, 2] which gives the positive square-root on the positive x-axis and the
negative square-root on the negative x-axis. If we choose this branch then the
condition zGµ(z) goes to 1 as |z| gets large forces choice of the negative sign in
Gµ(z).

It can now be verified that the function g(t) associated to Gµ(z) is given by

g(t) =











t+
√
t2−4
2 if t < −2

t−i
√
4−t2

2 if |t| ≤ 2
t−

√
t2−4
2 if t > 2

Finally, Stieltjes inversion gives the desired measure as was checked earlier.

8.4. Analytic distribution of u + u∗ for a Haar unitary u. Reconsider the
example in §4.4 of Lecture 1. In this case

Gν(z) =
∑

p≥0

(

2p
p

)

z2p+1
=

∑

p≥0

(p+ 1)Cp

z2p+1
.

As before, consider the generating function

K(z) =
∑

p≥0

(

2p

p

)

zp =
∑

p≥0

(p+ 1)Cpz
p = (zH(z))′ = H(z) + zH ′(z).

We have Gν(z) = 1
zK( 1

z2 ) while H(z) = 1±
√
1−4z
2z . Hence K(z) = ±1√

1−4z
. Thus

Gν(z) =
±1√
z2−4

.
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Choosing the same branch of
√
z2 − 4 as in the previous example we see that

the sign in Gν(z) must be positive. Also as before the function g(t) is given by

g(t) =











1
−
√
t2−4

if t < −2
1

i
√
4−t2

if |t| ≤ 2
1√
t2−4

if t > 2

Finally, Stieltjes inversion gives the arcsine law obtained earlier.
Remark: Above is incorrect since g is not cts. on R. Need to use Shaffe’s theorem

to do it right.

9. C∗-algebras and the continuous functional calculus

9.1. Definitions. A normed linear space is a complex vector space A equipped
with a norm || · || : A→ R≥0, i.e., a function that satisfies:
• Positive homogeneity: ||αa|| = |α|||a|| for all α ∈ C, a ∈ A.
• Positive definiteness: ||a|| = 0 if and only if a = 0.
• Sub-additivity: ||a+ b|| ≤ ||a||+ ||b|| for all a, b ∈ A.

The normed linear space A is said to be a Banach space if further, it is
• Complete for the norm induced metric d(a, b) = ||b− a||.

A Banach space A is said to be a Banach algebra if it is equipped with an
associative, bilinear multiplication map A×A→ A which satisfies:
• Sub-multiplicativity: ||ab|| ≤ ||a||||b|| for all a, b ∈ A.

A Banach algebra is said to be a C∗-algebra if it is equipped with a conjugate-
linear, product-reversing involution ∗ : A→ A that satisfies:
• The C∗-identity: ||a∗a|| = ||a||2 for all a ∈ A.
C∗-algebras need not be unital but we will be interested only in unital C∗-

algebras. The two basic examples of these are C(X) - the algebra of continuous,
complex-valued functions on a compact, Hausdorff spaceX - and L(H) - the algebra
of bounded, linear operators on a Hilbert space H. The Gelfand-Naimark theorems
assert that any commutative, unital C∗-algebra is of the form C(X) while any unital
C∗-algebra is isometrically ∗-isomorphic to a norm-closed ∗-subalgebra of L(H).

If A is a unital C∗-algebra and a ∈ A, the spectrum of a, denoted σ(a), is
defined as

σ(a) = {λ ∈ C : λ.1 − a is not invertible in A}.
Theorem: σ(a) is a non-empty compact subset of C contained in {z : |z| ≤ ||a||}.

9.2. The continuous functional calculus. The following result (or sometimes
the map Φ featuring in it) is referred to as the continuous functional calculus

for a.
Theorem: Let A be a unital C∗-algebra and a ∈ A be a normal element. Then

there is a unital ∗-homomorphism Φ : C(σ(a)) → A such that Φ(id) = a and
||Φ(f)|| = ||f ||∞ for all f ∈ C(σ(a)).

Note that the theorem asserts that Φ is an isometry for the || · ||∞ norm on
C(σ(a)) and the norm on A. Together with linearity, this implies that Φ is 1-1.
Consider polynomial functions in z and z restricted to σ(a), so that the function
z corresponds to what is called id in the statement of the theorem. Since Φ is a
unital ∗-homomorphism and its value on id is specified (to be a), its value on all
polynomials in z and z is determined and by Stone-Weierstrass on the whole of
C(σ(a)). Thus Φ is unique. We will usually denote Φ(f) by f(a).
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The image of Φ is the unital C∗-subalgebra of A generated by a. For clearly, Φ
being an isometry, its image is complete and thus norm closed in A and contains a.
So it contains the unital C∗-subalgebra generated by a. But this C∗-algebra must
contain all polynomials in a and a∗ whose norm closure is the image of Φ.

Many simple and useful consequences follow. For instance, let a be a normal
element of a unital C∗-algebra A. Then, ||a|| = ||a∗|| = sup{|z| : z ∈ σ(a)}. Note
that ||a|| = ||a∗|| even for non-normal a in a unital C∗-algebra because ||a||2 =
||a∗a|| ≤ ||a∗||.||a|| giving one inequality and use involutivity of ∗ for the other one.
Also, a is self-adjoint ⇔ σ(a) ⊆ R and unitary ⇔ σ(a) ⊆ S1.

9.3. Continuous functional calculus for C(X). Let a ∈ C(X) so that a is a
continuous, complex-valued function on X . It is clear that σ(a) = a(X). Consider
the continuous functional calculus for a which is a unital ∗-homomorphism Φ :
C(σ(a)) = C(a(X)) → C(X). We assert that Φ(f) = f ◦ a. For f 7→ f ◦ a is a unital
∗-homomorphism such that id 7→ a and such that ||Φ(f)|| = ||f ||∞. Now appeal to
the uniqueness of Φ.

9.4. Spectral mapping theorem. Theorem: Let A be a unital C∗-algebra,
a ∈ A be a normal element and f ∈ C(σ(a)). Then, σ(f(a)) = f(σ(a)).

To prove this, note first that λ ∈ σ(f(a)) ⇔ 0 ∈ σ((f − λ)(a)), while λ ∈
f(σ(a)) ⇔ 0 ∈ (f − λ)(σ(a)). So, replacing f by f − λ, it suffices to see that f(a)
non-invertible iff 0 ∈ f(σ(a)). One direction of this is clear. If 0 /∈ f(σ(a)), f is
a non-vanishing continuous function on σ(a), hence 1

f is a continuous function on

σ(a) and 1
f (a) is an inverse of f(a) by the continuous functional calculus, so that

f(a) is invertible.
Conversely suppose that f(a) is invertible and that 0 ∈ f(σ(a)) to derive a con-

tradiction. Say f(λ0) = 0 for λ0 ∈ σ(a). Take a continuous function g on σ(a)
of large norm, say K, such that fg has norm bounded by 1. To construct such a
g, apply Urysohn’s lemma to the function that is K at λ0 and 0 outside a neigh-
bourhood of λ0 where f is less than 1

K . Then, K = ||g(a)|| = ||f(a)−1f(a)g(a)|| ≤
||f(a)−1||.||f(a)g(a)|| ≤ ||f(a)−1||. Since K is arbitrary, we’re done.

10. Positivity

10.1. Basics. An element a of a unital C∗-algebra A is said to be positive if it is
self-adjoint and σ(a) ⊆ R≥0. The set of positive elements of A is denoted A+ and
we write a ≥ 0 for a ∈ A+. We assert that the set of positive elements in A is a
pointed cone, i.e., p, q positive and α, β ≥ 0 implies that αp+βq positive and p,−p
positive implies p = 0.

The pointedness of the cone is clear. For if p and −p are both positive then
σ(p) ⊆ R+ ∩R− = {0}. So ||p|| = 0 ⇒ p = 0.

To prove conicality, since αp is obviously positive for p positive, it suffices to see
that the sum p+q of positives p and q is positive. Now, for positive p, σ(p) ⊆ [0, ||p||]
and so σ(||p|| − p) ⊆ [0, ||p||] too. It follows that ||p|| − p is (also positive) of norm
at most ||p||.

Hence ||(||p|| − p) + (||q|| − q)|| ≤ ||p|| + ||q||. Hence σ(||p|| − p + ||q|| − q) ⊆
[−||p|| − ||q||, ||p|| + ||q||]. So σ(p + q) ⊆ [0, 2(||p|| + ||q||)] ⊆ R≥0. Thus p + q is
positive.

The pointed conicality implies that the relation ≥ defined on the set of self-
adjoint elements of A by a ≥ b if a− b ≥ 0 is a partial order.



NOTES ON FREE PROBABILITY 13

The spectral mapping theorem provides lots of positive elements. If A is a unital
C∗-algebra, a ∈ A is normal and f : σ(a) → R≥0 is any continuous function, then
f(a) is a positive element of A.

10.2. Another characterization of positivity. We assert that A+ consists ex-
actly of those elements of A that are of the form a∗a for some a ∈ A.

One containment is obvious. Suppose that p ∈ A+, so that p is self-adjoint and
σ(p) ⊆ R≥0. Consider the continuous function f =

√· defined on σ(p) and let
a = f(p). Then a = a∗ and a2 = p, by the continuous functional calculus.

As for the other, take a∗a which is clearly self-adjoint (so that σ(a∗a) ⊆ R)
and we need to see that σ(a∗a) ⊆ R≥0. Let f(t) = max{0, t}, g(t) = max{0,−t},
defined on σ(a∗a), and let x = f(a∗a), y = g(a∗a), both of which are positive
elements of A. From the continuous functional calculus, x− y = a∗a and xy = 0 =
yx.

It now follows that with b = ay, b∗b = ya∗ay = y(x− y)y = −y3 ∈ −A+. Hence,
so does bb∗ - since σ(ab)∪{0} = σ(ba)∪{0} for all a, b ∈ A. Thus b∗b+ bb∗ ∈ −A+.
But if b = u + iv with self-adjoint u, v, then b∗b + bb∗ = 2(u2 + v2) ∈ A+. By
pointedness of the cone of positives, u2 + v2 = 0. So u2 = −v2 ∈ A+ ∩−A+ = {0}.
By the C∗-identity, u = 0 = v. Thus b = 0 ⇒ y3 = 0 ⇒ y = 0. So a∗a = x which
is positive.

11. C∗-probability spaces

11.1. Definitions and states. The ∗-probability space (A, φ) is said be a C∗-
probability space if A is a (unital) C∗-algebra.

For a unital C∗-algebra A, a linear functional ψ : A→ C is said to be a state if it
is positive (ψ(a∗a) ≥ 0 for all a ∈ A) and ψ(1) = 1. Thus, the φ for a C∗-probability
space (A, φ) is a state.

We will use the fact that a linear functional ψ on a unital C∗-algebra A is a
state iff it is bounded of norm 1 (i.e., ||ψ|| = sup{ψ(a) : a ∈ A, ||a|| ≤ 1} = 1) and
ψ(1) = 1.

To prove this, suppose first that ψ is a state. It will suffice to see that |ψ(a)| ≤
||a|| for all a ∈ A. But by Cauchy-Schwarz, |ψ(a)| = |ψ(1∗a)| ≤ ψ(a∗a)

1
2 - for note

that in a C∗-algebra, 1∗ = 1. The element p = a∗a is a positive element of A;
if we knew that for positive p, ψ(p) ≤ ||p||, we would be done by appeal to the
C∗-identity. But this holds, since for positive p, ||p|| − p is also positive and just
apply ψ.

Conversely suppose that ψ is a linear functional of norm 1 that is 1 at 1. We
need to see that ψ is positive. Let a ∈ A+. The basic idea is that φ(a) is contained
in any closed disc in the complex plane that contains σ(a). For any λ ∈ C, we have
|φ(a− λ)| ≤ ||a− λ||, i.e., |φ(a) − λ| ≤ ||a− λ||. Suppose that σ(a) ⊆ [r, s] ⊆ R≥0.
Also say [r, s] ⊆ B(λ, t) for some λ ∈ C, t ∈ R. Then σ(a − λ) ⊆ B(0, t). Since
a− λ is normal, ||a− λ|| ≤ t. Hence |φ(a) − λ| ≤ t⇒ φ(a) ∈ B(λ, t). Since [r, s] is
the intersection of all the B(λ, t) containing [r, s], it follows that φ(a) ∈ [r, s] and
is therefore non-negative, as needed.

11.2. C∗-probability spaces associated to C(X). Let X be a compact Haus-
dorff space and consider the C∗-algebra A = C(X) of complex-valued, continuous
functions on X . (Or equivalently, by the Gelfand-Naimark theorem, consider a
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commutative, unital C∗-algebra A.) This can be made a C∗-probability space in a
number of ways.

First, recall the Riesz representation theorem which asserts that states φ on C(X)
are exactly those of the form

φ(f) =

∫

X

fdµ

where µ is a uniquely determined outer- and inner-regular Borel probability measure
on X .

So take any such φ and consider (A, φ). This then is a C∗-probability space, and
is the most general commutative example of such.

11.3. C∗
red(G). Recall for a countable group G, the left-regular representation λ :

CG → L(ℓ2(G)) defined by linearly extending λ(g)(ξh) = ξgh. This is a represen-
tation of the ∗-probability space (CG,φ) on ℓ2(G) with vacuum vector ξ1.

Let C∗
red(G) be the norm closure of λ(G) in L(ℓ2(G)). Then C∗

red(G) is a C∗-
algebra. The functional φ on CG extends to one on C∗

red(G) by the vector state
defined by ξ1 which is clearly a state and thus bounded and hence continuous. Thus
it is still a trace on C∗

red(G).
It happens to be still faithful on C∗

red(G). Seeing this requires a commutant
argument. Consider the right-regular representation of CG on L(ℓ2(G)) defined
by linear extension of ρ(g)(ξh) = ξhg−1 . It is clear that all elements of λ(CG)
commute with every ρ(g). It follows by norm approximation that so do all elements
of C∗

red(G). Now suppose that φ(T ∗T ) = 0 for some T ∈ C∗
red(G). We need to see

that T = 0.
Since φ(T ∗T ) = ||Tξ1||2, it follows that Tξ1 = 0. Applying ρ(g) for g ∈ G and

using commutativity with T gives Tξg = 0 for all g ∈ G. Hence T vanishes.

11.4. Proof analysis and LG. Analysing the proof shows why the vector state
defined by ξ1 is faithful even on LG. In fact, take any vector topology (i.e., addi-
tion and sclar multiplication being continuous) on L(H) such that the adjunction
operation and multiplication by a fixed element are continuous in this topology.
Then, the closure of CG in this topology is still a ∗-subalgebra of L(H) and the
vector state defined by ξ1 is faithful on this completion. Taking this topology to be
the weak operator topology gives the result for LG. (LG which is defined to be the
double commutant of λ(CG) is also the weak, strong or σ-weak operator topology
closure of CG.)

12. ∗-distributions, norm and spectrum of normal elements

12.1. Existence of analytic ∗-distribution. Let (A, φ) be a C∗-probability space
and a ∈ A be normal. Then a has an analytic ∗-distribution µ whose support is
contained in σ(a) and such that for all f ∈ C(σ(a)) we have

∫

C

fdµ = φ(f(a)).

This is easy to see. For consider the continuous functional calculus, say Φ :
C(σ(a)) → A and the composite map φ ◦ Φ : C(σ(a)) → C which is a positive
linear functional. The Riesz representation theorem now yields a Borel probabil-
ity measure µ on σ(a) (hence a compactly supported measure on C with support
contained in σ(a)) such that the formula above holds. Taking f of the form zmzn,
Φ(f) = am(a∗)n and so this µ is the analytic ∗-distribution of a.
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A useful consequence is that any normal element a of any ∗-probability space
(A, φ) that admits a representation on Hilbert space has an analytic ∗-distribution.

This also follows easily. For suppose that θ : A→ L(H) is a representation with
vacuum vector Ω ∈ H. The element θ(a) of the C∗-probability space (L(H), φΩ)
has an analytic ∗-distribution µ which is also the analytic ∗-distribution of a.

12.2. The support of the analytic ∗-distribution. Suppose that (A, φ) is a
C∗-probability space and a ∈ A is normal with analytic ∗-distribution µ. If φ is
faithful, then, supp(µ) = σ(a).

For suppose that λ ∈ σ(a) \ supp(µ). Take an neighbourhood U of λ which has
0 µ-measure. Consider a continuous function f : σ(a) → [0, 1] that is 1 at λ and 0
outside U and let b = f(a) so that ||b|| = 1. However, φ(b∗b) = φ(b2) =

∫

C
f2dµ ≤

∫

C
1Udµ = 0. Hence φ(b∗b) = 0 and so b = 0 by faithfulness of φ. The contradiction

shows non-existence of λ.
The reason this is useful is to be able to read off properties of a from that of

its ∗-distribution. For instance we see that the spectrum of a is determined by its
∗-distribution with respect to a faithful state. Hence so is its norm.

We note that conversely, if supp(µ) = σ(a), then, φ is faithful on the C∗-
subalgebra of A generated by a. To see this it suffices to see, using the continuous
functional calculus, that if X ⊂ C is compact and µ is a measure on C with support
X , then, for any continuous function f on X , if

∫

C
|f |2dµ = 0, then, f = 0 which

is obvious.

12.3. The norm from the ∗-distribution. There is a very direct formula that
yields the norm of any element of a faithful C∗-probability space (A, φ) from its
∗-moments. Explicitly, we assert that

||a|| = limn→∞φ((a
∗a)n)

1
2n ,

for any a ∈ A (not necesarily normal).
Applying the C∗-identity, it suffices to see that

||p|| = limn→∞φ(p
n)

1
n ,

for a positive p ∈ A. Positivity of p and submultiplicativity of the norm imply that
the sequence on the RHS is a sequence of positive real numbers each less than ||p||.

So it is enough to see that for any α ∈ (0, ||p||) the inequality φ(pn)
1
n > α holds

for all sufficiently large n. Note first that ||p|| ∈ σ(p) = supp(µ), where µ is the
∗-distribution of p. So for any β < ||p||, the interval [β, ||p||] has positive µ-measure.
Choose any such β > α and consider

φ(pn) =

∫

σ(p)

tndµ ≥ βnµ([β, ||p||]).

So φ(pn)
1
n ≥ βµ([β, ||p||]) 1

n > α if n is large enough.

13. Joint distributions and ∗-distributions
13.1. Definitions. Let (A, φ) be a probability space and a1, · · · , as ∈ A. A joint

moment of a1, · · · , as is φ evaluated on a word in a1, · · · , as. The joint dis-

tribution of a1, · · · , as is the linear functional µ : C〈X1, · · · , Xs〉 → C defined
by

µ(Xi1Xi2 · · ·Xin) = φ(ai1ai2 · · · ain),
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where C〈X1, · · · , Xs〉 is the free, associative, unital algebra generated by the inde-
terminates X1, X2, · · · , Xs.

If (A, φ) is a ∗-probability space and a1, · · · , as ∈ A, a joint ∗-moment of
a1, · · · , as is φ evaluated on a word in a1, · · · , as, a∗1, · · ·a∗s. The joint ∗-distribution
of a1, · · · , as is a linear functional defined on the free, associative, unital algebra
C〈X1, · · · , Xs, X

∗
1 , · · · , X∗

s 〉 defined analogously. Note that C〈X1, · · · , Xs, X
∗
1 , · · · , X∗

s 〉
has a natural ∗-structure defined in the obvious way and that the joint ∗-distribution
preserves adjoints.

Both these can be stated in terms of the evaluation homomorphismsC〈X1, · · · , Xs〉 →
A in the first case and and C〈X1, · · · , Xs, X

∗
1 , · · · , X∗

s 〉 → A, in the second.
Why we need joint distributions and ∗-distributions is exactly the same reason as

in classical probability: knowing individual distributions of random variables does
not give information on the distribution of their sum for instance.

14. Examples

14.1. The Cayley graph. Let G be a countable group and g, h ∈ G be elements
of infinite order so that they are Haar unitaries in (CG,φ) and so the self-adjoint
elements x = g + g−1 and y = h + h−1 of CG both have the arcsine distribution.
Consider the distribution of their sum ∆ = g + g−1 + h+ h−1.

Define the Cayley graph of a group G with respect to a set S of generators (S
closed under inversion and not containing 1) as the graph with vertex set G and
edge between g and h if g = hs for some s ∈ S. Though this is undirected, it is
sometimes convenient to regard it as a directed graph where each edge is directed
both ways and labelled such that the label from g to gs is s (and from gs to g is
s−1, of course).

If G is a finite group and S is the set of non-identity elements of G, the Cayley
graph is the complete graph on |G| vertices. If G is Z2 and S = {(±1, 0), (0,±1)},
the Cayley graph is the union of the lines x = n, y = n for n ∈ Z. If G is
F2 - the free group on 2 generators - g, h, say, the Cayley graph with respect to
S = {g, g−1, h, h−1} is the 4-regular tree. If G is Σ3 with S = {(12), (123), (132)}
the Cayley graph is like the edges of a triangular prism.

Suppose that G is generated by g and h. We claim that for any n ∈ N, φ(∆n)
is given by the number of closed paths in the Cayley graph that begin and end
at 1. This is fairly clear. For, ∆n =

∑

k1,k2,··· ,kn∈S k1k2 · · · kn. So φ(∆n) =
∑

k1,k2,··· ,kn∈S δk1k2···kn,1 = |{(k1, k2, · · · , kn) ∈ Sn : k1k2 · · · kn = 1}|.
Associating to the n-tuple (k1, k2, · · · , kn) the path which visits in order 1, k1,

k1k2, · · · , k1k2 · · · kn−1, 1 gives the desired bijection. In the reverse direction read
off the labels of the visited edges in order and keeping track of direction.

14.2. The Z
2 example. To count the number of paths on the integer lattice that

begin and end at the origin, encode each such by a string of R,L, U,D with the
obvious meaning.

A string of R,L, U,D represents such a path exactly when the number of R’s
equals the number of L’s and the number of U ’s equals the number of D,s. In
particular, there are no such paths of odd length.

If the length of the path is 2p associate to it the two subsets of {1, 2, · · · , 2p}
which correspond to its R or U positions and R or L positions. Each is a p-
subset. Conversely given any two p-subsets of {1, 2, · · · , 2p} put R in the positions
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of their intersection, U in the complement of the R positions in the first and L
in the complement of the R positions in the second and D everywhere else. This

corresponds to an allowable path. Thus, the number of such is
(

2p
p

)2
.

What is the moment generating function ?

14.3. The F2 example. Consider starting off at 1 on the Cayley graph of F2,
picking an edge incident there at random, going along it and continuing this process.
Let uk be the probability of returning to 1 after k steps and vk be the probability
of returning to 1 for the first time after k steps. Consider the generating functions

U(z) =

∞
∑

k=0

ukz
k, and

V (z) =

∞
∑

k=0

vkz
k,

where we decree that u1 = 1 while v1 = 0.
Any path that returns to 1 after k steps has a first return after some t steps for

t = 1, 2, · · · , k, and is followed by a path that returns to 1 after k − t steps. It

follows that uk =
∑k

t=1 vtuk−t for k ≥ 1 and therefore that U(z) = U(z)V (z) + 1.
Thus knowing one determines the other.

We will try to determine V for the Cayley graph of F2 which, we have observed
is the 4-regular tree. More generally, we do this for the d ≥ 2 regular tree. Choose
any vertex as a root and draw it growing downward, so that there are d children of
the root and d− 1 for any other vertex.

Consider paths of length k based at the root which have first return exactly after
k steps. The ratio of their number to the total number of paths of length k based
at the root gives vk. To count them, associate two strings of length k to them. One
is the sequence of U/D moves. The other is the choice of child at each D move.

The first sequence must begin with a D, end with a U and be a Catalan sequence
of length k − 2 in between. The other sequence has 1, · · · , d for the first D and
1, · · · , d − 1 for any of the other D’s. Any such pair of sequences clearly gives an
eligible path. Thus the number of such paths is 0 for odd k and for k = 2p is given
by:

d(d − 1)p−1Cp−1 = d(d− 1)p−1 1

p

(

2p− 2

p− 1

)

.

Thus

V (z) =
∞
∑

p=1

d(d− 1)p−1Cp−1

d2p
z2p

=
z2

d

∞
∑

p=1

(
d− 1

d2
)p−1Cp−1z

2p−2

=
z2

d

∞
∑

p=0

Cp(
(d− 1)z2

d2
)p.
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Recalling that the generating function for the Catalans is given by 1−
√
1−4z
2z , we see

that V (z) is given by

d

2(d− 1)

[

1−
√

1− 4
d− 1

d2
z2

]

.

It follows that U(z) is given (after a bit of calculation by)

2(d− 1)

d− 2 +
√

d2 − 4(d− 1)z2
=

3

1 +
√
4− 3z2

,

when d = 4. Thus the generating function for the number of loops based at 1 is
given by U(dz) which is

2(d− 1)

d− 2 + d
√

1− 4(d− 1)z2
=

3

1 + 2
√
1− 12z2

,

for d = 4.

14.4. The rotation algebra. Consider a ∗-algebra A generated by two unitaries
x and y subject only to the relation xy = eiθyx where θ ∈ R is a fixed parameter.
What this means in greater detail is that A is a quotient of the free algebra on 4
variables X,X∗, Y, Y ∗ by the two sided ideal, say I, generated by XX∗− 1, X∗X−
1, Y Y ∗−1, Y ∗Y −1 and XY −eiθY X . Since I is ∗-stable - each one of its generators
is so, upto scaling - the natural ∗-structure on the free algebra on X,X∗, Y, Y ∗

descends to A, so that A is a ∗-algebra.
The element XY − eiθY X ∈ I may be used to see that XY ∗ − e−iθY ∗X is also

in I. It follows that the elements xmyn span A where m,n ∈ Z. We will show
that these are also linearly independent. Assuming this, define φ on A by setting
φ(xmyn) = δm,0δn,0. We show later that φ is positive and faithful.

The multiplication rule (xmyn)(xpyq) = e−inpθxm+pyn+q is easily seen and seen
to imply that φ is a trace.

We assert the following combinatorial interpretation of φ evaluated on a mono-
mial in x, x∗, y, y∗. To any such monomial, associate a lattice path that begins at
the origin and moves one step east, west, north or south according as x, x∗, y, y∗

occurs in the monomial. If m is a monomial of degree n, the associated lattice path
γ is composed of n linear pieces. We claim that φ(m) = 0 unless γ is a closed path,
in which case, φ(m) = eikθ where k is given by

k =

∫

γ

x dy = −
∫

γ

y dx.

To prove this, define a linear functional Φ : C〈X,X∗, Y, Y ∗〉 → C, by the same
prescription. On the free algebra, this is certainly well-defined. We claim that this
functional descends to A.

To see this it is enough to verify that the functional vanishes on the ideal I. A
spanning set for I is given by all binomials of the form w1bw2 where w1, w2 are
arbitrary monomials in X,X∗, Y, Y ∗ and b is one of the 5 generating binomials of
I.

To see that Φ vanishes on, sayw1(XX
∗−1)w2, we need to check that Φ(w1XX

∗w2) =
Φ(w1w2). Note that the finish points of the paths associated to both w1XX

∗w2 and
to w1w2 are the same so unless this is the origin, both sides vanish. Otherwise, by
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definition, each of these is an integral over an associated path and a little thought
shows that these integrals are indeed equal as also for the other 3 such generators.

The interesting case is for the generator b = XY − eiθY X . We need to check in
this case that Φ(w1XY w2) = eiθΦ(w1Y Xw2). Some thought shows that if (m,n)
is the point obtained by traversing either path until w1, the difference between the
integrals for w1XY w2 and for w1Y Xw2 is given by

∫

γ

x dy,

where γ is the unit square with lower left endpoint at (m,n) traversed anticlockwise.
Since this clearly gives 1, we’re done.

15. The isomorphism theorems

15.1. The vanilla isomorphism theorem. The importance of joint ∗-distributions
comes from the following theorem and its generalisations to the C∗-algebraic and
von Neumann algebraic context.

Theorem: Let (A, φA) and (B, φB) be faithful ∗-probability spaces such that
there exist a1, · · · , as ∈ A and b1, · · · , bs ∈ B which are generating sets of A
andB respectively as unital ∗-algebras and such that the joint ∗-distributions µA

of a1, · · · , as and µB of b1, · · · , bs are the same. There is then a unique unital
∗-isomorphism Φ : A→ B such that Φ(ai) = bi for i = 1, 2, · · · , s, which also is an
isomorphism of ∗-probability spaces.

To see this, consider the map ΘA = eva1,··· ,as
: C〈X1, · · · , Xs, X

∗
1 , · · · , X∗

s 〉 → A
defined by ΘA(Xi) = ai,ΘA(X

∗
i ) = a∗i . The generation statement says that ΘA

is a surjective map. Similarly, we have surjective ΘB. The main observation is
that ker(ΘA) = ker(ΘB). This is because, by definition, φA ◦ ΘA = φB ◦ ΘB.
Thus, if f ∈ ker(ΘA), then f

∗f ∈ ker(ΘA) ⇒ φA(f
∗f(a)) = 0 ⇒ µA(f

∗f) = 0 =
µB(f

∗f) ⇒ φB(f
∗(b)f(b)) = 0 ⇒ f(b) = 0 ⇒ f ∈ ker(ΘB), and conversely. So

A ∼= B by the map taking f(a) to f(b). Clearly φA ◦ f(a) = φB ◦ f(b).

15.2. On ∗-homomorphisms. Let Φ : A → B be a unital ∗-homomorphism of
unital C∗-algebras. Then Φ decreases norm and, in particular, is continuous. For,
Φ certainly decreases spectrum. So it decreases norm for normal elements and the
C∗-identity implies that this holds also for general elements.

In particular, a unital ∗-isomorphism preserves norm. In fact, even an injective
unital ∗-homomorphism preserves norm. To see this, as before, it suffices to see
that the norm of positive elements is preserved. So suppose that ||Φ(p)|| < ||p||.

Note that for any f ∈ C(σ(p)), f(Φ(p)) makes sense and equals Φ(f(p)). This
is clear for polynomial f in z and z. Now approximate arbitrary f by polynomials
on σ(p) and use that Φ is continuous.

Choose for f , by Urysohn’s lemma, a continuous extension from σ(p) to [0, 1] of
a function that is 0 on σ(Φ(p)) and 1 at ||p||. Then f(Φ(p)) = 0. So Φ(f(p)) =
0 ⇒ f(p) = 0 contradicting its norm being 1.

15.3. The C∗-isomorphism theorem. The C∗-algebraic version of the previous
theorem reads as follows.

Theorem: Let (A, φA) and (B, φB) be faithful C∗-probability spaces such that
there exist a1, · · · , as ∈ A and b1, · · · , bs ∈ B which are generating sets of A andB
respectively as C∗-algebras and such that the joint ∗-distributions µA of a1, · · · , as
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and µB of b1, · · · , bs are the same. There is then a unique unital isometric ∗-
isomorphism Φ : A → B such that Φ(ai) = bi for i = 1, 2, · · · , s, which also is an
isomorphism of C∗-probability spaces.

To prove this, note that by the previous theorem, there is an isomorphism, say
Φ0, of ∗-probability spaces A0 and B0 given by taking f(a) to f(b), where A0 and
B0 are the ∗-algebras generated by a1, · · · , as and b1, · · · , bs. The point is that Φ0

is isometric. To prove this, recall that the norm of any a in A can be computed in
terms of its ∗-distribution explicitly. It follows that f(a) and f(b) have the same
norm.

Now, by norm density of A0 in A and completeness of B, Φ0 has a unique
continuous extension to Φ : A → B which is also isometric. Norm continuity of
the multiplication and ∗-operation on A imply that Φ is a unital ∗-homomorphism.
Now φB ◦ Φ = φA on A0. Both sides being continuous, this holds also on A.
Uniqueness is clear since A0 is dense in A and by continuity of ∗-homomorphisms.

15.4. Representing the rotation algebra. Consider the group Z2 and the asso-
ciated Hilbert space ℓ2(Z2) with orthonormal basis ξ(m,n) for (m,n) ∈ Z

2. Define

unitaries x, y ∈ L(ℓ2(Z2)) by

xξ(m,n) = ξ(m+1,n)

yξ(m,n) = e−imθξ(m,n+1).

Note that there is a surjective ∗-homomorphism, say Θ, from A to the unital sub-
algebra of L(ℓ2(Z2)) generated by x and y. Since the elements xmyn for m,n ∈ Z

are linearly independent - operating on ξ(0,0), they give ξ(m,n) - it follows that
XmY n ∈ A are also linearly independent.

Let Ã be the C∗-algebra generated by x and y in L(ℓ2(Z2)) which is the norm

closure of Θ(A). Let ψ be the vector state defined on Ã by ξ(0,0). Since ψ is a trace

on A which is norm dense in Ã, ψ is also a trace on A.
Further, ψ is faithful. For suppose there is a w ∈ Ã such that ψ(w∗w) = 0. Then

wξ(0,0) = 0. Now, 〈wξ(m,n)|ξ(p,q)〉 = 〈wxmynξ(0,0)|xpyqξ(0,0)〉 = 〈(y∗)q(x∗)pwxmynξ(0,0)|ξ(0,0)〉 =
ψ((y∗)q(x∗)pwxmyn) = ψ(xmyn(y∗)q(x∗)pw) = 0. The map Θ from (A, φ) to (Ã, ψ)
is a representation.

The point of all this is that according to the C∗-isomorphism theorem, the C∗-
probability space generated by a pair of unitaries x and y satisfying the relation
xy = e−iθyx an equipped with a faithful, positive φ with φ(xmyn) = δm,0δn,0 is
uniquely determined.

16. Classical independence and free independence

16.1. Classical independence. Let (A, φ) be a probability space and {Ai : i ∈ I}
be a family of unital subalgebras of A. The family {Ai : i ∈ I} is said to be
classically independent or tensor independent in A if elements of distinct
subalgebras Ai and Aj commute and if φ admits a factorisation as follows: for any
finite subset J ⊆ I, φ(

∏

j∈J aj) =
∏

j∈J φ(aj).
Random variables a, b ∈ A are said to be tensor independent if the unital subal-

gebras of A that they generate are tensor independent. Equivalently, a, b ∈ A are
tensor independent if they commute and φ(anbm) = φ(an)φ(bm) for all m,n ≥ 0.
In particular, when a and b are tensor independent, their joint distribution is com-
pletely determined by the individual distributions of a and b.
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16.2. Free independence. Let (A, φ) be a probability space and {Ai : i ∈ I} be
a family of unital subalgebras of A. The family {Ai : i ∈ I} is said to be freely

independent in A if every alternating product of centred elements of Ai is centred,
in the following sense. An element ai ∈ Ai is said to be centred if φ(ai) = 0.
Recall that φ(ai) is the mean of ai. Consider any finite product a1a2 · · · ak where,
for each j = 1, 2, · · · , k, aj ∈ Ai(j). It is said to be an alternating product if
i(1) 6= i(2) 6= i(3) 6= · · · 6= i(k).

A family {Xi : i ∈ I} of subsets of A is said to be a freely independent family

if the unital subalgebras they generate are freely independent in A. In particular,
random variables ai ∈ A for i ∈ I are said to be freely independent if the unital
subalgebras they generate are freely independent in A.

If (A, φ) is a ∗-probability space, a family {Xi : i ∈ I} of subsets of A is said
to be a ∗-freely independent family if the unital ∗-subalgebras they generate
are freely independent in A. Similarly, random variables ai ∈ A for i ∈ I are said
to be ∗-freely independent if the unital ∗-subalgebras they generate are freely
independent in A.

16.3. Some remarks. (1) Free independence depends on the linear functional φ.
Consider, for instance, the algebra A = C〈X,Y 〉 with the functional φ being defined
by evaluation at X = 0, Y = 0. The subalgebras C〈X〉 and C〈Y 〉 are then freely
independent in (A, φ). However, if ψ is defined by arbitrarily extending X,Y 7→
0, XY 7→ 1, then clearly C〈X〉 and C〈Y 〉 are not freely independent in (A,ψ).
(2) By definition, a family {Ai : i ∈ I} is freely independent if and only if each of
its finite subfamilies is freely independent.
(3) If (A, φ) is a C∗-probability space, {Ai : i ∈ I} is a family of unital ∗-subalgebras
of A, and Bi is the norm closure of Ai in A, then, {Ai : i ∈ I} is a freely independent
family if and only if {Bi : i ∈ I} is a freely independent family. One direction is
clear since free independence is monotonic in an obvious sense. As for the other, it
suffices to observe that any centred element of Bi is a norm limit of centred elements
of Ai and that φ is norm continuous as is multiplication jointly in its arguments.

17. Free independence for group algebras

17.1. Freeness for subgroups. Let G be a group and {Gi : i ∈ I} be a family of
subgroups of G. The family {Gi : i ∈ I} is said to be free in G if for all k ≥ 1,
ii, i2, · · · , ik ∈ I with ii 6= i2 6= · · · 6= ik and gj ∈ Gij \ {1}, we have g1g2 · · · gk 6= 1.

17.2. The free product construction for groups. Let Gi, i ∈ I be a family of
groups. There is a unique (upto unique isomorphism) pair of group G and homo-
morphisms φi : Gi → G, i ∈ I that satisfies the following universal property: for
any group H and homomorphisms ψi : Gi → H , there is a unique homomorphism
φ : G→ H such that ψi = φ ◦ φi for all i ∈ I. G is said to be the free product of
the Gi and denoted by ∗i∈IGi.

A very standard proof shows that if the pair (G,φi : Gi → G, i ∈ I) exists, then
it is unique upto unique isomorphism.

To show existence some work is needed. Let A =
∐

i∈I Gi, which is a set. Set
W (A) to be the word monoid of A, i.e., W (A) consists of all strings of elements of
A including the empty string with the operation being concatenation. Define an



22 VIJAY KODIYALAM

equivalence relation ∼ on W (A) as the one generated by all

w1iw̃ ∼ ww̃,

waibiw̃ ∼ wciw̃,

where 1i ∈ Gi is the identity element and ai, bi ∈ Gi with aibi = ci in Gi. Let G
be the quotient W (A)/ ∼. It is easy to check that G is a group. Let φi : Gi → G
be the natural map φi(ai) = [ai]. This is a group homomorphism. Finally, the
universal property also holds as is easily seen.

17.3. Reduced words. Any element of G contains a unique reduced word. This
is a word in W (A) which is either the empty word or of the form a1a2 · · · an where
n ≥ 1, aj ∈ Gij \ {1ij}, ij 6= ij+1 for j = 1, 2, · · · , n− 1. To see this, fix an a ∈ A
and consider the map T (a) mapping the set of reduced words to itself defined by:

T (a)(a1 · · · an) =















a1 · · · an if a = 1i for some i ∈ I
aa1 · · · an if a ∈ Gi \ {1i} for some i ∈ I with i 6= i1
(aa1)a2 · · ·an if a ∈ Gi1 with aa1 6= 1i1
a2 · · · an if a ∈ Gi1 and aa1 = 1i1

Note that T (a)w ∼ aw and is reduced, so by induction on the length of w any
element of G contains a reduced word. As for uniqueness, for any word w =
b1b2 · · · bn, not necessarily reduced, define T (b) = T (b1)T (b2) · · ·T (bn), mapping
the set of reduced words to itself. Observe that w 7→ T (w) respects the equivalence
relation ∼ and so w1 ∼ w2 ⇒ T (w1) = T (w2). Also observe that w reduced implies
that T (w)(ǫ) = w, where ǫ is the empty word. Hence if w1 and w2 are both reduced
and equivalent, then w1 = T (w1)(ǫ) = T (w2)(ǫ) = w2.

In particular, the canonical maps φi : Gi → G are injective and we may identify
Gi with a subgroup of G. These subgroups are indeed free in G.

17.4. Motivation for freeness of probability spaces. Let G be a group and
{Gi : i ∈ I} be a family of subgroups of G. Let (A, φ) be the probability space
A = CG,φ = δ1, and Ai = CGi for i ∈ I. Then, the family {Gi : i ∈ I} is free in
G exactly when the family {Ai : i ∈ I} is freely independent in A.

First suppose that {Gi : i ∈ I} is free in G. Take an alternating product
a1a2 · · ·ak of centred elements where aj ∈ Ai(j). Write aj =

∑

g∈Gi(j)
agjg. That aj

is centred is equivalent to a1j = 0. The product a1a2 · · · ak is then equal to
∑

g1∈Gi(1)\{1},··· ,gk∈Gi(k)\{1}
ag11 · · · agkk g1g2 · · · gk

By freeness of Gi in G, the coefficient of 1 here vanishes. The other direction is
even simpler.

18. Free independence and joint moments

18.1. How freeness determines joint distributions from individual distri-

butions. Let (A, φ) be a probability space and {Ai : i ∈ I} be a family of freely
independent subalgebras of A. Let B be the unital subalgebra of A generated by
all the Ai. Then, φ|B is determined by φ|Ai

for i ∈ I.
To see this, note first that B is spanned by all words a1a2 · · ·ak where aj ∈ Aij

where we may assume that i1 6= i2 6= · · · 6= ik. Now induce on k, the basis case
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k = 1 being clear. For larger k, set a0i = ai − φ(ai). We then have that

φ(a1a2 · · · ak) = φ( (a01 + φ(a1))(a
0
2 + φ(a2)) · · · (a0k + φ(ak)) ).

The argument of φ in the RHS is a sum of 2k terms each of which except for
a01a

0
2 · · ·a0k is a word with smaller k on which φ is determined inductively. Since

φ(a01a
0
2 · · · a0k) = 0 by freeness, we are done.

18.2. Explicit computation. Say A and B are subalgebras that are freely inde-
pendent in some larger probability space with functional φ. Then, for a, a1, a2 ∈ A
and b, b1, b2 ∈ B we have (1) φ(ab) = φ(a)φ(b), (2) φ(a1ba2) = φ(a1a2)φ(b) and
(3) φ(a1b1a2b2) = φ(a1a2)φ(b1)φ(b2) + φ(a1)φ(a2)φ(b1b2)− φ(a1)φ(a2)φ(b1)φ(b2).

For, φ((a − φ(a))(b − φ(b))) = 0 which gives (1). As for (2), consider

φ((a1 − φ(a1))(b − φ(b))(a2 − φ(a2))) = 0.

This implies φ(a1ba2)−φ(a1b)φ(a2)−φ(b)φ(a1a2)+φ(a1)φ(b)φ(a2)−φ(a1)φ(ba2)+
φ(a1)φ(b)φ(a2) + φ(a1)φ(b)φ(a2)− φ(a1)φ(b)φ(a2) = 0, yielding (2). To prove (3),
start with

φ((a1 − φ(a1))(b1 − φ(b1))(a2 − φ(a2))(b2 − φ(b2))) = 0

and compute.

19. Properties of free independence

19.1. Simple properties. (1) Commuting random variables a and b are freely
independent only if at least one has vanishing variance. For free independence
implies that φ(abab) = φ(a2)φ(b)2 + φ(a)2φ(b2) − φ(a)2φ(b)2 and commutativity
with free independence that the LHS is φ(a2)φ(b2). Taking all terms to the right
and factoring yields (φ(a2)− φ(a)2)(φ(b2)− φ(b)2) = 0 as desired.
(2) In particular, real valued random variables a and b are freely independent only
if at least one is constant.
(3) In a ∗-probability space (A, φ) with faithful φ, for a freely independent family
{A1, A2}, A1 ∩ A2 = C. For if a ∈ A1 ∩ A2 is self-adjoint, it is free from itself
and so φ(a2) − φ(a)2 = 0 ⇒ φ((a∗ − φ(a∗))(a − φ(a))) = 0. Faithfulness of φ gives
a = φ(a) ∈ C.
(4) In any probability space (A, φ), any subalgebra B is freely independent from C.

19.2. Free independence and traciality. We first observe the following. Let
(A, φ) be a probability space and {Ai : i ∈ I} be a freely independent family of
subalgebras of A. Let a1a2 · · ·ak and b1b2 · · · bl be centred alternating products
such that at ∈ Ait and bt ∈ Ajt . Then φ(a1a2 · · · akblbl−1 · · · b1) = 0 unless k = l
and it = jt for all t in which case it gives φ(a1b1) · · ·φ(akbk).

The proof is by induction on k after observing that the whole product is an alter-
nating product unless ik = jl in which case it gives φ(akbl)φ(a1a2 · · ·ak−1bl−1 · · · b1).

Suppose that in the situation above, each φ|Ai
is a trace. Then, restricted to the

algebra generated by the Ai, φ is a trace. This follows since the centred alternating
products together with 1 are a basis of the generated algebra and we may use the
observation above.
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19.3. Associativity of free independence. Suppose that (A, φ) is a probability
space and {Ai : i ∈ I} be a family of unital subalgebras of A. For each i ∈ I

let {Bj
i : j ∈ J(i)} be a family of unital subalgebras of Ai that generate Ai. The

following are then equivalent:
(1) The family {Ai : i ∈ I} is a freely independent family and for each i ∈ I the

family {Bj
i : j ∈ J(i)} is a freely independent family.

(2) The family {Bj
i : i ∈ I, j ∈ J(i)} is a freely independent family.

To prove this, we first see that (1) ⇒ (2) even without the generation hypothesis

on the Bj
i . For consider a centred alternating product b1b2 · · · bn where bt ∈ Bjt

it
with

(i1, j1) 6= (i2, j2) 6= · · · 6= (it, jt). Break up {1, 2, · · · , n} into maximal intervals on
which the it are the same. The corresponding product of the b’s over these intervals
are centred by free independence of {Bj

i : j ∈ J(i)}. The final product of these
products is also centred by free independence of {Ai : i ∈ I}.

As for (2) ⇒ (1), the key observation is that the span of alternating products

of centred elements of the family {Bj
i : j ∈ J(i)} is the set of centred elements

of Ai for each i ∈ I. To see this, first Ai is spanned by alternating products of
{Bj

i : j ∈ J(i)}. The centred elements of Ai are spanned by the centreings of such.
So consider b1b2 · · · bk − φ(b1b2 · · · bk). Induce on k to show that such an element

is in the span of alternating products of centred elements of {Bj
i : j ∈ J(i)}.

b1b2 · · · bk − φ(b1b2 · · · bk) = (b01 + φ(b1))(b
0
2 + φ(b2)) · · · (b0k + φ(bk))− φ(b1b2 · · · bk).

The term b01b
0
2 · · · b0k of this is centred and the other terms may be expressed as

linear combinations of term looking like c1c2 · · · cl − φ(c1c2 · · · cl) for l < k.

19.4. An exercise. Suppose that (A, φ) is a ∗-probability space and B be a unital
∗-subalgebra of A that is free from {u, u∗} for a Haar unitary u ∈ A. Then B and
uBu∗ are freely independent in A.

To see this, first observe that φ(ubu∗) = φ(b) using the freeness of {u, u∗} from B
and the explicit computation done above. Now since u and u∗ are themselves cen-
tred, an alternating product b1ub2u

∗b3ub4u∗ · · · of centred elements b1, ub2u
∗, · · ·

is also an alternating product of centred elements b1, u, b2, u
∗, · · · , and is therefore

centred.

20. Convergence in distribution

20.1. Central limit theorem. Let (A, φ) be a ∗-probability space and a1, a2, · · · ∈
A be a sequence of identically distributed self-adjoint random variables that are in-
dependent - either freely or classically. Also suppose that all these random variables
are centred and let σ2 = φ(a2r) ≥ 0 be their common variance. A central limit the-
orem addresses the limit behaviour of a1+···+aN√

N
as N → ∞.

20.2. Convergence in distribution. The notion of convergence relevant here is
that of convergence in distribution. We say that random variables aN ∈ (An, φN )
converge in distribution to a ∈ (A, φ) if each moment of aN converges to the
corresponding moment of a, i.e., for all n ∈ N, limN→∞φN (anN ) = φ(an).

20.3. Relation to weak convergence. Recall that a sequence of measures µN

on R is said to converge weakly to a measure µ if for every bounded continuous
function f on R the integrals against µN converge to the integral against µ.



NOTES ON FREE PROBABILITY 25

If the aN has analytic distribution µN and a has analytic distribution µ - all
of which, by our definitions, are compactly supported measures, then, if the aN
converge in distribution to a, the µN converge weakly to µ.

For consider a bounded countinuous function f on R. Approximate it uniformly
by polynomials on the compact set K = supp(µ). Moment convergence now implies
integral convergence.

20.4. Generalisation. Even if µ is not compactly supported we may get the same
conclusion under some weaker hypotheses.

A probability measure µ on R is said to be determined by its moments if it
is the only probability measure on R with its moments. Carleman’s theorem says

that
∑

k(m2k)
− 1

2k = ∞ suffices for a measure to be determined by its moments.
Two important facts are that the Gaussian measure is determined by its moments

and that if µ is determined by its moments and if µN converges to µ in distribution
(with µN having moments of all orders) then µN converges weakly to µ.

21. General central limit theorem

21.1. Finite moment computation. Suppose that (A, φ) is a ∗-probability space
and a1, a2, · · · , aN are centred and identically distributed variables in (A, φ) that
are either free or tensor independent. Consider computation of the moments of
a1 + a2 + · · ·+ aN .

We have φ((a1 + a2 + · · · + aN )n) =
∑N

i1,i2,··· ,in=1 φ(ai1ai2 · · ·ain). The terms

are indexed by elements of [N ]n. Each element (i1, · · · , in) ∈ [N ]n determines an
equivalence relation on or partition of [n] determined by p ∼ q if ip = iq. The
independence condition implies that φ(ai1ai2 · · · aiN ) = φ(aj1aj2 · · ·ajN ) whenever
the partitions of {1, 2, · · · , n} corresponding to the equality relations among the
it and jt are equal. Denote the set of partitions of n by P(n) and for π ∈ P(n),
let κπ denote the common value of all φ(ai1ai2 · · ·ain) where (i1, · · · , in) ∈ [N ]n

determines π.

21.2. Calculation of AN
π . Thus φ((a1+a2+ · · ·+aN)n) =

∑

π∈P(n) κπA
N
π , where

AN
π is the number of elements of [N ]n that determine π. This sum depends on N

only through the AN
π dependence on N . Further, AN

π = N(N − 1)(N − 2) · · · (N −
|π|+ 1).

21.3. Restriction on π. Only certain π contribute to the sum. If π has any class
of cardinality 1, the centering and freeness assumptions imply that κπ = 0, so we
may sum only over those partitions of [n] where each class has cardinality at least
2.

21.4. Final general form. For such a π, AN
π /N

n/2 has a limit as N → ∞, which
is 0 or 1 according as the number of classes of π is less than or equals n/2. In the
latter case, π is a pair partition of [n], i.e., one in which each class has exactly 2
elements. Denoting the set of pair partitions of [n] by PP(n), we have seen that

limN→∞φ

((

a1 + · · ·+ aN√
N

)n)

=
∑

π∈PP(n)

κπ.

In particular, the limit vanishes for odd n since PP(n) = ∅.
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22. Classical central limit theorem

22.1. Cardinality of PP(n). When the variables a1, a2, · · · are tensor indepen-
dent with common variance σ2, the factorization rule for φ implies that for each

π ∈ PP(n), κπ = σn. The cardinality of PP(n) is easily seen to be (2n)!
2nn! which is

exactly the 2nth moment of the standard normal distribution.

22.2. Classical CLT. Thus, if a1, a2, · · · are tensor independent and identically
distributed with mean 0 and variance σ2 then, as N → ∞, a1+···+aN√

N
converges in

distribution to x where x is normally distributed with mean 0 and variance σ2.

23. Free central limit theorem

23.1. Further restriction on π. Next suppose that the variables a1, a2, · · · are
freely independent with common variance σ2. Then even among the elements of
PP(n) only some contribute to the sum.

Consider a π ∈ PP(n) and any (i1, · · · , in) that determines π. If no ik = ik+1

then by definition of free independence, φ(a1a2 · · · an) = 0. Else

φ(a1a2 · · · an) = φ(a1 · · ·ak−1ak+2 · · · an)φ(akak+1).

Proceed to see that κπ is non-zero exactly when some class of π contains consecutive
numbers and the restriction of π to the complement of this class also has non-zero
κ. In this case κπ = σn.

23.2. The non-crossing condition. We claim that κπ is non-zero exactly when π
is a non-crossing pairing in the sense that there do not exist i < j < k < l such that
{i, k} and {j, l} are classes of π. For suppose that this property holds. We will show
that some pair of neighbours are a class of π. For consider min{|i− j| : {i, j} ∈ π}.
If this is at least 2, then some element strictly between i and j must be related so
some element outside. Conversely, if κπ 6= 0, then the necessity of this condition is
clear.

We conclude that

limN→∞φ

((

a1 + · · ·+ aN√
N

)n)

= |NCPP(n)|σ2.

23.3. Cardinality of NCPP(n). Next we claim that |NCPP(2p)| = Cp. This is
easily verified for small p. For large p note first that any element of NCPP(2p)
pairs an even and an odd number. So NCPP(2p) has a decomposition into p sets
according to what the partner of 1 is - one of 2, 4, · · · , 2p. The set where 1 is paired
with 2j is of cardinality |NCPP(2(j − 1))|.|NCPP(2(p− j))|. This is the Catalan
recurrence.

23.4. Free central limit theorem. Thus, if a1, a2, · · · are freely independent and
identically distributed with mean 0 and variance σ2 then, as N → ∞, a1+···+aN√

N
converges in distribution to s where x is semicircularly distributed with mean 0 and
variance σ2.
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